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Abstract. The graphics processors (GPUs) have recently emerged as a low-cost 
alternative for parallel programming. Since modern GPUs have great computa-
tional power as well as high memory bandwidth, running ray tracing on them 
has been an active field of research in computer graphics in recent years. Fur-
thermore, the introduction of CUDA, a novel GPGPU architecture, has removed 
several limitations that the traditional GPU-based ray tracing suffered. In  
this paper, an implementation of high performance CUDA ray tracing is dem-
onstrated. We focus on the performance and show how our design choices in 
various optimization lead to an implementation that outperforms the previous 
works. For reasonably complex scenes with simple shading, our implementation 
achieves the performance of 30 to 43 million traced rays per second. Our  
implementation also includes the effects of recursive specular reflection and re-
fraction, which were less discussed in previous GPU-based ray tracing works. 
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1   Introduction 

Ray tracing algorithm is a widely adopted technique in computer graphics for its high 
quality in realistic image synthesis. However, ray tracing is also known for its heavy 
computational requirement. Industrial ray tracing applications are typically off-line 
rendering systems that often rely on CPU clusters or rendering farm to provide the 
necessary computational power. 

Due to its intrinsic parallelism, the ray tracing algorithm is a good fit for multi- 
core or multi-processor architectures. In order to speed up ray tracing and to make it 
practical for interactive applications, researchers have explored many novel parallel 
architectures [13, 19, 2]. Among them, programmable graphics hardware (GPU) has 
attracted significant interest for its high throughput. However, implementing ray trac-
ing algorithm on the GPUs suffered from several architectural limitations. Therefore 
many researchers have focused on developing algorithm tricks that work around those 
limitations [5, 15, 8, 12, 6]. 

This paper focuses on real-time ray tracing on the GPU with the Compute Unified 
Device Architecture (CUDA) [11]. We have the following main contributions: (1) We 
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present a CUDA implementation of ray tracing that is fastest so far to our best knowl-
edge. For simple shading and primary rays only, we achieve 30 to 43 million rays per 
second on several reasonably complex scenes. An implementation of recursive  
ray tracing (or Whitted ray tracing [18]) is also demonstrated, which also achieves 
interactive frame rates. (2) Our work serves as a brief survey on various performance 
issues in practice. Several implementation decisions taken due to the architectural or 
algorithmic reasons are discussed in detail in this work. 

1.1   Related Work 

The study on GPU ray tracing began with the introduction of programmable shaders 
that are supported by graphics hardware. Purcell et al. [13] first proposed a scheme of 
GPU ray tracer. They treated GPUs as streaming processors and showed how to map 
a ray tracer to such a programming model. They used a uniform grid as the spatial 
partition structure for acceleration due to its simplicity. 

It has been shown that the kd-tree built with surface area heuristics (SAH) is the 
best known acceleration structure for ray tracing of static scenes [7]. Foley et al. [5] 
overcame the hardness of implementing the stack needed for conventional kd-tree 
traversal algorithm on the GPU by proposing two stackless kd-tree traversal  
algorithms, namely kd-restart and kd-backtrack. Both kd-restart and kd-backtrack 
outperformed uniform grids on the GPU. Horn et al. [8] extended Foley et al.’s work 
by an improvement in the kd-restart algorithm. They used a size-restricted short-stack 
in their modified kd-tree traversal algorithm instead of eliminating the stack entirely. 
In the same year Popov et al. [12] presented another approach to stackless kd-tree 
traversal algorithm by taking the advantage of the concept of ropes, or the links  
between neighboring leaf nodes. Besides kd-trees, Bounding Volume Hierarchies 
(BVHs) for GPU ray tracing also have been investigated. Thrane and Simonsen [15] 
developed a fixed-order BVH traversal algorithm that discarded the use of the stack. 
Later, Günther et al. [6] presented a shared stack BVH traversal algorithm, which 
amortized the stack storage over the whole ray packet. 

2   A Brief Introduction to CUDA 

The Compute Unified Device Architecture (CUDA) [11] is a new technique for 
GPGPU (General-Purpose computing on GPUs). By removing several limitations 
from traditional GPGPU, CUDA provides useful features for implementing ray trac-
ing: (1) a C-like programming language that eliminates the need of mapping the  
application to graphics API; (2) access on DRAM with general addressing; (3) full 
support for integer and bitwise operations. 

When programming with CUDA, the device (GPU) is treated as a coprocessor to 
the host (CPU). A portion of an application that is executed many times on different 
data independently can be isolated into a function that executed on the GPU as many 
different threads. Such functions are called kernels. 

