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ABSTRACT
The atomic kinetic Monte Carlo method plays an important role

in multi-scale physical simulations because it bridges the micro
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and macro worlds. However, its accuracy is limited by empirical

potentials. We therefore propose herein a triple-encoding algorithm

and vacancy-cache mechanism to efficiently integrate ab initio
neural network potentials (NNPs) with AKMC and implement them

in our TensorKMC codes. We port our program to SW26010-pro

and innovate a fast feature operator and a big fusion operator for

the NNPs for fully utilizing the powerful heterogeneous computing

units of the new-generation Sunway supercomputer. We further

optimize memory usage. With these improvements, TensorKMC

can simulate up to 54 trillions of atoms and achieve excellent strong

and weak scaling performance up to 27,456,000 cores.

https://doi.org/10.1145/3458817.3476174
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1 INTRODUCTION
Macroscopic failures of materials under operational conditions,

such as cracking, wearing, and corrosion, usually originate from

the evolution of microstructures at mesoscales, which is challeng-

ing to study experimentally. However, kinetic Monte Carlo (KMC),

one of the most popular computational methods for mesoscale

simulations, provides tools for understanding failure mechanisms

and estimating material lifetimes[1]. By tracking microstructural

evolution up to experimentally relevant temporal and spatial scales,

KMC simulation sheds light on mechanisms of various kinetic pro-

cesses, including irradiation, defect diffusion, cracking, and solute

precipitation, in a wide variety of materials. [2–18].

Given its versatility, various KMC models have been developed,

including objective kinetic Monte Carlo (OKMC), atomistic kinetic

Monte Carlo (AKMC), and event kinetic Monte Carlo (EKMC).

Of these models, the AKMC method, which maps hop events to

changes in the states of lattice sites, provides feasibility for simu-

lating systems at mesoscopic with atomic resolution. However, it

remains problematic to widely apply the AKMCmodel to reproduce

mesoscale phenomena because of the complex interaction and kinet-

ics of materials. Two typical approaches are available to construct

interaction and kinetics in AKMC models: the first approach is to

establish microkinetic models before the AKMC simulations; this al-

lows interaction and kinetic parameters to be employed as tabulates

during simulations. Although this method could readily expand

AKMC simulations to experimentally relevant mesoscales, physical

reliability is limited as the microkinetic mechanism is simplified

in models. The second approach calculates interaction and kinetic

processes based on DFT or empirical interatomic potentials simul-

taneously during the AKMC simulations. Although this method

enhances the fidelity of AKMC parameterization, the attainable

spatial-temporal scales are reduced by the expensive overhead of

ab initio calculations, and the applicability of empirical interatomic

potentials would also limit the physical reliability. A physically

reliable AKMC that attains experimentally relevant mesoscales is

highly demanding.

Machine learning techniques, specifically artificial neural net-

works (ANN), have been applied to improve the physical parame-

terization of AKMC simulations [4–6]. These ANNs are designed

to reproduce and predict thermodynamic and kinetic processes in

materials. The incorporation with density functional theory (DFT)

based neural network potentials (NNPs) is more and more com-

mon and important in various fields of science, as indicated by the

award of the 2020 Gordon Bell Prize to molecular dynamics (MD)

with NNP [19], which pushed the limit of molecular dynamics with

ab initio accuracy to nanosecond-long simulations of 100 million

atoms.

However, the main disadvantage of MD simulation is that the

MD time step is typically on the order of 10
−15

s, which limits the

total duration of the simulation. This impedes reproducing the mi-

crostructural evolution of materials because many kinetic processes

occur at mesoscales, which involve microsecond-long trajectories

of trillions of atoms. Thus, to simulate larger timescales up to the

formation of experimentally resolvable damage features such as

point-defect precipitates, computational tools such as kinetic Monte

Carlo (KMC) methods must be adopted [20, 21].

The application of NNPs to AKMC simulations allows for the

transfer of electronic-scale properties to even larger scales than

MD, as suggested in Ref. [22] and achieved in Ref. [23]. Very re-

cently, an improved AKMC model implemented in OpenKMC[24]

is used to investigate the dynamical evolution of vacancy defects in

actinide alloys. In the present work, we incorporate NNPs trained

with ab initio calculations to improve the fidelity of AKMC models

in simulating the evolution of defects in chemically complex alloys.

We efficiently couple two open-sourced programs, OpenKMC with

TensorAlloy [25], to simulate the microstructural evolution of al-

loys in nuclear reactor pressure vessels (RPVs). In such simulations,

the activation or migration energy of the vacancy is essential, but

elementary properties at the atomic level are often not known exper-

imentally. They can be obtained by the ab initio calculation software
FHI-aims from the Fritz Haber Institute [26]. Such calculations have

been performed to investigate the interaction between point defects

and the Cu, Ni, Mn, and Si solute atoms. More importantly, to bridge

the gap between the microscopic and macroscopic worlds, we must

consider using advanced supercomputers to achieve a real-world

mesoscopic simulation at the micron and microsecond levels and

beyond.

However, several challenges stand between us and this goal:

(1) NNPs were primarily developed for MD, and current imple-

mentation approaches may not be efficient for AKMC. (2) emory

consumption may be too large upon increasing the size of the

systems. (3) Heterogeneous computing units on the new Sunway

supercomputer are powerful, but harness such power requires a

specific design.

To overcome these challenges and achieve high efficiency, we

propose several optimization strategies. Specifically, the following

contributions are made:

• We proposed a triple-encoding algorithm and a vacancy-

cache mechanism to efficiently integrate OpenKMC (AKMC)

and TensorAlloy (NNPs). Then, TensorKMC was born. Mem-

ory usage was further optimized for mesoscale simulation.

• We developed a fast feature operator and a big-fusion opera-

tor to improve the computational efficiency by fully utilizing

heterogeneous computing units.

• We achieved strong, near-linear scaling up to 24 960 000 cores

and good weak scaling up to 27 456 000 cores with the new-

generation of Sunway supercomputers. It enables large-scale,

highly reliable AKMC simulations enhanced by NNPs, lead-

ing to an unprecedented microsecond evolution of vacancies

interacting with 50 trillion alloying atoms.

https://doi.org/10.1145/3458817.3476174
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Figure 1: The flowchart for the serial AKMC framework.

2 BACKGROUND
2.1 Serial AKMC
The AKMC method can simulate the evolution of microstructures

at the atomic scale. The first work to present kinetic Monte Carlo

approach was published by Young and Elcock [27] for the kinetic

of the vacancy diffusion. The basic assumption in this model is that

vacancy diffuses via a series of first nearest neighbor (1NN) jumps.

