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We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-
conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on
massively parallel supercomputers, in which interatomic forces are computed quantum mechanically
in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally
informed, overlapping local-domain solutions, which in the recombine phase are synthesized into
a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean
divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N)
computational cost for N electrons by applying a density-adaptive boundary condition at the pe-
ripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid
real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent
the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave
functions and charge density within each domain. Hybrid space-band decomposition is used to im-
plement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q
computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 106-atom
SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms
is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using
LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used
as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and
kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response
time-dependent density functional theory to describe electronic excited states and a surface-hopping
approach to describe transitions between the excited states. A series of techniques are employed
for efficiently calculating the long-range exact exchange correction and excited-state forces. The
NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then
used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed
the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching
the experimental time scales. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869342]

I. INTRODUCTION

Divide-and-conquer (DC) is a highly scalable algorith-
mic paradigm, which has been applied successfully to design
linear-scaling algorithms for broad computational problems
ranging from the formally O(N2) N-body problem,1–4 to the
O(N3) eigenvalue problem5, 6 and linear systems,7 to the ex-
ponentially complex quantum N-body problem.8–14 With the
advent of multicore revolution in computer architecture, DC
software on emerging exaflop/s computers15 will provide an
unprecedented capability to solve complex problems, only if
the software continues to scale on the millions of cores in
an exaflop/s computer. This is an enormous challenge, since
we do not even know the architecture of such platforms. The

primary challenge is to sustain DC’s scalability on rapidly
evolving parallel computing architectures. Such a formidable
challenge can only be addressed based on a solid theoreti-
cal foundation to guarantee provable scalability, adapting to
evolving architectures, i.e., transforming the DC algorithmic
framework to be “metascalable” (or “design once, scale on
new architectures”).16

For the study of material properties and processes in-
volving electrons, the density functional theory (DFT)17 has
become a common computational method. There is grow-
ing interest in large quantum molecular dynamics (QMD)
simulations involving thousands of atoms,18 in which in-
teratomic forces are computed quantum mechanically19, 20

in the framework of DFT. Such large QMD simulations

0021-9606/2014/140(18)/18A529/14/$30.00 © 2014 AIP Publishing LLC140, 18A529-1
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on high-end parallel supercomputers can describe the cou-
pling of chemical reactions, atomistic processes, and long-
range stress phenomena for broad applications. The major
bottleneck of such large DFT calculations is the asymp-
totic O(N3) complexity for an N-electron system. To over-
come this bottleneck, various O(N) DFT algorithms21 have
been designed on the basis of the data locality principle
called quantum nearsightedness.22–24 Among them, the DC-
DFT algorithm8–14 pioneered by Weitao Yang8 is highly
scalable16, 25 on massively parallel computers.26 Publicly
available DC-DFT codes include the OpenMX software,11

and implementation of DC-DFT codes on massively parallel
computers is discussed in Refs. 16 and 27. The DC-DFT al-
gorithm represents the three-dimensional space as a union of
spatially localized domains, and global physical properties are
computed as linear combinations of local domain properties.
However, it is only in the past several years that the DC-DFT
algorithm, especially with large basis sets (>104 unknowns
per electron, which is necessary for the transferability of ac-
curacy), has attained controlled error bounds, robust conver-
gence properties, and adequate energy conservation28 for its
use in QMD simulations, to make large DFT-based QMD sim-
ulations practical.10, 13, 16, 25, 29