When executing the kernel, the threads are organized into a grid of equal-sized (the 
size is assigned when launching the kernel) blocks, in which threads can cooperate 
with some fast shared memory and they can be synchronized by specifying a syn-
chronizing point (block-wide barrier) in the kernel. 
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The hardware implementation of the device is a set of multiprocessors. Each mul-
tiprocessor has a Single Instruction Multiple Data (SIMD) architecture; typically it 
has 8 processors that execute the same instruction on different data (threads). The 
blocks being processed in a multiprocessor are divided into SIMD groups of threads 
called warps (typically the size is 32, where a basic instruction spends 4 clock cycles 
for a warp). The warps from all blocks being processed in a multiprocessor are exe-
cuted in a time-slicing fashion; thus the long latency caused by some operations such 
as memory access and thread synchronization can be hidden by warp switching. How 
many blocks each multiprocessor can process in the time-slicing fashion depends on 
how many registers per thread and how much shared memory per block are required 
since these resources are shared among all the threads within the block. The ratio of 
the number of time-sliced warps per multiprocessor to the maximum number limited 
by the hardware implementation is called multiprocessor occupancy. Usually the 
higher occupancy (good parallelism) stands for the higher performance. 

There are different types of memory in CUDA. Their characteristics are listed as 
Table 1. 

Table 1. Memory types in CUDA. Symbol ‘$’ indicates the memory is cached. “MP” stands for 
Multiprocessor. 

Name Scope Restriction Position Speed Size 
Registers Per-thread Read-write On-chip Very fast 32KB/MP 
Local memory Per-thread Read-write DRAM Slow =DRAM size 
Shared memory Per-block Read-write On-chip Very fast 16KB/MP 
Global memory Whole device Read-write DRAM Slow =DRAM size 
Constant memory Whole device Read-only DRAM($) Fast 64KB 
Texture memory Whole device Read-only DRAM($) Moderate =DRAM size 

3   Implementation Issues for CUDA Ray Tracing 

The ray tracing problem can be explained by Figure 1. The view rays are shot from the 
camera to the scene; the corresponding pixel on the screen is shaded by the information 
of first intersection between the ray and the scene. Since the number of objects (repre-
sented as triangles in our implementation) within the scene can be very large, a spatial 
index structure is essential for accelerating the process of finding intersection. We 
choose the kd-tree built with SAH for the reason of performance [7]. For shadowing the 
hit object, shadow rays are shot from the light sources to the intersection point to deter-
mine whether the point is occluded. Whenever a specular or transparent surface has 
been hit, a reflection or refraction ray is shot in order to simulate the optical effect. If a 
reflection or refraction ray still hits a specular or transparent surface, the ray is traced 
recursively until a diffuse surface is hit or the maximum recursion depth is met. 

3.1   The Ray Tracing Kernel 

The core of our CUDA implementation is the ray tracing kernel, which processes a 
single ray. The process consists of four parts: ray generation, kd-tree traversal, trian-
gle intersection test, and shading. Figure 2 shows the scheme of the kernel as well as 
the data structures needed for the kernel. 
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3.1.1   Data Organization 

Since CUDA has several different kinds of memory with respect to speed, size, and 
accessibility, in order to achieve a good execution performance, it is important  
to carefully allocate the data structures, avoiding the long access latency caused by 
low-speed memory. 

The organization of triangles and the kd-tree is shown in Figure 2. The use of  
object list as a middle-layer between the leaf nodes and the triangles reduces the 
memory consumption in the case of shared triangles among different leaf nodes. This 
also increases the cache hit rate. All of the node list, object list, triangle vertex list, 
and normal list are stored as arrays bound with textures. Though the caching mecha-
nism of textures is originally designed for coherent access patterns rather than  
random-like patterns such as tree traversal, we have found that it is still beneficial to 
bind the above structures with textures. 

The small, static, and fixed-size structures namely the camera, light, and materials 
are all kept in constant memory. 

Frame buffer is the only data output during the kernel execution. It is written only 
once per thread when the rendering is done, hence there is no need to cache it in the 
shared memory. 

A ray in the 3-D space is represented by two 3-D vectors indicating the origin point 
and the direction which the ray points to. Although it seems natural to store the two 
vectors in local variables, which are referred to registers, such manner causes poor 
performance; the components of origin and direction vectors are frequently accessed 
by indexing, i.e. the vector is treated as a 3-element array, which is not supported by 
registers, and as a result, the compiler uses low-speed local memory to solve the di-
lemma and eventually worsens the performance. Thus the better solution is to place 
the vectors in shared memory. Actually this optimization improves the performance 
significantly. 