In the body-centred-cubic (bcc) lattice, the vacancy is exchanged

with one of its eight nearest neighbor atoms. The flowchart of the

AKMC method is described in Fig. 1.

First, the probabilities of the jumps from the current state of

vacancies are computed. Here X refers to the index of the jump

direction,

Γ𝑋 = Γ0 · exp(−
𝐸𝑎

𝑘𝐵𝑇
) . (1)

𝑘𝐵 is the Boltzmann’s constant, 𝑇 is the absolute temperature, Γ0 is
the attempt frequency which is set to 6×1012 s−1 and 𝐸𝑎 represents

the migration energy:

𝐸𝑎 = 𝐸0𝑎 +
1

2

· (𝐸𝑓 − 𝐸𝑖 ) . (2)

The reference activation energy 𝐸0𝑎 (Fe:0.65 eV, Cu:0.56 eV used

in this work) is assumed to depend only on the chemical nature

of the migrating atom that exchanges position with the vacancy.

𝐸𝑖 and 𝐸𝑓 are energies of the entire system before and after the

vacancy hops [6, 28]. Second, the vacancy jumps randomly with a

weight corresponding to its probability. Third, the residence time

algorithm [27] is employed to calculate a time increment (Δ𝑡 ),

Δ𝑡 =
− ln 𝑟∑
𝑋=1,8 Γ𝑋

(3)

which is proportional to the inverse of the sum of all possible event

frequencies with a random number (𝑟 ) according to its probabil-

ity. Finally, the AKMC method repeats the steps above until the

simulation time has reached a preset threshold.

2.2 Parallel AKMC method
The parallel AKMC algorithm is needed to carry out realistic com-

putations over extended spatial and temporal scales. In the parallel

AKMC algorithm, the spatial decomposition method is firstly per-

formed to distribute the large systems into different MPI processes

labeled with different colors as shown in Fig. 2(a). Then ghost re-

gions (labeled with grey) are created to synchronize atomic position

information on different processes with point-to-point commuta-

tion. Such domain decomposition method has been applied to MD

simulations, where atoms move continuously. The positions of two

atoms will not overlap after the MD evolution due to repulsive

interatomic interaction, so there is no boundary conflict problem.

However, in the AKMC method, atoms always stays at lattice sites,

so the atoms belong to different MPI processes can move to an iden-

tical site, leading to boundary conflicts. To address this problem,

Shim and Amar [29] proposed a synchronous sublattice algorithm

to solve the boundary inconsistencies and avoid global communica-

tions. In this algorithm, the simulation domain of one process are

further divided into eight sectors, and all processes execute events

in sequence according to sector number on their own subdomain

independently for a period of time. When moving to the compu-

tation of the next sector in a process, sites in the boundary region

must be updated in advance. As shown in Fig. 2(b), in this way, the

conflicting hops can be avoided.

2.3 HPC Platforms and Software Environment
The new-generation Sunway supercomputer is used for perfor-

mance assessment in this work, which is the successor of the Sun-

way TaihuLight supercomputer. Like the Sunway TaihuLight sys-

tem, the new Sunway supercomputer adopts a new-generation

domestic high-performance heterogeneous many-core processors

and interconnection network chips in China.

The new Sunway many-cores processor (SW26010-pro) is de-

signed for massive thread and data parallelism and delivers high

performance on parallel workloads. The architecture of the this new

many-cores processor is shown in Fig. 3. Each processor contains 6

core-groups (CGs), with 65 cores in each CG, and in total 390 cores.

Each CG has one management processing element (MPE), one clus-

ter of computing processing elements (CPEs), and one memory

controller (MC). The MPE within each CG is used for computations,

management, and communication. The CPEs are organized as an

8 × 8 mesh (64 cores) and are designed to maximize the aggregated

computing power and minimize the micro-architecture complexity.

The CPEs are organized with a mesh network to achieve high-

bandwidth data communication (P2P and collective communica-

tions) among the CPEs in one CG, which is called remote scratchpad

memory access (RMA).

2.4 Current state of the art and Related Work
and Challenges of Parallel TensorKMC

Even though capability of AKMC with efficient parallelization can

reach mesoscales, fidelity of interatomic potentials employed in the

models limits its physical reliability. However, the emergence of

machine-learning (ML) based interatomic potentials trained with ab
initio calculations provides an innovative way to construct AKMC
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Figure 2: The parallel AKMC framework. (a) The spatial domain decomposition method to distribute the large systems into
different MPI processes. (b) The synchronous sublattice algorithm to avoid conflicting hops near the shared boundary. The
surrounding grey blocks represent the ghost region for synchronizing atomic positions of different processes.
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Figure 3: The architecture of the many-core SW26010-pro
CPU.

model without loss of accuracy. The successful application of ML-

based potential in MD simulation has proven its physical reliability

and versatility [30–35], yet AKMC framework employing ML-based

potentials is still very few. Recently, Castin et al. has developed a

framework of a hybrid KMCmodel which is powered by an artificial

neural network (ANN) [4, 6], and successfully applied it in simu-

lations of Fe alloys. It shows the feasibility of coupling ML-based

potential and AKMC models. However, this KMC framework only

has the serial version, its space scale is limited to nanometers, far

from the mesoscales. Up to now, the capabilities of AKMC mod-

els, with high physical reliability and expansibility in space scales,

have never reached a spatial scale where trillions of atoms could be

simulated. However, by employing a machine-learning interatomic

potential with DFT accuracy and efficient implementation on the

new-generation Sunway supercomputer, a new AKMC framework,

TensorKMC, could simulate trillions of atoms, which truly realize

the experiment relevant scales.

Previously, NNPs were mainly designed for MD simulations. In

order to efficiently integrate NNPs with AKMC, several challenges

and opportunities arise because AKMC has significant differences

with MD:

• Atoms always locate on lattice sites in AKMC, while they do

not have fixed locations in MD. Hence, interatomic distances

in AKMC are discretely distributed.

• For AKMC simulations, energy is the driven power for evo-

lution, while in MD runs, atomic forces (the first-order de-

rivative of energy with respect to positions) play the central

role.

• In AKMC, the atoms and vacancies jump directly between

lattice sites, so the traditional parallel domain decomposi-

tion algorithm using in MD could execute in conflicting hops

when the two or more processes perform events simultane-

ously near the shared boundary.

• A single AKMC step (a site jump) generally only affects a

very small portion of atoms in the process. On the contrary,

all atoms will be involved at each MD step.