A major remaining problem associated with DC-DFT
is the large prefactor of its O(N) computational cost, which
makes it a challenge to perform large QMD simulations in-
volving over 104 atoms for more than 105 time steps. This
large prefactor arises from a thick buffer layer that sur-
rounds each computational domain in order to minimize the
effect of artificial boundary conditions imposed at domain
peripheries.23 In this paper, we design a light overhead O(N)
DFT algorithm called lean divide-and-conquer (LDC) DFT.
On the basis of complexity and error analyses of DC-DFT,
LDC minimizes the O(N) prefactor through: (1) optimization
of DC parameters; and (2) a density-adaptive boundary con-
dition. We use a hybrid real-reciprocal (HR2) space approach
that combines: (1) a plane-wave basis for electronic wave
functions and charge density within each DC domain; and
(2) a real-space multigrid to represent the global charge den-
sity. Hybrid space-band (HSB) decomposition is used to im-
plement the algorithm on massively parallel computers. The
parallel LDC-DFT code has achieved a parallel efficiency of
0.984 on 786 432 IBM Blue Gene/Q cores for a 50.3 × 106-
atom SiC system. LDC-DFT has also been use for 16 661-
atom QMD simulation to study on-demand production of hy-
drogen gas from water using LiAl alloy particles.

One advantage of DC-DFT is the possibility to use
local electronic structures from DC domains as a basis
set to construct various physical properties at the global
level. For example, DC electronic wave functions have been
used to calculate: (1) high-order inter-molecular-fragment
interactions;30, 31 (2) global frontier (i.e., highest occupied and
lowest unoccupied) molecular orbitals;32, 33 (3) global charge-
migration dynamics;34, 35 and (4) global kinetics of photoex-
cited electrons and holes in an exciton flow network;36 at
the length and time scales that are otherwise impossible to
reach. In this paper, we present an extension of DC named
divide-conquer-recombine (DCR) as a metascalable algorith-
mic paradigm that will continue to scale on future comput-

ing architectures. In DCR, the DC phase constructs glob-
ally informed, overlapping local-domain solutions,8 which
in the recombine phase are synthesized into a global solu-
tion conforming to the correct global geometry and bound-
ary conditions.36 As a specific example, DCR is applied to
the study of photoexcitation dynamics in amorphous molec-
ular solid, specifically the fission of a spin-singlet exciton
into spin-triplet excitons in amorphous diphenyl tetracene
(DPT).37 In contrast to singlet-fission (SF) processes in crys-
tals and molecular dimers,38 SF in amorphous molecular solid
has not been studied theoretically. This is largely due to the
required large quantum-mechanical calculations that capture
nanostructural features. To address this challenge, we adopt
a DCR approach, in which we perform nonadiabatic quantum
molecular dynamics (NAQMD) simulations39–43 embedded in
amorphous DPT involving 6400 atoms in a DC manner. These
local wave functions are used as a basis set to describe elec-
tronic excitations in the framework of linear-response time-
dependent density functional theory (LR-TDDFT).44 The
NAQMD simulations describe coupled electron-ion dynamics
involving nonadiabatic transitions between excited electronic
states based on a surface-hopping approach.45–48 NAQMD
results on exciton dynamics are then augmented with time-
dependent perturbation calculation of SF rates to provide in-
puts to kinetic Monte Carlo (KMC) simulation49–52 of a global
exciton-flow network to reach the experimental time scales.

This paper is organized as follows. Section II describes
the DCR approach using NAQMD-KMC simulation as a spe-
cific example. Section III presents the LDC-DFT algorithm
to accelerate the computation in the DC phase, along with
scalable parallel implementation of the DCR algorithm. Nu-
merical results are presented in Sec. IV, and finally Sec. V
contains conclusion.

II. DIVIDE-CONQUER-RECOMBINE ALGORITHM

In a DCR-DFT algorithm, the DC phase constructs glob-
ally informed local solutions (Fig. 1(a)), which in the recom-
bine phase are synthesized into a global solution (Fig. 1(b)).36

