
A. Hua and S.-L. Chang (Eds.): ICA3PP 2009, LNCS 5574, pp. 327–337, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Real-Time Ray Tracing with CUDA

Min Shih1, Yung-Feng Chiu1, Ying-Chieh Chen1, and Chun-Fa Chang2,*

1 National Tsing Hua University, Taiwan
2 National Taiwan Normal University, Taiwan

{min_shih,yfchiu,louis}@ibr.cs.nthu.edu.tw,
chunfa@ntnu.edu.tw

Abstract. The graphics processors (GPUs) have recently emerged as a low-cost
alternative for parallel programming. Since modern GPUs have great computa-
tional power as well as high memory bandwidth, running ray tracing on them
has been an active field of research in computer graphics in recent years. Fur-
thermore, the introduction of CUDA, a novel GPGPU architecture, has removed
several limitations that the traditional GPU-based ray tracing suffered. In
this paper, an implementation of high performance CUDA ray tracing is dem-
onstrated. We focus on the performance and show how our design choices in
various optimization lead to an implementation that outperforms the previous
works. For reasonably complex scenes with simple shading, our implementation
achieves the performance of 30 to 43 million traced rays per second. Our
implementation also includes the effects of recursive specular reflection and re-
fraction, which were less discussed in previous GPU-based ray tracing works.

Keywords: Ray Tracing, Programmable Graphics Hardware, GPU Computing,
CUDA, Multithreaded Architectures.

1 Introduction

Ray tracing algorithm is a widely adopted technique in computer graphics for its high
quality in realistic image synthesis. However, ray tracing is also known for its heavy
computational requirement. Industrial ray tracing applications are typically off-line
rendering systems that often rely on CPU clusters or rendering farm to provide the
necessary computational power.

Due to its intrinsic parallelism, the ray tracing algorithm is a good fit for multi-
core or multi-processor architectures. In order to speed up ray tracing and to make it
practical for interactive applications, researchers have explored many novel parallel
architectures [13, 19, 2]. Among them, programmable graphics hardware (GPU) has
attracted significant interest for its high throughput. However, implementing ray trac-
ing algorithm on the GPUs suffered from several architectural limitations. Therefore
many researchers have focused on developing algorithm tricks that work around those
limitations [5, 15, 8, 12, 6].

This paper focuses on real-time ray tracing on the GPU with the Compute Unified
Device Architecture (CUDA) [11]. We have the following main contributions: (1) We

* Corresponding author.

328 M. Shih et al.

present a CUDA implementation of ray tracing that is fastest so far to our best knowl-
edge. For simple shading and primary rays only, we achieve 30 to 43 million rays per
second on several reasonably complex scenes. An implementation of recursive
ray tracing (or Whitted ray tracing [18]) is also demonstrated, which also achieves
interactive frame rates. (2) Our work serves as a brief survey on various performance
issues in practice. Several implementation decisions taken due to the architectural or
algorithmic reasons are discussed in detail in this work.

1.1 Related Work

The study on GPU ray tracing began with the introduction of programmable shaders
that are supported by graphics hardware. Purcell et al. [13] first proposed a scheme of
GPU ray tracer. They treated GPUs as streaming processors and showed how to map
a ray tracer to such a programming model. They used a uniform grid as the spatial
partition structure for acceleration due to its simplicity.

It has been shown that the kd-tree built with surface area heuristics (SAH) is the
best known acceleration structure for ray tracing of static scenes [7]. Foley et al. [5]
overcame the hardness of implementing the stack needed for conventional kd-tree
traversal algorithm on the GPU by proposing two stackless kd-tree traversal
algorithms, namely kd-restart and kd-backtrack. Both kd-restart and kd-backtrack
outperformed uniform grids on the GPU. Horn et al. [8] extended Foley et al.’s work
by an improvement in the kd-restart algorithm. They used a size-restricted short-stack
in their modified kd-tree traversal algorithm instead of eliminating the stack entirely.
In the same year Popov et al. [12] presented another approach to stackless kd-tree
traversal algorithm by taking the advantage of the concept of ropes, or the links
between neighboring leaf nodes. Besides kd-trees, Bounding Volume Hierarchies
(BVHs) for GPU ray tracing also have been investigated. Thrane and Simonsen [15]
developed a fixed-order BVH traversal algorithm that discarded the use of the stack.
Later, Günther et al. [6] presented a shared stack BVH traversal algorithm, which
amortized the stack storage over the whole ray packet.