AKMC has a much larger simulation box, but fewer atoms are

invoked at each step, and the calculation is simpler. However,

OpenKMC is developed with the principle of MD. OpenKMC stores

properties and computes energies for all atoms in the domain. This

strategy works for small systems with cheap energy routines (for

example the extremely short-ranged pair potential or embedded-

atommethod (EAM)). But for accurate mesoscale simulation, severe

problems occur:

• Storing essential properties for all atoms requires a vast

amount of memory. OpenKMC is limited to approximately

11 million atoms per process for largescale simulation.

• Computing energies of all atoms in the domain are too ex-

pensive and unnecessary.

• CPEs are difficult to play a role because the energy calcula-

tion in OpenKMC requires a lot of direct memory access

(DMA) operations on the lattice array. But this array is

too large to place on local device memory (LDM) of CPEs.

OpenKMC gains no benefit from CPEs when the vacancy con-
centration has physical meaning.

With several innovations and optimizations, TensorKMC suc-

cessfully solves these challenges.

3 INNOVATION AND OPTIMIZATION
In this section we discuss innovations and optimizations in Ten-

sorKMC. Briefly, Sec. 3.1 and 3.2 are major AKMC innovations. Sec.

3.3 introduces our memory optimizaton strategies for mesoscale

simulation. Sec. 3.4 and 3.5 describe details of innovated algorithms
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for efficiently computing energies on CPEs. Sec. 3.6 discusses the

portability of our innovations.

3.1 Triple-Encoding
In AKMC, vacancy plays a crucial role in dynamical evolution by

causing random diffusion, even though its concentration is usually

low. A basic kinetic process, a vacancy hop, only involves one va-

cancy and one of its first nearest neighbors. The probability of a

vacancy transition depends on the energy difference resulting from

the change of state, as introduced in Sec. 2.1. As interatomic inter-

action has a limited range (the cutoff radius 𝑟𝑐𝑢𝑡 ), only sites near

the vacancy are affected by a vacancy transition. The concentration

of vacancy in real systems is typically low (1× 10−2% to 1× 10−4%),
only a small portion of atoms should be invoked for computing

the total energy of an AKMC system. Hence, a large simulation

domain can be decomposed to discrete vacancy systems, as illus-

trated in Fig. 4a. Therefore, the problem arises: how to effectively

and efficiently describe those vacancy systems.

In this work, we propose a triple-encoding tabulation algorithm

(TET) to overcome this challenge. The body-centered cubic (bcc)

Fe-Cu alloy system is used in this work. For bcc lattice, there are

eight possible final states, and all lattice sites are geometrically

equivalent. TET consists of three encoding tabulations: the relative

coordinates encoding tabulation (CET), the neighbor list encoding

tabulation (NET), and the vacancy encoding tabulation (VET).

CET is an ordered matrix describing IDs and relative coordinates

of sites in a vacancy system (Fig. 4b). The center of this system,

locating at (0,0,0), is a vacancy. Given a Euclidean cutoff radius 𝑟𝑐𝑢𝑡 ,

positions of its neighbors can be determined, and they are colored

as green in Fig. 4a. Hence, a (𝑁𝑙𝑜𝑐𝑎𝑙 , 3) matrix can be constructed.

As all sites of bcc lattice are geometrically equivalent, these relative

positions can be applied to the arbitrary site to fetch its neighbors

within 𝑟𝑐𝑢𝑡 . In bcc lattice, a site has eight first nearest neighbors

(1NN sites). Neighbors of these 1NN sites are all affected by a

site jump. These 𝑁𝑟𝑒𝑔𝑖𝑜𝑛 sites (red, green and light blue sites in

Fig. 4a) together forms the jumping region. The 𝑁𝑜𝑢𝑡 The outer

deep blue sites in Fig. 4a) act as neighbors of sites in the region.

Their energies will not change. Therefore, a vacancy system consists

of total 𝑁𝑎𝑙𝑙 = 𝑁𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑁𝑜𝑢𝑡 sites.

Based on CET, the three-dimensional array NET, describing

neighbors (index and distance) of each site in the jumping region,

can be constructed. NET describes neighbor relations of sites in the

region. NET[i] is a (𝑁𝑙𝑜𝑐𝑎𝑙 , 2) matrix storing neighbor IDs (the first

column) and distances (the second column) of site 𝑖 . CET and NET

only depend on lattice constant 𝑎 and cutoff radius 𝑟𝑐𝑢𝑡 . They are

shared across all vacancy systems.

The last tabulation is VET, which encodes real environments of a

vacancy system. VET is a vector of length 𝑁𝑎𝑙𝑙 . VET[id] is the atom

type of the site corresponding to site 𝑖𝑑 . Assuming a vacancy locates

at (𝑖, 𝑗, 𝑘), coordinates of sites belonged to this vacancy system can

be easily obtained by translating CET from (0, 0, 0) to (𝑖, 𝑗, 𝑘). Then
IDs of these sites can be calculated (Section 3.3). Finally, atom types

of these sites can be accessed from the lattice array.
The triple-encoding algorithm builds the foundation of Ten-

sorKMC. A huge simulation domain can be simplified to several

small dense vacancy systems. Only during the initialization of a

VET should we access the large lattice array. Thus, further opti-
mizations, including significant memory reduction and distributing

calculations on CPEs, become possible.

3.2 Vacancy Cache Mechanism
In OpenKMC, a cache all strategy is used. Per-atom properties

used for computing energies are stored in memory and updated

during evolution. For small and simple systemswhere the number of

atoms is rather low and the interaction between atoms is localized,

this strategy can perform very well as energy calculation can be

extremely fast. When system scales are considerably large and

interaction among atoms is long-range and highly complex, storing

essential properties for all atoms is impossible.

Benefit from the domain decomposition introduced in Section 3.1,

only vacancy systems are cached in TensorKMC. For each vacancy

system, the corresponding VET vector and global IDs of its sites

are cached. After a vacancy hop or a sublattice synchronization,

euclidean distances between active site(s) and centers of vacancy

systems in the simulation domain are calculated. Vacancy systems

close to the active site(s) will be updated during the next propensity

calculation.

3.3 Memory Usage
In OpenKMC, accessing properties of a lattice site with spatial

coordinates (𝑖, 𝑗, 𝑘), needs two steps: 1) get 𝑖𝑑 from the POS_ID

array with spatial coordinates; 2) get site property from a one-

dimensional array with 𝑖𝑑 . Fig. 5 demonstrates an example. For

the target location (0, 0) in the ghost area of the two-dimensional

simulation domain, POS_ID[0][0] should be visited first to get 𝑖𝑑 =

2, then the atom type can be obtained by reading lattice[2] from
main memory. The POS_ID array requires significant amount of

memory. Getting 𝑖𝑑 from the two or three-dimensional POS_ID

array is also a memory-intensive operation.