Figure 1(a) shows a tree data structure, in which the root of
the tree represents the entire simulation volume. The entire
volume is subdivided into 2 × 2 × 2 (or 2 × 2 in the 2D
example in Fig. 1) subsystems (or cells) of equal volume. Re-
cursive subdivision is repeated until each cell at the leaf level
defines a DC domain. The long-range electrostatic interaction
is computed in the DC phase using octree-based algorithms
such as the fast multipole method (FMM)1–4 and the multi-
grid method (MGM).13, 53, 54 In FMM, each tree node is ab-
stracted as a collection of multipole expansion coefficients of
the charge distribution ρ(r) and local expansion coefficients
of the electrostatic potential φ(r). After computing the multi-
poles of all DC domains at the leaf level, the tree is traversed
upward to compute the multipoles of all cells at all upper lev-
els by combining those of lower levels. Subsequently, Taylor
expansions of φ(r) around the centers of all cells at all levels
are computed from the multipoles, starting from the root of
the tree and traversing the tree downward. For each subsystem
at each tree level, the multipoles of only a constant number of
neighbor cells are used for the computation of φ(r) in order
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FIG. 1. Divide-conquer-recombine algorithm. (a) Two-dimensional schematic of the divide-and-conquer (DC) phase, in which atoms (spheres in the bottom
plane) within a DC domain (each small magenta parallelogram in the bottom plane) are abstracted by collective variables such as a finite-difference representa-
tion of the charge distribution. The DC domains are recursively combined to form a tree data structure consisting of progressively coarser cells, until reaching
the entire simulation volume at the root of the tree. Blue lines in the upper panel represent the merger of 2 × 2 daughter cells at a tree level to form a mother cell
at the next upper level. A DC algorithm performs computation in O(N) time by traversing the tree both upward and downward. (b) Typical triplet and quadruplet
computations involving one of the DC domains (colored red) in the recombine phase are shown by blue and black lines, respectively.

to satisfy a prescribed error bound. Since the number of tree
nodes is O(N) and each node carries constant amount of com-
putation, the computational complexity of FMM is O(N). In
MGM, each tree node is abstracted as a finite-difference rep-
resentation of ρ(r) and φ(r). The tree is traversed upward to
obtain coarser representations of the Poisson equation to be
iteratively solved, and downward to interpolate approximate
coarser solutions of the φ(r) in O(N) time. Electronic structure
calculations solve local problems in different DC domains in-
dependently from each other. These local electronic structures
are globally informed through the global electrostatic poten-
tial calculated on the tree, as well as the globally determined
chemical potential for the electrons,8 allowing charge transfer
across DC domains.

The key idea of DCR is to utilize DC solutions as com-
pactly supported basis functions, with which global properties
are synthesized using various recombination algorithms. The
recombine phase typically performs range-limited n-tuple
computations55 among DC domains to account for higher
inter-domain correlations that are not included in the tree data
structure used in the DC phase. Examples of triplet (n = 3)
and quadruplet (n = 4) computations are illustrated by ar-
rows in Fig. 1(b). An example of n-tuple computations in the
recombine phase (Fig. 1(b)) is the computation of the effec-
tive inter-molecular-fragment interaction energy, for which up
to 4-tuple corrections have been incorporated in a perturba-
tive manner.30 Furthermore, even higher-order screening ef-
fects have been included through a posteriori recipe based on
statistical mechanics, in which the self-consistent Ornstein-
Zernike equation was solved within the Percus-Yevick30 and
hypernetted-chain31 approximations. Linear combination of
DC electronic wave functions can also be used in the re-
combine phase to construct the highest occupied molecular
orbitals (HOMO) and lowest unoccupied molecular orbitals
(LUMO) of the entire system.32 The computational cost for
obtaining these global frontier orbitals is drastically reduced
by including only a small subset of DC orbitals near the
Fermi energy.32 DC wave functions were also used to describe
global charge-migration dynamics by constructing coarse-
grained electronic Hamiltonians with the use of quantum-
dynamical34 or bridge Green function35 methods. In this pa-

per, we focus on the recombination of DC wave functions to
describe the kinetics of photoexcited electrons and holes, for
which the global topology of a large-scale exciton flow net-
work was found to play an essential role.36

In this section, we first present a standard O(N) DC-
DFT algorithm. We then describe the recombination of local
DC-DFT electronic structures to synthesize the global exci-
ton dynamics with the use of NAQMD and KMC simulation
methods.