2 A Brief Introduction to CUDA

The Compute Unified Device Architecture (CUDA) [11] is a new technique for
GPGPU (General-Purpose computing on GPUs). By removing several limitations
from traditional GPGPU, CUDA provides useful features for implementing ray trac-
ing: (1) a C-like programming language that eliminates the need of mapping the
application to graphics API; (2) access on DRAM with general addressing; (3) full
support for integer and bitwise operations.

When programming with CUDA, the device (GPU) is treated as a coprocessor to
the host (CPU). A portion of an application that is executed many times on different
data independently can be isolated into a function that executed on the GPU as many
different threads. Such functions are called kernels.

When executing the kernel, the threads are organized into a grid of equal-sized (the
size is assigned when launching the kernel) blocks, in which threads can cooperate
with some fast shared memory and they can be synchronized by specifying a syn-
chronizing point (block-wide barrier) in the kernel.

 Real-Time Ray Tracing with CUDA 329

The hardware implementation of the device is a set of multiprocessors. Each mul-
tiprocessor has a Single Instruction Multiple Data (SIMD) architecture; typically it
has 8 processors that execute the same instruction on different data (threads). The
blocks being processed in a multiprocessor are divided into SIMD groups of threads
called warps (typically the size is 32, where a basic instruction spends 4 clock cycles
for a warp). The warps from all blocks being processed in a multiprocessor are exe-
cuted in a time-slicing fashion; thus the long latency caused by some operations such
as memory access and thread synchronization can be hidden by warp switching. How
many blocks each multiprocessor can process in the time-slicing fashion depends on
how many registers per thread and how much shared memory per block are required
since these resources are shared among all the threads within the block. The ratio of
the number of time-sliced warps per multiprocessor to the maximum number limited
by the hardware implementation is called multiprocessor occupancy. Usually the
higher occupancy (good parallelism) stands for the higher performance.

There are different types of memory in CUDA. Their characteristics are listed as
Table 1.

Table 1. Memory types in CUDA. Symbol ‘$’ indicates the memory is cached. “MP” stands for
Multiprocessor.

Name Scope Restriction Position Speed Size
Registers Per-thread Read-write On-chip Very fast 32KB/MP
Local memory Per-thread Read-write DRAM Slow =DRAM size
Shared memory Per-block Read-write On-chip Very fast 16KB/MP
Global memory Whole device Read-write DRAM Slow =DRAM size
Constant memory Whole device Read-only DRAM($) Fast 64KB
Texture memory Whole device Read-only DRAM($) Moderate =DRAM size

3 Implementation Issues for CUDA Ray Tracing

The ray tracing problem can be explained by Figure 1. The view rays are shot from the
camera to the scene; the corresponding pixel on the screen is shaded by the information
of first intersection between the ray and the scene. Since the number of objects (repre-
sented as triangles in our implementation) within the scene can be very large, a spatial
index structure is essential for accelerating the process of finding intersection. We
choose the kd-tree built with SAH for the reason of performance [7]. For shadowing the
hit object, shadow rays are shot from the light sources to the intersection point to deter-
mine whether the point is occluded. Whenever a specular or transparent surface has
been hit, a reflection or refraction ray is shot in order to simulate the optical effect. If a
reflection or refraction ray still hits a specular or transparent surface, the ray is traced
recursively until a diffuse surface is hit or the maximum recursion depth is met.

3.1 The Ray Tracing Kernel

The core of our CUDA implementation is the ray tracing kernel, which processes a
single ray. The process consists of four parts: ray generation, kd-tree traversal, trian-
gle intersection test, and shading. Figure 2 shows the scheme of the kernel as well as
the data structures needed for the kernel.

330 M. Shih et al.

3.1.1 Data Organization

Since CUDA has several different kinds of memory with respect to speed, size, and
accessibility, in order to achieve a good execution performance, it is important
to carefully allocate the data structures, avoiding the long access latency caused by
low-speed memory.

The organization of triangles and the kd-tree is shown in Figure 2. The use of
object list as a middle-layer between the leaf nodes and the triangles reduces the
memory consumption in the case of shared triangles among different leaf nodes. This
also increases the cache hit rate. All of the node list, object list, triangle vertex list,
and normal list are stored as arrays bound with textures. Though the caching mecha-
nism of textures is originally designed for coherent access patterns rather than
random-like patterns such as tree traversal, we have found that it is still beneficial to
bind the above structures with textures.