In TensorKMC, a direct computation method is adopted. Each

process marks a local ID for its own local and ghost lattice by

traversing the cell. The order of the Lattice array is based on the

local ID, which stores all the local grid points (red points) in the front

of the array (shaded area in C), and the ghost area grid points (blue

points) in the back (non-shaded area in C). Thus, to get the requisite

index, we first calculate the number of ghost atoms nghost(x, y, z)

whose local ID is less than the grid point.

index =

{
𝑁 + nghost(𝑥,𝑦, 𝑧), if (𝑥,𝑦, 𝑧)in ghost

ID(𝑥,𝑦, 𝑧) − nghost(𝑥,𝑦, 𝑧) else

(4)

where ID(x,y,z) is the local ID number calculated according to 3D

coordinates, and 𝑁 is the number of local lattice sites in the process.

Another significant memory reduction comes from the removal

of per-atom property arrays (E_V, E_R, etc.). These arrays grow

linearly with the simulation size. Because of the vacancy-cache

mechanism, these arrays are no longer needed. CPEs can efficiently

compute features of the atoms interested on-demand.

3.4 Fast Feature Operator
Until now, numerous choices of atomic feature descriptors have

been proposed. In this work, we use an exponential-style feature
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Figure 4: AKMC Domain decomposition and the triple-encoding tabulation algorithm innovated by TensorKMC. (a) is the
visualization of a vacancy system with cutoff radius 𝑟𝑐𝑢𝑡 = 𝑎, where 𝑎 is the lattice constant. (b) is the coordinates encoding
tabulation (CET) describing the relative coordinates of each site in the vacancy system. (c) is the neighbor encoding tabulation
(NET) storing neighbor list (Indices and distances) of each site. (d) is the vacancy encoding tabulation (VET) representing the
atom type of each site.

Figure 5: Schematic diagram of getting property of a lattice
site in a two-dimensional simulation box (a) where red cir-
cles are local sites in this domain and blue circles represent
ghost sites. (b) is the corresponding POS_ID array for the
two-dimensional system. The blank grids represent wasted
memory cells. (c) demonstrates the lattice array. Shaded area
are atom types of local sites, others correspond to the ghost
sites.

descriptor published by Oganov et al.:

𝑓 (𝑟 |𝑝, 𝑞) =
𝑁𝑙𝑜𝑐𝑎𝑙∑

𝑗

exp {−
(
𝑟

𝑝

)𝑞
} (5)

where 𝑟 is the interatomic distance, 𝑝 and 𝑞 are hyperparameters

and 𝑓 (𝑟 |𝑝, 𝑞) represents the corresponding feature value of 𝑟 for

(𝑝, 𝑞). This feature algorithm has been proven useful for a variaty

of metals. Assume 𝑁𝑑𝑖𝑚 is the total number of (𝑝, 𝑞) sets and 𝑁𝑒𝑙

is the number of unique elements in the system, each atom will be

described by a 𝑁𝑑𝑖𝑚×𝑁𝑒𝑙 feature vector. In AKMC atoms always lo-

cates on lattice sites, interatomic distances are discretely distributed.

Hence, Equation 5 can be further simplified to a tabulated form:

𝑓 (𝑟 |𝑝, 𝑞) =
𝑁𝑙𝑜𝑐𝑎𝑙∑

𝑗

TABLE(r, p, q) (6)

where TABLE is a precomputed table for (𝑟, 𝑝, 𝑞). Given the NET

and a VET, theoretically one can easily compute features for all

sites in a vacancy system with for loops. As a result, computing

features in AKMC is changed to a memory-intensive task. To han-

dle this challenge, we treat CPEs of each core group as normal
processors and a micro parallel system is formed. Atomic features

are calculated in parallel on CPEs:.

• The 𝑁𝑟𝑒𝑔𝑖𝑜𝑛 sites in a vacancy system are assigned to CPEs

circularly. For each CPE, the NET array, a copy of the VET

vector, and the precomputed TABLE are stored in LDM.

• A total of 1 + 𝑁 𝑓
states will be performed on each CPE.

The first loop computes the features for the initial state 𝐸𝑖 .

The following 𝑁 𝑓
loops compute features for 𝑁 𝑓

possible

final states. For each final state 𝑘 , the corresponding vacancy

hop is simulated by swapping VET[0] with VET[k] and re-

organizing neighbor lists.

• The generated features for 1 +𝑁 𝑓
states are all kept in LDM

until all done. These data are then sent back to the main

memory with a direct memory access operation.

3.5 Big-Fusion Operator
In this work, multiple convolutional layers with 1x1 filters are used

to build up atomistic neural network potentials [25, 36]. Each batch

of the input corresponds to an AKMC state, and outputs are energies

of the states.

According to the roofline model of new Sunway many-cores

processor, the multi-layers operation is also memory-intensive. The

upper limit of its performance is bounded by the memory-access
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Figure 6: The big-fusion operator. (a) Convert convolution with 1x1 kernel to matrix multiplication. (b) Kernel fusion: matrix
multiplication, bias and ReLU are fused to a single kernel. (c) Minimize the times of the main memory access. (d) Distribute
the entire NNP model (all multi-layer fusion operators) across all CPEs. Each CPE shares a portion of model parameters
through RMA. (e) DMA-based state flow: putting state 𝑘 − 1 back then fetching state 𝑘 + 1 in the same buffer through DMA
and computing state 𝑘 in sync (f) RMA based operator flow: the features are always kept in LDM until all operators passed
through. Calculation of operator 𝑖 and fetching of 𝑖 + 1 through RMA are executed in sync.

speed, which is not particularly fast (compared to the ultrahigh-

speed HBM2 memory on Tesla GPUs). By analyzing the character-

istics of the operations and the new Sunway many-cores processor,

we build up a multi-level parallel fusion operator (Fig. 6) in which

CPEs act as distributed computing and storing nodes. The ultimate

goal is to minimize memory access and hide data exchange be-

hind computation flows. This algorithm converts the block to a

computation-intensive task.

Our strategy fully and cleverly utilizes features of Sunway many-

core processor, such as software-controllable LDM, the asynchro-

nous DMA, remote scratchpad memory access (RMA), single in-

struction multiple data (SIMD) and so on. Key innovations are as

follows:

• Convert the convolution (1x1 kernel, stride 1) to the matrix

multiplication, as shown in Fig. 6(a).