A. Divide-and-conquer density functional theory

1. Domain decomposition

The DC-DFT algorithm8–14 represents the three-
dimensional space # as a union of overlapping spatial
domains, # = ∪α#α , and physical properties are computed
as linear combinations of domain properties (Fig. 2). Each
domain #α is further decomposed into its sub-volumes, #α

= #0α ∪ %α . Here, #0α is a non-overlapping core covering #

(i.e., # = ∪α#0α and #0α ∩ #0β = 0 (α ̸= β) ), whereas %α

is a buffer layer that surrounds #0α .

2. Partition of unity

For each domain α, we define a domain support func-
tion pα(r) from r ∈ R3 (R is the set of real numbers) to the

FIG. 2. Two-dimensional schematic of the DC-DFT algorithm. The physical
space # is a union of overlapping domains, # = ∪α#α . Each domain #α is
further decomposed into a non-overlapping core #0α and a buffer layer %α

(see the shaded area). The thickness of the buffer layer is b.
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unit interval [0, 1], which is compactly supported within the
domain, pα(r) = 0 (r /∈ #α) . The domain support functions
constitute a partition of unity, i.e., they satisfy the sum rule,
'αpα(r) = 1, at every spatial position r. The partition of unity
allows the valence electron number density ρ(r) to be exactly
decomposed into

ρ(r) =
∑

α

ρα(r), (1)

where ρα(r) = pα(r)ρ(r) is the partial contribution to the elec-
tron density from domain α. For the support function, we
use a cubic interpolation function such that both the function
value and its derivative is continuous at pα(r) = 0 and 1.10, 13

3. Subspace Hamiltonian approximation

The key approximation in DC-DFT is the replacement
of the self-consistent Kohn-Sham Hamiltonian Ĥ by its sub-
space approximation Ĥα ,8

ρα(r) = pα(r)⟨r| 2

exp[(Ĥ − µ)/kBT ] + 1
|r⟩

∼= pα(r)⟨r| 2

exp[(Ĥα − µ)/kBT ] + 1
|r⟩, (2)

where kB is the Boltzmann constant, T is the temperature, and
the chemical potential µ is determined from the number of
valence electrons N through the relation, N =

∫
drρ(r). The

subspace Hamiltonian is defined through projection,

Ĥα =
∫

#α

dr
∫

#α

dr′|r⟩⟨r|Ĥ |r′⟩⟨r′|, (3)

where |r⟩ is the coordinate eigenstate.
We solve the Kohn-Sham (KS) equation within each

domain,

Ĥαψα
s (r) ≡

(
−1

2
∇2 + V̂ion + VH + V̂xc

)
ψα

s (r) = εα
s ψα

s (r),

(4)
with the orthonormality constraints,

∫
drψα∗

s (r)ψα
t (r) = δs,t

= 1 (s = t); 0 (s ̸= t). In Eq. (4), ψα
s (r) is the sth KS or-

bital with the energy eigenvalue εα
s , ∇2 is the Laplacian opera-

tor, V̂ion and V̂xc are the electron-ion and exchange-correlation
(xc) potential operators, respectively, and the Hartree poten-
tial VH is given by

VH(r) =
∫

dr′ ρ(r′)
|r − r′|

. (5)

The electronic ground state is determined self-consistently,
i.e., the electron density is obtained iteratively until the in-
put density ρ in(r) becomes equal to the output density ρout(r)
within a prescribed tolerance. Here, ρ in(r) is used to calculate
the KS potential, V̂ in = V̂ion + V in

H + V̂ in
xc , whereas ρout(r)

is calculated from Eqs. (1) and (2) using the KS orbitals,
{ψα

s (r)}, obtained by solving the KS equations, Eq. (4).
The KS equations are solved iteratively using the conjugate-
gradient method.10, 13 It should be noted that the local domain
KS orbitals are globally informed through the global KS po-
tential and chemical potential.