The small, static, and fixed-size structures namely the camera, light, and materials
are all kept in constant memory.

Frame buffer is the only data output during the kernel execution. It is written only
once per thread when the rendering is done, hence there is no need to cache it in the
shared memory.

A ray in the 3-D space is represented by two 3-D vectors indicating the origin point
and the direction which the ray points to. Although it seems natural to store the two
vectors in local variables, which are referred to registers, such manner causes poor
performance; the components of origin and direction vectors are frequently accessed
by indexing, i.e. the vector is treated as a 3-element array, which is not supported by
registers, and as a result, the compiler uses low-speed local memory to solve the di-
lemma and eventually worsens the performance. Thus the better solution is to place
the vectors in shared memory. Actually this optimization improves the performance
significantly.

Fig. 1. Ray tracing Fig. 2. Ray tracing kernel

 Real-Time Ray Tracing with CUDA 331

3.1.2 Triangle Intersection and KD-Tree Traversal

Triangle intersection test and kd-tree traversal are the most time-consuming parts of
the whole ray tracing system. Thus the algorithms for fast intersection and traversal
have long been investigated and plenty of varieties have been proposed.

We have implemented and examined three kinds of triangle intersection test
algorithms:

Möller-Trumbore Test [10]. It is probably the most well-known triangle intersection
algorithm. This method is easy to be integrated into any program since it requires only
the vertices of the triangle as input data.

Test Projection Test [17]. The projection method takes advantage of a pre-computed
acceleration structure and performs well in terms of CPU cycle count.

Plücker Test [3, 14, 1]. Unlike most of intersection algorithms, which usually rely on
computing barycentric coordinates, Plücker Test takes advantage of the properties
of Plücker coordinates [3, 14]. The method is further optimized by Benthin [1] to am-
ortize the computation over all rays within an origin-shared ray packet.

For kd-tree traversal algorithms, two issues should be discussed: First, whether we
should trace the rays one by one separately or in a packet style, and second, whether
we should use a stack or to rely on stackless methods as previous research.

Single ray vs. packet. The packet traversal algorithm was developed in order to
exploit the computational power of the CPU SIMD [16, 17]. The algorithm bundles
the rays together and determines a common traversal order for them, and therefore the
SIMD instructions can be applied to operate several rays simultaneously within a
thread. However, CUDA execution model differs from the CPU; the CUDA threads
are scalar programs and they are forced to be executed in a SIMD manner. In other
words, even the single ray algorithm is indeed executed parallelly within a multiproc-
essor, and no waste of computational power is caused. In contrary, despite the packet
traversal reduces off-chip bandwidth and eliminates incoherent branches [9], it brings
overhead on synchronizations to force the threads to go along with each other.

Stack vs. stackless. While traversing a tree-based structure usually needs a stack, it
was difficult to implement a per-ray stack on the GPU due to architectural restric-
tions. The stackless traversal algorithms were developed to overcome this problem.
However such restrictions are relaxed when programming with CUDA, which
supports general DRAM addressing so that every thread can own its private part of
memory, and thus it is possible to allocate a stack for each thread. The stackless man-
ner may still have benefits because it avoids the long latency of access in non-cached
DRAM. Nevertheless, the use of a stack keeps the rendering kernel simple, which is
favorable for CUDA. Another option on CUDA may be brought up is to implement a
stack using shared memory, but the size of shared memory is too small to even feed a
warp of threads with enough storage space.

We have implemented and evaluated both the single ray and the packet traversal
algorithms. For the single ray style, a stack traversal algorithm and three different
stackless algorithms were implemented for comparison:

332 M. Shih et al.

KD-Restart [5]. The kd-restart procedure eliminates the use of the stack by returning
back to the root node whenever a stack-pop should have happened (that is, a leaf node
has been just tested) and then “re-starts” the traversal step from the root node.

Short-Stack [8]. This method extends kd-restart by using a size-restricted short-stack
instead of eliminating the stack entirely. The short-stack behaves just as an ordinary
stack except a stack underflow occurs, in which the procedure goes back to the stan-
dard kd-restart manner.

KD-Tree Traversal with Ropes [12]. The ropes approach removed the use of the
stack by the means of taking the advantage of the concept of ropes, or the links
between neighbor cells. Whenever a leaf node has been finished processing, the tra-
versal continues by determining from which face the ray exits the node and following
the rope of this face to the adjacent node.