• Integrate the matrix multiplication with bias and ReLU acti-

vation into a fused operation acting as the basis of a calcula-

tion flow (Fig. 6(b)). This needs fewer memory operations.

Furthermore, bias and ReLU can be done in the registers

effectively through SIMD assembly.

• Distribute the entire model (filters and biases of all layers)

across all CPEs by RMA, as shown in Fig. 6(d). In this work,

each column of CPEs acts as one unit storing a layer fusion

operation. Then they share operations to other CPEs of the

same row through RMA upon requirement.

• Traditionally, to calculate a multi-layers neural network,

each layer’s input (output) data needs to get (put) from main

memory. The overall speed is bottle-necked by the memory-

access speed, which is not that fast on the new Sunway.

To overcome this problem we develop a big-fusion strategy

(Fig. 6(c)). Multiple fused layers are merged into one single

kernel. Only two main memory accesses are required: 1)

fetch input data of the first layer and 2) put back output data

of the final layer.

• Fig. 6(e) demonstrates the DMA based state flow for comput-

ing energies of multiple states: putting state 𝑘 − 1 back then

fetching state 𝑘 + 1 in the same buffer while computing state

𝑘 in an other buffer.

• Algo. 1 and Fig. 6(f) shows the algorithm for computing

energy of a state: features are always kept in LDM until

all operators passed through. Calculation of operator 𝑖 and

fetching of 𝑖+1 through RMA are executed in sync. Operators

flow through the features to complete the calculation of state

𝑘 .

With the innovations listed above, the big-fusion operator can

reach 76.64% of the peak (single-precision) at most. The algorithm

is also scalable, and the current implementation (64 CPEs per MPE)

can support up to eight layers of convolutional layers, which is

large enough for materials modeling.

3.6 Portability
First, the domain decomposition strategy, the triple-encoding and

vacancy cache algorithms are independent of architecture. They

can be ported to other systems without obstacle. Second, porting
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Algorithm 1 Big-fusion operator algorithm in TensorKMC.

1: 𝑀 ← 𝑛 × ℎ × 𝑤
2: 𝑖𝑑 : 𝑖𝑛𝑑𝑒𝑥 𝑜 𝑓 𝑐𝑝𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝐶𝐺

3: 𝑐𝑜𝑙_𝑖𝑑 : 𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 𝑜 𝑓 𝑐𝑝𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝐶𝐺

4: 𝑙𝑒𝑣𝑒𝑙 : 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑙𝑎𝑦𝑒𝑟𝑠

5: 𝑚_𝑏𝑙𝑜𝑐𝑘 : 𝑡ℎ𝑒 𝑀 − 𝑑𝑖𝑟𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝑒𝑎𝑐ℎ 𝑐𝑝𝑒 𝑔𝑒𝑡 𝑜𝑛𝑐𝑒

6: 𝐼𝑛𝑖𝑡 :

7: 𝑖 ← 0

8: 𝐷𝑀𝐴_𝐺𝐸𝑇 (𝑥𝑖𝑑 ) 𝑎𝑛𝑑 𝑤𝑎𝑖𝑡_𝐷𝑀𝐴_𝐺𝐸𝑇

9: 𝐷𝑀𝐴_𝐺𝐸𝑇 (𝑓 𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙_𝑖𝑑 ) 𝑎𝑛𝑑 𝑤𝑎𝑖𝑡_𝐷𝑀𝐴_𝐺𝐸𝑇

10: while 𝑖 <
𝑀

64 ×𝑚_𝑏𝑙𝑜𝑐𝑘
do

11: 𝐷𝑀𝐴_𝐺𝐸𝑇 (𝑥𝑖∗64+𝑖𝑑 )
12: for all 𝑗 ← 0, 𝑙𝑒𝑣𝑒𝑙 do
13: 𝑖𝑛𝑑𝑒𝑥 ← ( 𝑗 + 1) 𝑚𝑜𝑑 𝑙𝑒𝑣𝑒𝑙

14: if 𝑐𝑜𝑙_𝑖𝑑 == 𝑖𝑛𝑑𝑒𝑥 then
15: 𝑅𝑀𝐴_𝑅𝑂𝑊 _𝐵𝐶𝐴𝑆𝑇 (𝑓 𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑑𝑒𝑥 )
16: end if
17: 𝑦

𝑗

𝑖+𝑖𝑑 ← 𝑥
𝑗

𝑖+𝑖𝑑 × 𝑓𝑗

18: 𝑥
𝑗+1
𝑖+𝑖𝑑 ← 𝑦

𝑗

𝑖+𝑖𝑑
19: 𝑊𝐴𝐼𝑇 _𝑅𝑀𝐴_𝑅𝑂𝑊 _𝐵𝐶𝐴𝑆𝑇 (𝑓 𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑑𝑒𝑥 )
20: end for
21: 𝐷𝑀𝐴_𝑃𝑈𝑇 (𝑦𝑖𝑑 )
22: 𝐷𝑀𝐴_𝐵𝐴𝑅𝑅𝐼𝐸𝑅 (𝑜𝑛𝑒 𝑏𝑢𝑓 𝑓 𝑒𝑟 𝑓 𝑜𝑟 𝑦𝑖𝑑 𝑎𝑛𝑑 𝑥𝑖∗64+𝑖𝑑 )
23: 𝑊𝑎𝑖𝑡_𝐷𝑀𝐴_𝐺𝐸𝑇 (𝑥𝑖∗64+𝑖𝑑 )
24: 𝑖 ← 𝑖 + +
25: end while
26: 𝑊𝑎𝑖𝑡_𝐷𝑀𝐴_𝑃𝑈𝑇 (𝑦𝑙𝑎𝑠𝑡 )

the feature operator and the big fusion operator to other many-

core processors is also possible. In fact, a many-core processor

can be viewed as a micro-parallel system. The specific mapping

algorithm depends on the architecture. As an example, RMA is used

to share the neural network potential parameters across CPEs on

the new Sunway, while on Fugaku the large L2 share-cache (8 MB

for 12 computing nodes) may be used to accomplish this task. Third,

the motivation of our algorithms is to minimize data transfer so

that arithmetic intensity can be significantly increased. This ’data

centric’ design principle can be adopted to any other architectures.

Our work can be extended to other scientific problems, such as

the helium bubble formation/diffusion in metals, or surface growth.

Such investigations on other systems can further prove the power

of our work but beyond the scope of this work.