Fig. 1. Ray tracing Fig. 2. Ray tracing kernel 
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3.1.2   Triangle Intersection and KD-Tree Traversal 

Triangle intersection test and kd-tree traversal are the most time-consuming parts of 
the whole ray tracing system. Thus the algorithms for fast intersection and traversal 
have long been investigated and plenty of varieties have been proposed. 

We have implemented and examined three kinds of triangle intersection test  
algorithms: 

Möller-Trumbore Test [10]. It is probably the most well-known triangle intersection 
algorithm. This method is easy to be integrated into any program since it requires only 
the vertices of the triangle as input data. 

Test Projection Test [17]. The projection method takes advantage of a pre-computed 
acceleration structure and performs well in terms of CPU cycle count. 

Plücker Test [3, 14, 1]. Unlike most of intersection algorithms, which usually rely on 
computing barycentric coordinates, Plücker Test takes advantage of the properties  
of Plücker coordinates [3, 14]. The method is further optimized by Benthin [1] to am-
ortize the computation over all rays within an origin-shared ray packet. 

For kd-tree traversal algorithms, two issues should be discussed: First, whether we 
should trace the rays one by one separately or in a packet style, and second, whether 
we should use a stack or to rely on stackless methods as previous research. 

Single ray vs. packet. The packet traversal algorithm was developed in order to  
exploit the computational power of the CPU SIMD [16, 17]. The algorithm bundles 
the rays together and determines a common traversal order for them, and therefore the 
SIMD instructions can be applied to operate several rays simultaneously within a 
thread. However, CUDA execution model differs from the CPU; the CUDA threads 
are scalar programs and they are forced to be executed in a SIMD manner. In other 
words, even the single ray algorithm is indeed executed parallelly within a multiproc-
essor, and no waste of computational power is caused. In contrary, despite the packet 
traversal reduces off-chip bandwidth and eliminates incoherent branches [9], it brings 
overhead on synchronizations to force the threads to go along with each other. 

Stack vs. stackless. While traversing a tree-based structure usually needs a stack, it 
was difficult to implement a per-ray stack on the GPU due to architectural restric-
tions. The stackless traversal algorithms were developed to overcome this problem. 
However such restrictions are relaxed when programming with CUDA, which  
supports general DRAM addressing so that every thread can own its private part of 
memory, and thus it is possible to allocate a stack for each thread. The stackless man-
ner may still have benefits because it avoids the long latency of access in non-cached 
DRAM. Nevertheless, the use of a stack keeps the rendering kernel simple, which is 
favorable for CUDA. Another option on CUDA may be brought up is to implement a 
stack using shared memory, but the size of shared memory is too small to even feed a 
warp of threads with enough storage space. 

We have implemented and evaluated both the single ray and the packet traversal 
algorithms. For the single ray style, a stack traversal algorithm and three different 
stackless algorithms were implemented for comparison: 
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KD-Restart [5]. The kd-restart procedure eliminates the use of the stack by returning 
back to the root node whenever a stack-pop should have happened (that is, a leaf node 
has been just tested) and then “re-starts” the traversal step from the root node. 

Short-Stack [8]. This method extends kd-restart by using a size-restricted short-stack 
instead of eliminating the stack entirely. The short-stack behaves just as an ordinary 
stack except a stack underflow occurs, in which the procedure goes back to the stan-
dard kd-restart manner. 

KD-Tree Traversal with Ropes [12]. The ropes approach removed the use of the 
stack by the means of taking the advantage of the concept of ropes, or the links  
between neighbor cells. Whenever a leaf node has been finished processing, the tra-
versal continues by determining from which face the ray exits the node and following 
the rope of this face to the adjacent node. 

3.2   Shadow Rays and Secondary Rays 

3.2.1   Shadow Rays 

The shadow ray uses the same traversal code with the primary ray. A remarkable is-
sue here is whether to process shadows rays in a one-pass or a two-pass manner. 

One-pass. The shadowing processing is combined with primary ray as a single kernel. 
This style benefits from avoiding the information exchange between two kernels and 
reduces the overhead invited by kernel invocation. However, the drawback is that the 
kernel would become bigger and more complex, leading to the increase of register 
usage. 

Two-pass. The shadowing task is separated from the primary ray as another kernel, 
and the shadow kernel is invoked after the primary kernel. The advantage is that the 
simplicity as well as the low register usage of the kernel can be kept, while the cost is 
brought by the necessity of communication between the two kernels. The information 
passing can be done with the use of a global buffer. 