3.2 Shadow Rays and Secondary Rays

3.2.1 Shadow Rays

The shadow ray uses the same traversal code with the primary ray. A remarkable is-
sue here is whether to process shadows rays in a one-pass or a two-pass manner.

One-pass. The shadowing processing is combined with primary ray as a single kernel.
This style benefits from avoiding the information exchange between two kernels and
reduces the overhead invited by kernel invocation. However, the drawback is that the
kernel would become bigger and more complex, leading to the increase of register
usage.

Two-pass. The shadowing task is separated from the primary ray as another kernel,
and the shadow kernel is invoked after the primary kernel. The advantage is that the
simplicity as well as the low register usage of the kernel can be kept, while the cost is
brought by the necessity of communication between the two kernels. The information
passing can be done with the use of a global buffer.

3.2.2 Secondary Rays

Since the reflection and refraction rays may be traced many times for accurate light
transport simulation, it is better to implement them in independent kernels. Because
the scene materials are not always perfectly reflective or transparent, the final shading
result should combine the effects from primary and secondary rays. By adding a
weight value to each ray, the final result of shading can be computed in an accumula-
tive manner. To implement the recursive ray tracing algorithm that simulates the
shading effects caused by multi-bounce reflection/refraction, the primary kernel and
the secondary kernels form a kernel tree (instead of a ray tree in ordinary CPU ray
tracing); the whole rendering process corresponds to invoking all these kernels in an
appropriate order. The information passing between the kernels is done by the use of
global buffers. The most memory-saving manner to process the kernel tree is to in-
voke the secondary kernels in a depth-first order, in which the necessary number of
buffers for worst case is equal to the maximum number of bounces plus one.

 Real-Time Ray Tracing with CUDA 333

4 Experiments and Results

We evaluated our implementation with an NVIDIA GeForce 8800 GTS graphics card
running with an Intel 2.13 GHz Core 2 Duo. The CUDA program was built and exe-
cuted with NVIDIA’s CUDA development tools version 1.1 for Windows XP (includ-
ing the CUDA toolkit 1.1, CUDA SDK 1.1, and 169.21 driver). The rendered image
was displayed with OpenGL; the performance results were measured with the whole
system executing including displaying. For testing several reasonably complex scenes
are used: BUNNY, SPONZA, KITCHEN, and DRAGON. The scenes are shown in Figure 3.
Table 2 lists the statistical data for the kd-trees built for the scenes. All scenes were
rendered at 1024×1024 resolution.

Fig. 3. Test scenes. From left to right: BUNNY, SPONZA, KITCHEN, and DRAGON.

Table 2. KD-Tree properties for test scenes. “#neleaves” stands for non-empty leaves. “#links”
means the average number of references to triangles per non-empty leaf.

Scene #triangles #nodes #neleaves #links Size
BUNNY 69,451 379,713 120,511 2.72 11MB
SPONZA 66,454 292,195 124,059 2.63 10MB
KITCHEN 103,343 362,585 146,253 2.63 14MB
DRAGON 871,414 1,687,237 607,852 2.59 103MB

Table 3. Execution time in milliseconds for pure triangle intersection test on 1000 triangles.
“Reg. usage” row indicates the number of registers the kernels consumes.

Scene MT [10] Projection [17] Plücker [3, 14, 1]
BUNNY 515.3 439.8 566.3
SPONZA 515.3 431.5 578.7
Reg. usage 12 18 22

4.1 Block Size

The block size set for launching kernel affects the actual execution manner for the
threads in the multiprocessors. We have tested many combinations of block sizes as
shown in Figure 4. The results showed that the good combinations were 2×32 and
4×32, which might be explained by concept of ray coherence [4]. The coherence

334 M. Shih et al.

within a warp is significant since a warp is a SIMD group of threads, which means
that if the threads of a warp are incoherent, the execution path of the warp is likely to
diverge, and thus the utilization of SIMD is lessened. The coherence within a multi-
processor is also important because the threads being executed in a multiprocessor
share the texture cache, which is persistently used for loading the kd-tree and triangle
data. Usually the rays that consist in a nearly squared beam have good coherence.
The block size of 2×32 seems not so coherent within a warp (the block is divided
into warps in a y-major style; 2×32 causes 2×16 warps), but the coherence within a
multiprocessor is moderate (14×32). Comparing to 2×32, the 4×32 block loses some
multiprocessor occupancy, but this size takes the advantage of the higher warp coher-
ence (4×8 warps). In conclusion, the key point is to keep three things: high occu-
pancy, high coherence within a warp, and high coherence within a multiprocessor. We
have made some experiments to verify the idea; we tried the sizes of 14×32 and
22×20, and they perform well just as we had thought.