4 EVALUATION
4.1 Validation
4.1.1 Potential. For the Fe-Cu alloy system, a cutoff radius of 6.5

Å is used. The 𝑁𝑟𝑒𝑔𝑖𝑜𝑛 , 𝑁𝑙𝑜𝑐𝑎𝑙 are 253 and 112, respectively. Total

32 different (𝑝, 𝑞) sets are used, where 𝑝 ranges from 4.2 to 1.1 with

step -0.1 and𝑞 increases from 1.85 to 3.4 with step 0.05. The channels

for the convolutional neural network are (64, 128, 128, 128, 64, 1).
ReLU activation function is used in our model. We generate a train-

ing dataset of 540 Fe-Cu structures, and the structure size ranges

from 60 to 64. Energies are calculated using FHI-aims [26] with

PBE exchange-correlation functional, light numerous basis set and
10x10x10 k-point grid. 400 structures are randomly selected as the

Figure 7: DFT and NNP predicted energies (eV/atom) and
atomic forces (eV/Å. The corresponding 𝑅2 scores are 0.998
and 0.880, respectively.

Figure 8: Validation of the domain decomposition and triple
encoding.

training set. Our optimized potential can give a mean absolute error

of 2.9 meV/atom (energy) and 0.04 eV/Å (force) on the test dataset.

4.1.2 Triple-encoding and vacancy cache. Fig. 8 validates the triple
encoding and vacancy cache strategy by comparing the number

of isolated Cu atoms. The domain size is 100 × 100 × 100𝑎3 where
𝑎 = 2.87 Å is the lattice constant. The simulation time is 1.0 ms. The

concentrations of Cu and vacancy are 1.34 at. % and 0.0008%, re-

spectively. Both runs give identical results, proving the correctness

of our algorithms.

4.2 Bound Analysis and Performance Results
In this section, we analyze the performance and contribution of each

optimization individually, discuss the coupling relations between

these optimizations, and expose potentials for future optimizations.

Fig. 9 shows the Roofline model of energy kernels at the new

Sunway. Upper panel of the table lists memory requirements, cal-

culation volumes and intensities of the original fused operator

(Conv2D + Bias + Relu) and the big-fusion operator. We use N,

H, W of [32, 16, 16] as an example to show this algorithm. The

operation-intensity of each layer increases from 0.48 to 21.3, which



TensorKMC: Kinetic Monte Carlo Simulation of 50 Trillion
Atoms Driven by Deep Learning on a New Generation of Sunway Supercomputer SC ’21, November 14–19, 2021, St. Louis, MO, USA

Layer In-c Out-c Memory Volume Intensity

(MB) (Gflop) (flop/B)

1 64 128 10 0.125 12.8

2 128 128 12 0.25 21.3

3 128 128 12 0.25 21.3

4 128 128 12 0.25 21.3

5 128 64 8 0.25 21.3

6 64 1 2.06 0.001 0.48

Original 56.06 1.01 18.44

Big-fusion 2.03 1.01 509.05

2Tflop/s

1Tflop/s

43.63

Operational
Intensity

FLOP/BYPE

Attainable
Performance

GFlop/S

Roofline for KMC-operator

average Orig KMC-operator

18.4 509.1

Big-fusion operator

Figure 9: The Roofline analysis of the energy kernels at
the new Sunway architecture. The Roofline analysis shows
the interplay between computation capacity, memory band-
width and data reuse. The arithmetic intensity of the big-
fusion operator is 509.1 F (FLOPS/Byte). Therefore the attain-
able performance is much higher than the original version
(each layer of the network is called separately).

Figure 10: The performance comparison among different op-
timization steps for the TensorKMC-operator calculation.

is far less than the 43.63 of the machine, and the computing per-

formance is limited by the access bandwidth of the system. Our

big-fusion operator reduces the total memory access from 56 MB

to 2 MB, which is equal to the memory size of the last layer. The

arithmetic intensity is increased up to 509.1 (FLOPS/Byte). As a

result, energy calculation becomes compuation-bounded but not

memeory-bounded.

x86 SW SW(opt)

Feature CPU MPE

Fast Feature Op

CPE

Energy

TensorFlow

CPU

FusedConv2D

TensorFlow

SWDNN

CPE

FusedConv2D

Big-Fusion Op

CPE

Figure 11: Serial performances of TensorKMCwith different
settings. Here x86 refers to AMD Ryzen EPYC.

Then we analyze the performance improvements for different

levels of optimization methods. Fig. 10 gives detailed comparisons

of adopted optimizations. First, the convolution is converted to

matrixmultiplication, increasing the performance from 1.0x to 1.23x.

Second, applying SIMD vectorization improves the performance

to 16x~22x. Third, the (Conv2D, Bias, ReLU) fusion (yellow bar)

speedups up around 33x to 41x. Finally, the big-fusion strategy

(blue bar in Fig. 10), which significantly reduces main memory

access, are applied and we achieve a performance speedup around

131x to 161x compared with the base version.

4.3 Serial Comparisons
Serial performances of TensorKMC on x86 and the new Sunway

are shown in Fig. 11. The benchmark simulates 1 × 10−7 seconds
with 128 millions of atoms. Here:

• x86 refers to AMDRyzen EPYCwith libtensorflow_cc. Atomic

features are calculated sequentially. Energies are calculated

with FusedConv2D operators (TensorFlow automatically

converts Conv2D + Bias + ReLU to FusedConv2D).

• SW refers to the new Sunway with libtensorflow_cc and

Sunway Deep Neural Network library (SWDNN). Atomic

features are calculated on MPE. Energies are calculated with

FusedConv2D operators on CPEs. The yellow bar in Fig 10

represents the performance of this fusion operator.

• SW(opt) refers to the new Sunway with customized opera-

tors innovated in this work. Atomic features are calculated in

parallel on CPEs. Energies are calculated with the big-fusion

operator.

The standard cutoff radius 6.5Åand a shorter 5.8 Å are used for

comparison. Shorter 𝑟𝑐𝑢𝑡 indicates lesser atoms in a vacancy system

and less computation and memory operations in total.
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Table 1: Memory statistics for OpenKMC and TensorKMC
on a single node in terms of the simulation box. The entry
Runtime denotes the overall memory consumption during
AKMC iterations. For OpenKMC, T and POS_ID are arrays
for accessing lattice array while E_V and E_R are arrays for
computing atomic energies with the EAM potential.

Millions of atoms 2 16 54 128

OpenKMC T 68 515 1709 4014

POS_ID 34 258 856 2009

E_V 68 515 1709 4014

E_R 68 515 1709 4014

Runtime 467 3038 9964 -

TensorKMC VAC Cache 0.09 1.50 2.53 6.00

Runtime 133 1021 3594 8120

4.3.1 Feature. Computing atomic features of each state is a purely

memory-intensive task. Bottle-necked by the main memory speed,

the serial version is ~5 times slower on the new Sunway, com-

pared with AMD EPYC. With our innovation in Sec 3.4, feature

calculations can run in parallel on CPEs efficiently. As a result, the

optimized version is ~60 times faster than the serial version on the

new Sunway, or ~14 times faster than EPYC.