In order to apply the DC-DFT algorithm to problems in-
volving coupled electronic excitations and nuclei motions,
we incorporate several modifications: (1) long-range exact
exchange correction (LC) for the xc potential for asymp-
totically correct description of electron-hole interactions;56

(2) description of electronic excitations within Casida’s LR-
TDDFT,40, 41, 44, 57, 58 using the ground-state LC-KS orbitals as
a basis set; (3) efficient calculation of excited-state forces us-
ing a non-self-consistent approach;59 and (4) surface-hopping
approaches to describe nonadiabatic transitions between ex-
cited electronic states.45–48, 60 Below, these modifications
are applied in a domain-by-domain manner, including the
Coulombic interaction with frozen charge densities of the
other domains. This approach is justified quantitatively for
some systems as explained in Sec. IV C. Nevertheless, the
recombine phase is indispensable for describing global prop-
erties (e.g., nonlocal correlations,30, 31 global electronic wave
functions,32, 33 and charge34, 35 and exciton36 transport) using
these local electronic structures as a basis set.

4. Long-range exact exchange correction

In QMD simulations, where the electrons remain in
their ground state, the generalized gradient approximation
(GGA)61 is typically used for the xc potential. For the descrip-
tion of excited electronic states, we include the LC through
a range-separated hybrid exact exchange functional,62 start-
ing from the self-consistent GGA KS orbitals in the DC do-
mains as explained above.59 In a range-separated functional,
the Coulomb-repulsion operator 1/r12 is divided into short-
range and long-range parts using the error function:

1
r12

= 1 − erf(ηr12)
r12

+ erf(ηr12)
r12

, (6)

where r12 = |r1−r2| is the distance between two electrons at
r1 and r2, and η is a range-separation parameter.62 The range-
separated xc energy functional is then given by

E′α
xc = Eα

c,GGA + ESR,α
x,GGA + ELR,α

x,HF , (7)

where Eα
c,GGA is the GGA correlation energy functional,

ESR,α
x,GGA is the short-range part of the GGA exchange energy

functional, and ELR,α
x,HF is the long-range part of the Hartree-

Fock (HF) exchange integral (i.e., using the second term in
Eq. (6) as the Coulomb-repulsion operator).

In the non-self-consistent (NSC) approximation by
Zhang et al.,63 long-range corrected Hamiltonian matrix el-
ements are constructed from the self-consistent GGA KS or-
bitals as

H ′α
st = δstε

α
t −

〈
ψα

s

∣∣V LR,α
x,GGA[ρ(r)]

∣∣ψα
t

〉

−
∑

i∈{occupied}

[
ψα∗

s ψα
i |erf(µr)/r|ψα∗

i ψα
t

]
, (8)

where V LR,α
x,GGA(r) = δELR,α

x,GGA/δρ(r), with ELR,α
x,GGA being the

long-range part of the GGA exchange energy functional,
and the Coulomb-like integral is defined as [f.|h(r)|.g] ≡∫∫

drdr′f(r)h(|r − r′|)g(r′). We diagonalize the Hamiltonian
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matrix, Eq. (8), as
∑

t

H ′α
st Uα

tu = Uα
suε

′α
u , (9)

to obtain long-range corrected KS (LC-KS) energies ε′α
s and

orbitals, ψ ′α
s (r) =

∑
t ψ

α
t (r)Uα

ts .
In the NSC approximation, the compute-intensive ex-

change integrals in the last term of Eq. (8) are computed only
once, thereby significantly reducing the excessive computa-
tional cost of the self-consistent range-separated hybrid exact
exchange scheme. Here, the long-range interaction is com-
puted using the reciprocal-space formalism of Martyna and
Tuckerman64 to avoid the interaction with electrons in the pe-
riodically repeated image cells.