4.2 Triangle Intersection

Table 3 lists the absolute performance of pure triangle intersection test for different
algorithms. The testing kernel tested the first 1000 triangles of the scene in a for-loop.
The results showed that the projection test [17] obviously outperformed. Since the
computation of projection test consists of operations on scalar variables rather than
vectors, the kernel requires fewer registers.

Fig. 4. Performance for different block sizes Fig. 5. Performance to register usage. The
frame rate descends as occupancy does.

 Real-Time Ray Tracing with CUDA 335

Table 4. Comparison of kd-tree traversal algorithms. Performance numbers are given in frames
per second. All scenes were rendered with primary rays only and simple shading.

 Stack Stackless
Scene single ray packet kd-restart [5] short-stack [8] ropes [12]
BUNNY 43.2 15.8 30.9 31.7 38.4
SPONZA 40.5 16.5 28.6 29.5 34.4
KITCHEN 39.6 - 28.9 28.2 33.4
DRAGON 30.4 - 21.4 21.8 26.4
Reg. usage 18 20 17 28 24
Occupancy 50% 50% 50% 33% 33%

4.3 KD-Tree Traversal

Table 4 shows the comparison between the single ray traversal and the packet
traversal as well as the comparison between the stack traversal and the stackless algo-
rithms. It is obvious that packet approach was not suitable for CUDA at all. Exchang-
ing information between the threads within a packet spent too much processing time.
The results also showed that the conventional kd-tree traversal algorithm which used
a stack was better than all stackless methods in our implementation. Trying to explain
the results, another experiment was taken: We controlled the register usage of each
kernel by adding redundant variables to observe the occupancy effects. The results as
shown in Figure 5 suggested that the kd-restart algorithm [5] and the short-stack algo-
rithm [8] were defeated by stack traversal even with the same register usage. It seems
that the long latency invited by accessing local memory, where the stack were kept,
was successfully hidden by multithreading. On the other hand, kd-tree traversal with
ropes [12] was faster than the stack approach as long as the register usage was the
same since it benefited from the pre-computing. The limited performance of the ropes
approach was clearly caused by the low occupancy.

4.4 Shadow Rays and Secondary Rays

Figure 6 shows the rendering results for shadow and secondary rays. Table 5 lists the
comparison between the one-pass and the two-pass approach for shadow rendering

Fig. 6. Rendering results for shadow and secondary rays. From left to right: 3-bounce reflec-
tion/refraction in SPONZA, 4-bounce reflection/refraction in KITCHEN, and 4-bounce refraction
only in KITCHEN.

336 M. Shih et al.

Table 5. Shadow and secondary rays. Performance numbers are given in frames per second.

 Shadow Multi-bounce reflection/refraction
Scene one-pass two-pass 1-bounce 2-bounce 3-bounce
BUNNY 16.6 18.4 - - -
SPONZA 21.0 23.9 11.3 7.2 5.0
KITCHEN 18.1 20.1 9.1 5.9 3.9
Reg. usage 22 19/18 - - -
Occupancy 33% 50% - - -

and the performance for multi-bounce reflection/refraction. The results suggested that
two-pass approach for shadow rendering was better for its low register usage.

5 Conclusions and Future Work

In this paper we presented real-time GPU ray tracing with CUDA. The comparison
shown in Table 6 shows that our work outperform previous works in terms of abso-
lute performance in primary rays. The implementation of full-featured recursive ray
tracing was also able to run at an interactive speed. We discussed the implementation
decisions as well as their effects on performance. The data was carefully organized to
fit the CUDA memory model. Architectural issues such as block size decision and the
multiprocessor occupancy have shown significant influence on the performance. Our
experiment results suggested that the single ray traversal using a stack with the pro-
jection test was the best combination of kd-tree traversal and triangle intersection
algorithms. It was also shown that a two-pass approach outperformed one-pass
approach for shadow rendering due to occupancy.

As for future work, we would like to extend the work to include the comparison
with the BVH. The use of BVHs also means that it can be considered to do ray tracing
with deformable scenes. Another possible extension of this work is to support even
higher rendering quality through the implementation of distributed ray tracing or path
tracing.