4.3.2 Energy. CPEs are very powerful vectorized computing units.

Energy calculation on new Sunway is ~3 times faster than EPYC,

even though there are a lot of main-memory accesses. With our big

fusion algorithm, main memory accesses are successfully hidden

behind computation. Thus, the time cost of computing energies is

amazingly further reduced by almost 80% (or ~15 times faster than

EPYC).

4.3.3 Overall speed. For the overall performance, TensorKMCwith

our fully optimized operators is no doubt the fastest version. It is

approximately 11 times faster than the TensorFlow based version

on EPYC and 17 times faster than the TensorFlow/SWDNN based

version on the new Sunway.

4.3.4 Memory. Table 1 summarizes memory usages of OpenKMC

and TensorKMC for different simulation settings. Runtime rep-

resents the real memory consumption during AKMC iterations.

OpenKMC cannot simulate 128 million atoms with a single process.

TensorKMC only needs ∼ 1/3 memory of OpenKMC. The huge

reduction mostly comes from two parts: 1) T and POS_ID arrays

are removed (Sec 3.3) and the per-atom property arrays, E_V and

E_R, are no longer needed. E_V, and E_R arrays can be viewed as

the atomic features for the EAM potential, as the atomic energy

E[i] can be directly calculated from them:

𝐸 (𝑖) = 1

2

E_V[i] + 𝐹𝜌 (E_R[i]) (7)

where E_V[i] is the pair contribution, E_R[i] is the electron density

and 𝐹𝜌 (·) is a tabulated embedding function. These arrays are es-

sential for OpenKMC but no longer needed for TensorKMC because

of the vacancy cache mechanism.

In conclusion, both the speed and memory evaluations prove the

advantages of our innovations adopted in TensorKMC.

Figure 12: The strong scalability for the computation time
of the 1.92 trillions of atoms. Simulation time and parallel
efficiency values are annotated on the top of bars and in the
parentheses respectively.

Figure 13: The weak scalability for the computation time up
to the 54.067 trillions of atoms. Simulation time and parallel
efficiency values are annotated on the top of bars and in the
parentheses respectively.

4.4 Scalability Results
Scalability of the optimized TensorKMC on the New Sunway su-

percomputer for large-scale simulations is exhibited in this section.

Mesoscale systems, where the number of atoms ranges from 1.536

to 54.067 trillion, are employed in the scalability tests, which are

not available with the baseline implementation and MD schemes. In

all scalability tests, we use the tree strategy for propensity update

and a very strict synchronization interval 𝑡𝑠𝑡𝑜𝑝 = 2 × 10−8 even if

the vacancy and Cu concentrations are relatively low. In practical

simulations, one can adjust this variable to some larger values to

significantly reduce communication between processes.

4.4.1 Strong Scaling. Strong scaling scalability of the optimized

TensorKMC is measured with the simulation duration of 1 × 10−7
seconds ranging from 780,000 to 24,960,000 cores. A defective Fe-Cu

alloy system is tested with thermal aging at 573 K. To achieve a bal-

ance between simulation size and the available memory (maximum
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16GB per CG), we take the performance of 780,000 cores (12,000

CGs) as the baseline. For the baseline, each CG simulate 160 million

atoms. Per-atom memory cost is reduced from 0.70 kB (OpenKMC)

to 0.10 kB. The entire simulation system contains 1.92 trillion atoms,

including 25.728 billion Cu atoms (1.34 at.%) and 15.36 million va-

cancies (8 × 10−4 at.%). Fig. 12 shows the performance of strong

scalability tests in this case. Even with the strict synchronization

strategy, TensorKMC shows good strong scalability in all test cases.

The parallel efficiency is still 85% when scaling to 24,960,000 cores

(384,000 CGs) on the new Sunway supercomputer.

4.4.2 Weak Scaling. Weak scalability of the optimized TensorKMC

is also measured with a 1 × 10−7 second KMC simulation for the

defective Fe-Cu systems with thermal aging 573 K, as shown in

Fig. 13. In the weak scalability tests, each CG simulates 128 million

atoms. The system exhibits excellent scaling with respect to the

number of CGs. Among the testing systems, the largest size is 54.067

trillion atoms (422,400 CGs, 27,456,000 cores), which is more than

two orders of magnitude larger compared with OpenKMC, reaching

a true experimentally relevant time-spatial scale. The great weak

scalability of the optimized TensorKMC indicates that the software

is able to simulate much larger material or chemical systems on

future exascale supercomputers with no intrinsic obstacles.

5 APPLICATIONS
Solute precipitation is one of the most notorious degeneration phe-

nomena in metallic alloys, as they cause hardening embrittlement

by impeding the movement of dislocations [37–40]. Specifically,

in reactor pressure vessels, a key nuclear power plant component,

the formation of the Cu cluster precipitation induced by neutron

irradiation in Fe-Cu alloys could increase embrittlement and sus-

ceptibility to fracture over time. It limits the lifetime of reactor

pressure vessels, which are prohibitively expensive to replace in

commercial light water reactor nuclear power plants [38]. There-

fore, it is imperative to have an explicit understanding of the kinetic

mechanism of Cu cluster precipitation, including the Cu diffusing

process, nucleation of Cu clusters, and long-term dynamical evo-

lution of Cu precipitation. These processes usually happen and

evolve at mesoscale, where millions of atoms and tens of microsec-

onds are requested for a simulation. It is far beyond the capability

of direct molecular dynamics based on ab initio calculations or

empirical atomistic potentials. However, the Tensor KMC model,

which evolves a system by sampling a sequence of energetically

activated events derived from a machine learning force field, could

extend the space-time scale up to larger orders while retaining full

atomistic detail. It makes the Tensor KMC an ideal model to track

the dynamical process of Cu cluster precipitation in Fe-Cu alloys.

For the first time, micro-seconds evolution of defective FeCr system

with nano-size could be simulated and displayed.