3.2.2   Secondary Rays 

Since the reflection and refraction rays may be traced many times for accurate light 
transport simulation, it is better to implement them in independent kernels. Because 
the scene materials are not always perfectly reflective or transparent, the final shading 
result should combine the effects from primary and secondary rays. By adding a 
weight value to each ray, the final result of shading can be computed in an accumula-
tive manner. To implement the recursive ray tracing algorithm that simulates the 
shading effects caused by multi-bounce reflection/refraction, the primary kernel and 
the secondary kernels form a kernel tree (instead of a ray tree in ordinary CPU ray 
tracing); the whole rendering process corresponds to invoking all these kernels in an 
appropriate order. The information passing between the kernels is done by the use of 
global buffers. The most memory-saving manner to process the kernel tree is to in-
voke the secondary kernels in a depth-first order, in which the necessary number of 
buffers for worst case is equal to the maximum number of bounces plus one. 
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4   Experiments and Results 

We evaluated our implementation with an NVIDIA GeForce 8800 GTS graphics card 
running with an Intel 2.13 GHz Core 2 Duo. The CUDA program was built and exe-
cuted with NVIDIA’s CUDA development tools version 1.1 for Windows XP (includ-
ing the CUDA toolkit 1.1, CUDA SDK 1.1, and 169.21 driver). The rendered image 
was displayed with OpenGL; the performance results were measured with the whole 
system executing including displaying. For testing several reasonably complex scenes 
are used: BUNNY, SPONZA, KITCHEN, and DRAGON. The scenes are shown in Figure 3. 
Table 2 lists the statistical data for the kd-trees built for the scenes. All scenes were 
rendered at 1024×1024 resolution. 
 

 

Fig. 3. Test scenes. From left to right: BUNNY, SPONZA, KITCHEN, and DRAGON. 

Table 2. KD-Tree properties for test scenes. “#neleaves” stands for non-empty leaves. “#links” 
means the average number of references to triangles per non-empty leaf. 

Scene #triangles #nodes #neleaves #links Size 
BUNNY 69,451 379,713 120,511 2.72 11MB 
SPONZA 66,454 292,195 124,059 2.63 10MB 
KITCHEN 103,343 362,585 146,253 2.63 14MB 
DRAGON 871,414 1,687,237 607,852 2.59 103MB 

Table 3. Execution time in milliseconds for pure triangle intersection test on 1000 triangles. 
“Reg. usage” row indicates the number of registers the kernels consumes. 

Scene MT [10] Projection [17] Plücker [3, 14, 1] 
BUNNY 515.3 439.8 566.3 
SPONZA 515.3 431.5 578.7 
Reg. usage 12 18 22 

4.1   Block Size 

The block size set for launching kernel affects the actual execution manner for the 
threads in the multiprocessors. We have tested many combinations of block sizes as 
shown in Figure 4. The results showed that the good combinations were 2×32 and 
4×32, which might be explained by concept of ray coherence [4]. The coherence  
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within a warp is significant since a warp is a SIMD group of threads, which means 
that if the threads of a warp are incoherent, the execution path of the warp is likely to 
diverge, and thus the utilization of SIMD is lessened. The coherence within a multi-
processor is also important because the threads being executed in a multiprocessor 
share the texture cache, which is persistently used for loading the kd-tree and triangle 
data. Usually the rays that consist in a nearly squared beam have good coherence.  
The block size of 2×32 seems not so coherent within a warp (the block is divided  
into warps in a y-major style; 2×32 causes 2×16 warps), but the coherence within a 
multiprocessor is moderate (14×32). Comparing to 2×32, the 4×32 block loses some 
multiprocessor occupancy, but this size takes the advantage of the higher warp coher-
ence (4×8 warps). In conclusion, the key point is to keep three things: high occu-
pancy, high coherence within a warp, and high coherence within a multiprocessor. We 
have made some experiments to verify the idea; we tried the sizes of 14×32 and 
22×20, and they perform well just as we had thought. 

4.2   Triangle Intersection 

Table 3 lists the absolute performance of pure triangle intersection test for different 
algorithms. The testing kernel tested the first 1000 triangles of the scene in a for-loop. 
The results showed that the projection test [17] obviously outperformed. Since the 
computation of projection test consists of operations on scalar variables rather than 
vectors, the kernel requires fewer registers. 

 

Fig. 4. Performance for different block sizes Fig. 5. Performance to register usage. The 
frame rate descends as occupancy does. 
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Table 4. Comparison of kd-tree traversal algorithms. Performance numbers are given in frames 
per second. All scenes were rendered with primary rays only and simple shading. 