Table 6. Comparison of related work and our work

 Method M rays/s Scene Platform
CPU KD-tree, stack, frus-

tum culling
10-20 Sponza (66K) Intel Core 2

Duo
Foley et al. [5] KD-tree, kd-restart 1.43 Bunny (69K) ATI X800 XT

PE (2004)
Horn et al. [8] KD-tree, short-stack 15.2 Conference (174K) ATI X1900

XTX (2006)
Popov et al. [12] KD-tree, ropes 12.7/16.7 Bunny (69K)

/Conference (174K)
NVIDIA 8800
GTX (2006)

Günther et al. [6] BVH, shared stack 19 Conference(174K) NVIDIA 8800
GTX (2006)

Our work KD-tree, stack 30-43 Various (66K-871K) NVIDIA 8800
GTS (2006)

 Real-Time Ray Tracing with CUDA 337

Acknowledgements. This work is supported in part by by National Science Council
(Taiwan) under grant NSC 97-2220-E-003-001.

References

1. Benthin, C.: Realtime Ray Tracing on Current CPU Architectures. PhD thesis, Saarland
University (2006)

2. Benthin, C., Wald, I., Scherbaum, M., Friedrich, H.: Ray Tracing on the CELL Processor.
In: Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing (2006)

3. Erickson, J.: Plücker Coordinates. Ray Tracing News (1997),
 http://tog.acm.org/resources/RTNews/html/rtnv10n3.html#art11

4. Foley, J., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics – Principles and
Practice, 2nd edn. Addison Wesley, Reading (1997)

5. Foley, T., Sugerman, J.: Kd-tree acceleration structures for a gpu raytracer. In: HWWS
2005: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pp. 15–22. ACM Press, New York (2005)

6. Günther, J., Popov, S., Seidel, H.-P., Slusallek, P.: Realtime Ray Tracing on GPU with
BVH-based Packet Traversal. In: RT 2007: IEEE Symposium on Interactive Ray Tracing,
pp. 113–118 (2007)

7. Havran, V.: Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of Electrical Engi-
neering, Czech Technical University in Prague (2001)

8. Horn, D.R., Sugerman, J., Houston, M., Hanrahan, P.: Interactive k-d tree GPU raytracing.
In: I3D 2007: Proceedings of the, symposium on Interactive 3D graphics and games, pp.
167–174. ACM Press, New York (2007)

9. Houston, M.: Performance analysis and architecture insights. In: SUPERCOMPUTING
2006 Tutorial on GPGPU, Course Notes (2006), http://www.gpgpu.org/sc2006/
slides/10.houston-understanding.pdf

10. Möller, T., Trumbore, B.: Fast, minimum storage ray triangle intersection. Journal of
Graphics Tools 2(1), 21–28 (1997)

11. NVIDIA. The CUDA homepage, http://www.nvidia.com/cuda
12. Popov, S., Günther, J., Seidel, H.-P., Slusallek, P.: Stackless KD-Tree Traversal for High

Performance GPU Ray Tracing. Computer Graphics Forum 26(3), 415–424 (2007) (Pro-
ceedings of Eurographics)

13. Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P.: Ray tracing on programmable graphics
hardware. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), 703–712
(2002)

14. Shoemake, K.: Plücker Coordinate Tutorial. Ray Tracing News (1998),
 http://tog.acm.org/resources/RTNews/html/rtnv11n1.html#art3

15. Thrane, N., Simonsen, L.O.: A Comparison of Acceleration Structures for GPU Assisted
Ray Tracing. Master’s thesis, University of Aarhus (2005)

16. Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interactive rendering with coherent ray
tracing. Computer Graphics Forum 20(3), 153–164 (2001)

17. Wald, I.: Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Saarland
University (2004)

18. Whitted, T.: An Improved Illumination Model for Shaded Display. CACM 23(6), 343–349
(1980)

19. Woop, S., Schmittler, J., Slusallek, P.: Rpu: a programmable ray processing unit for real-
time ray tracing. ACM Trans. Graph. 24(3), 434–444 (2005)

	Real-Time Ray Tracing with CUDA
	Introduction
	Related Work

	A Brief Introduction to CUDA
	Implementation Issues for CUDA Ray Tracing
	The Ray Tracing Kernel
	Shadow Rays and Secondary Rays

	Experiments and Results
	Block Size
	Triangle Intersection
	KD-Tree Traversal
	Shadow Rays and Secondary Rays

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