We show in Fig. 14, the Cu precipitation and void formation

after one-second evolution in a 250,000,000 atom Fe-Cu alloy by

TensorKMC simulation. The cell size is set to 500×500×500𝑎3, where
𝑎 is the lattice constant. Typical reactor operating temperature,

573K, and typical Cu alloying concentration, 1.34 at.%, are applied

to the simulation. As seen in Fig. 14, after a long-term evolution,

considerable Cu cluster precipitations are observed while isolated

Cu atoms are significantly reduced. By careful cluster analysis, the

Figure 14: Cu precipitation is reproduced by TensorKMC
simulation. To show details of the precipitation, simulation
box, labeled as "whole box", is zoomed in at 10x scale, which
is labeled as "partial box". Cu clusters are colored by size,
where C1 denotes Cu cluster with minimum size, i.e. single
Cu atom,whileC𝑚𝑎𝑥 denotesCu clusterwithmaximumsize.
Appearance of large blue Cu clusters indicates its precipita-
tion.

max size of Cu precipitation is found around 40, and the number

density of Cu cluster gradually stabilized at about 1.71 × 1026/𝑚3
.

These results shed light on the mesoscale characters of defective

Fe-Cu alloys, which is crucial for a reliable assessment of in-service

safety nuclear power plant components.

Given the capacity of extending spatio-temporal scales to meso-

scopic by new Sunway heterogeneous computing units and the

accuracy of calculating atomic interaction by a neural network

potential inherited from ab initio calculations, TensorKMC is able

to simulate not only solute precipitation process in alloys, but also

other non-equilibrium and kinetic phenomena, such as defect ac-

cumulation and diffusion [41–45], grain growth [46–51], surface

morphology evolution [52–56], dislocation dynamics [57–63], and

so on. It is for the first time that mesoscale simulations could be

achieved with atomistic resolution. With a wide range of applica-

tion scenarios, including material prediction, physical chemistry

research, and biological engineering, practical multi-scale modeling,

where micro-scale calculations and macro-scale numerical simu-

lations are connected by reliable mesoscale modeling, is about to

come true.

6 CONCLUSION
In the upcoming exascale machines, the innovations realized in

TensorKMC will make it suitable for mesoscale simulation of the

atomic system on the future exascale machines. To the best of our

knowledge, this is first reported that the micron-long kinetic simu-

lation of 50 trillion atoms with ab initio accuracy is achieved over

twenty million cores, which open new perspectives for predicting
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and investigating the microstructure evolution at experimental res-

olution. The optimization methods proposed in this work could be

extended to other KMC codes with the same computational char-

acteristics; hence, they will be broadly beneficial to the quantum

chemistry, biological, and material science communities.
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SUMMARY OF THE EXPERIMENTS REPORTED
Appendix: Artifact Description / Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
All calculations and scalability tests were run on the new Sun-

way supercomputer. The code was built with swg++, swgcc, swmpi
and libswdnn_kmc. Each node on the new Sunway supercom-
puter has 6 core groups (CGs), each core group has 1 master pro-
cessing element (MPE) and 64 computing processing elements
(CPEs). For each CG maximum 16 GB memory can be used. Logs
of the weak and strong benchmark tests can be obtaind from
https:://github.com/mainAims/sc21-tensorkmc.

Submit command: bsub -b -share_size 12000 -cache_size 0 -n
$nprocs -cgsp 64 tensorkmc -in input

We ran strong benchmark tests from 24,000 to 384,000 processes
with one process per CG. We ran weak benchmark tests from
12,000 to 422,400 processes with one process per CG. The x86 se-
rial benchmark test was performed on AMD EPYC 7452 CPU and
libtensorflow_cc-1.15.3. The code was compiled with g++-7.4.1 For
the memory tests, runtime memory costs were measured with the
‘ps‘ command.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software

artifacts are NOT maintained in a public repository or are NOT
available under an OSI-approved licence.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data arti-
facts.

Proprietary Artifact Availability: None of the associated artifacts,
author-created or otherwise, are proprietary.

Author-Created or Modified Artifacts:
Persistent ID:
BASELINE EXPERIMENTAL SETUP, AND MODIFICATIONS

MADE FOR THE PAPER
Relevant hardware details: the new-generation Sunway super-

computer, SW26010pro many-cores processor.
The new-generation Sunway supercomputer is used for per-

formance assessment in this work, which is the successor of the
Sunway TaihuLight supercomputer. Like the Sunway TaihuLight
system, the new Sunway supercomputer adopts a new-generation
domestic high-performance heterogeneous many-core processors
and interconnection network chips in China.

The new Sunway many-cores processor (SW26010-pro) is de-
signed for massive thread and data parallelism and delivers high
performance on parallel workloads. Each processor contains 6 core-
groups (CGs), with 65 cores in each CG, and in total 390 cores. Each
CG has one management processing element (MPE), one cluster of
computing processing elements (CPEs), and one memory controller
(MC). The MPE within each CG is used for computations, manage-
ment, and communication. The CPEs are organized as an 8*8 mesh
(64 cores) and are designed to maximize the aggregated computing
power and minimize the micro-architecture complexity. The CPEs

are organized with a mesh network to achieve high-bandwidth data
communication (P2P and collective communications) among the
CPEs in one CG, which is called remote scratchpad memory access
(RMA).

Operating systems and versions: Sunway customized Linux with
kernel version 3.10.0

Compilers and versions: swg++ (-std=c++14), swgcc
Applications and versions: TensorKMC/1.0
Libraries and versions: libswdnn_kmc, swmpi, cmake-3.17

Author-Created or Modified Artifacts:

Persistent ID:

https:://github.com/mainaims/sc21-tensorkmc↩→

Artifact name: TensorKMC

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: The new-generation Sunway Super-
computer, SW26010-promany-cores processor, The new-generation
Sunway supercomputer is used for performance assessment in this
work, which is the successor of the Sunway TaihuLight supercom-
puter. Like the Sunway TaihuLight system, the new Sunway su-
percomputer adopts a new-generation domestic high-performance
heterogeneous many-core processors and interconnection network
chips in China. The new Sunway many-cores processor (SW26010-
pro) is designed for massive thread and data parallelism and delivers
high performance on parallel workloads. Each processor contains 6
core-groups (CGs), with 65 cores in each CG, and in total 390 cores.
Each CG has one management processing element (MPE), one clus-
ter of computing processing elements (CPEs), and one memory
controller (MC). The MPE within each CG is used for computations,
management, and communication. The CPEs are organized as an
8*8 mesh (64 cores) and are designed to maximize the aggregated
computing power and minimize the micro-architecture complexity.
The CPEs are organized with a mesh network to achieve high-
bandwidth data communication (P2P and collective communica-
tions) among the CPEs in one CG, which is called remote scratchpad
memory access (RMA)

Operating systems and versions: Sunway customized Linux with
kernel version 3.10.0

Compilers and versions: swg++, swmpi

Applications and versions: TensorKMC/1.0

Libraries and versions: libswdnn_kmc
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