5. Electronic excitations

We describe electronic excited states as a linear
combination of electron-hole pairs within Casida’s LR-
TDDFT,40, 41, 44, 57, 58 using the ground-state LC-KS orbitals
as a basis set. It should be noted that, when considering
the electronic excitation within each DC domain, the elec-
tronic charge density arising from all the other domains is
kept frozen. In LR-TDDFT, electronic excitation energies are
calculated from the poles of an electron-hole pair response
function. This amounts to solving a non-Hermitian eigenvalue
problem,44

(
Aα Bα

Bα∗ Aα∗

)(
Xα

I

Yα
I

)

= ωα
I

(
1 0

0 −1

)(
Xα

I

Yα
I

)

, (10)

where the eigenvalue ωα
I is the Ith excitation energy in do-

main α, with the corresponding eigenvectors Xα
I and Yα

I . In
Eq. (10), the elements of the Aα and Bα matrices are given by

Aα
aiσ,bjτ = δa,bδi,jδσ,τ

(
ε′α
aσ − ε′α

iσ

)
+ Kα

aiσ,bjτ , (11)

Bα
aiσ,bjτ = Kα

aiσ,jbτ , (12)

where the indices i, j and a, b are used for occupied and virtual
orbitals, respectively, σ , τ are spin variables, and ε′α

iσ is the ith
LC-KS orbital energy with spin σ . For a range-separated xc
functional,62, 65 the coupling matrix elements in Eqs. (11) and
(12) are given by

Kα
aiσ,bjτ =

[
ψ ′α∗

aσ ψ ′α
iσ |1/r|ψ ′α∗

jτ ψ ′α
bτ

]

− δσ,τ

[
ψ ′α∗

aσ ψ ′α
bτ |erf(µr)/r|ψ ′α∗

jτ ψ ′α
iσ

]

+
∫

dr
∫

dr′ψ ′α∗
aσ (r)ψ ′α

iσ (r)

×
δ2

(
Eα

xc,GGA − ELR,α
x,GGA

)

δρσ (r)δρτ (r′)
ψ ′α∗

jτ (r′)ψ ′α
bτ (r′), (13)

where Eα
xc,GGA is the xc functional within GGA and ρσ (r) is

the electron density with spin σ .
According to the assignment ansatz by Casida,44 the

many-body wave function of the Ith excited state is given

by63, 66

∣∣/α
I

〉
=

∑

i∈{occupied}

∑

a∈{unoccupied}

∑

σ

Xα
I,aiσ + Y α

I,aiσ√
ωα

I

ĉα+
aσ ĉα

iσ

∣∣/α
0

〉
,

(14)
where |/α

0 ⟩ is the Slater determinant of the occupied LC-KS
orbitals, and ĉα+

sσ and ĉα
sσ are the creation and annihilation

operators acting on the sth LC-KS orbital of spin σ in do-
main α. It should be noted that the binding of an electron-hole
pair (or exciton) is described by summing ladder diagrams in
many-body perturbative expansion, while the ring diagrams
in the random phase approximation (RPA) describe electronic
screening and collective excitations such as plasmons.59 The
two types of diagrams are interrelated through the exchange
operation, i.e., by swapping the labels of electronic orbitals
as is done between the first two terms in the right-hand side
of Eq. (13). Both effects are thus included in LR-TDDFT us-
ing a range-separated hybrid xc functional that incorporates
long-range exact exchange correction. We typically include 8
to 160 single-particle wave functions to represent each many-
body wave function in Eq. (14).

6. Molecular dynamics

In QMD simulations, the equations of motion for atoms
are integrated numerically, where interatomic forces are
computed quantum mechanically based on the Hellmann-
Feynman theorem.67, 68 For an excited electronic state, we use
a NSC method to evaluate accurate forces at a moderate com-
putational cost.59 This method is an extension of the Harris-
Foulkes approach adopted by Ref. 69 in a different context.

7. Nonadiabatic electron-ion dynamics

In NAQMD simulations with electronic transitions using
Tully’s fewest-switches surface-hopping (FSSH) method45, 46

along with the LC-KS representation of TDDFT, we calcu-
late the time evolution of the many-electron wave function
between consecutive nuclei-position updates. These equations
are derived by expanding the electronic state 0(t) at time t in
terms of the electronic excited states /α

J (R(t)) in LR-TDDFT
corresponding to the atomic configuration R(t) at time t:

|0α(t)⟩ =
∑

J C
(I ),α
J (t)

∣∣/α
J (R(t))

〉
, C

(I ),α
J (0) = δI,J .