 Stack Stackless 
Scene single ray packet kd-restart [5] short-stack [8] ropes [12] 
BUNNY 43.2 15.8 30.9 31.7 38.4 
SPONZA 40.5 16.5 28.6 29.5 34.4 
KITCHEN 39.6 - 28.9 28.2 33.4 
DRAGON 30.4 - 21.4 21.8 26.4 
Reg. usage 18 20 17 28 24 
Occupancy 50% 50% 50% 33% 33% 

4.3   KD-Tree Traversal 

Table 4 shows the comparison between the single ray traversal and the packet  
traversal as well as the comparison between the stack traversal and the stackless algo-
rithms. It is obvious that packet approach was not suitable for CUDA at all. Exchang-
ing information between the threads within a packet spent too much processing time. 
The results also showed that the conventional kd-tree traversal algorithm which used 
a stack was better than all stackless methods in our implementation. Trying to explain 
the results, another experiment was taken: We controlled the register usage of each 
kernel by adding redundant variables to observe the occupancy effects. The results as 
shown in Figure 5 suggested that the kd-restart algorithm [5] and the short-stack algo-
rithm [8] were defeated by stack traversal even with the same register usage. It seems 
that the long latency invited by accessing local memory, where the stack were kept, 
was successfully hidden by multithreading. On the other hand, kd-tree traversal with 
ropes [12] was faster than the stack approach as long as the register usage was the 
same since it benefited from the pre-computing. The limited performance of the ropes 
approach was clearly caused by the low occupancy. 

4.4   Shadow Rays and Secondary Rays 

Figure 6 shows the rendering results for shadow and secondary rays. Table 5 lists the 
comparison between the one-pass and the two-pass approach for shadow rendering  

 

 

Fig. 6. Rendering results for shadow and secondary rays. From left to right: 3-bounce reflec-
tion/refraction in SPONZA, 4-bounce reflection/refraction in KITCHEN, and 4-bounce refraction 
only in KITCHEN. 
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Table 5. Shadow and secondary rays. Performance numbers are given in frames per second. 

 Shadow Multi-bounce reflection/refraction 
Scene one-pass two-pass 1-bounce 2-bounce 3-bounce 
BUNNY 16.6 18.4 - - - 
SPONZA 21.0 23.9 11.3 7.2 5.0 
KITCHEN 18.1 20.1 9.1 5.9 3.9 
Reg. usage 22 19/18 - - - 
Occupancy 33% 50% - - - 

and the performance for multi-bounce reflection/refraction. The results suggested that 
two-pass approach for shadow rendering was better for its low register usage. 

5   Conclusions and Future Work 

In this paper we presented real-time GPU ray tracing with CUDA. The comparison 
shown in Table 6 shows that our work outperform previous works in terms of abso-
lute performance in primary rays. The implementation of full-featured recursive ray 
tracing was also able to run at an interactive speed. We discussed the implementation 
decisions as well as their effects on performance. The data was carefully organized to 
fit the CUDA memory model. Architectural issues such as block size decision and the 
multiprocessor occupancy have shown significant influence on the performance. Our 
experiment results suggested that the single ray traversal using a stack with the pro-
jection test was the best combination of kd-tree traversal and triangle intersection  
algorithms. It was also shown that a two-pass approach outperformed one-pass  
approach for shadow rendering due to occupancy. 

As for future work, we would like to extend the work to include the comparison 
with the BVH. The use of BVHs also means that it can be considered to do ray tracing 
with deformable scenes. Another possible extension of this work is to support even 
higher rendering quality through the implementation of distributed ray tracing or path 
tracing. 

Table 6. Comparison of related work and our work 

 Method M rays/s Scene Platform 
CPU KD-tree, stack, frus-

tum culling 
10-20 Sponza (66K) Intel Core 2 

Duo 
Foley et al. [5] KD-tree, kd-restart 1.43 Bunny (69K) ATI X800 XT 

PE (2004) 
Horn et al. [8] KD-tree, short-stack 15.2 Conference (174K) ATI X1900 

XTX (2006) 
Popov et al. [12] KD-tree, ropes 12.7/16.7 Bunny (69K) 

/Conference (174K) 
NVIDIA 8800 
GTX (2006) 

Günther et al. [6] BVH, shared stack 19 Conference(174K) NVIDIA 8800 
GTX (2006) 

Our work KD-tree, stack 30-43 Various (66K-871K) NVIDIA 8800 
GTS (2006) 
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