(15)
The time evolution of the expansion coefficients C

(I ),α
J (t)

is governed by

d

dt
C

(I ),α
J (t) = −

∑

k

(
iωα

KδJK + Dα
JK

)
C

(I ),α
k (t), (16)

where the nonadiabatic coupling (NAC) elements are defined
as40, 41

Dα
JK =

〈
/α

J

∣∣ ∂

∂t

∣∣/α
K

〉
. (17)

The NAC elements are calculated using finite differenc-
ing from a pair of excited-state wave functions at consecutive
time steps in an adiabatic QMD simulation. The switching
probability from the Ith to the Jth adiabatic states is given by
P

(I ),α
J (t) = |C(I ),α

J (t)|2, which is used to stochastically incur
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FIG. 3. Divide-conquer-recombine simulation to reach the experimental length and time scales for the exciton dynamics in amorphous molecular solid.
(a) An entire configuration is subdivided into non-overlapping domain cores #0α , each of which is augmented with neighbor molecules to form a domain
#α . (b) Nonadiabatic quantum molecular dynamics simulations are performed in each domain to extract the rate constants of various excitonic processes.
(c) In the recombine phase, kinetic Monte Carlo simulations are performed to describe the exciton dynamics that reflects the global geometry and topology of
the exciton flow network. Here, each circle represents a molecule, while a directed edge between molecules and a loop pointing to itself are labeled by exciton
hopping and recombination rates, respectively.

interstate transitions. The use of the many-body wave func-
tion, Eq. (14), in Eq. (17) has been shown to be exact be-
tween ground and singly excited states, as well as between
any pair of excited states when the Tamm-Dancoff approxi-
mation is used.66 Various approaches have been proposed to
improve FSSH for describing coupled electron-ion dynamics
involving nonadiabatic electronic processes.47, 48 These ap-
proaches incorporate, e.g., quantum uncertainty for better ac-
curacy. Specifically, we have implemented the decoherence-
induced surface hopping (DISH) approach.60

B. Recombination

In order to explain the recombination phase of the DCR-
NAQMD-KMC simulation, we use a specific example of
amorphous solid consisting of 128 DPT molecules (each DPT
molecule in turn consists of 50 atoms). To enable larger
NAQMD simulations than have been performed previously
(i.e., less than 1000 atoms),42, 43 the entire simulation box #

is subdivided into M non-overlapping spatial domains #0α

(Fig. 3). Here, each DPT molecule constitutes a non-
overlapping domain #0α , thus M = 128. We augment #0α

by surrounding it with a buffer layer consisting of the k
nearest-neighbor molecules in terms of the intermolecular
C-C distance averaged over the backbone π -orbital planes
(we use k = 2), so that the augmented domains #α are mu-
tually overlapping. For NAQMD simulation within each aug-
mented domain #α , the rest of the system is represented by
a fixed charge density. (A similar charge patching method70

was used in large electronic-structure calculations in combi-
nation with a fragment method.71) In each domain #α con-
sisting of k+1 molecules, the charge density from the other
M−k−1 molecules is used to form a global KS potential in
#, including a non-additive contribution to the kinetic energy
within an embedded cluster scheme.10, 14, 72–74 Each NAQMD
simulation starts from an electronic excited state correspond-
ing to the excitation of an electron from the HOMO to
the LUMO. Each NAQMD simulation is run typically for
200 fs.

1. Exciton-flow network

NAQMD trajectories are analyzed to obtain exciton-
hopping rates between DPT molecules, where nonadiabatic
electronic transitions between excited states are described by
a surface hopping approach as described above. Specifically,
when a nonadiabatic transition of an exciton occurs from
molecule i to molecule j (the position of an exciton is de-
termined as the center-of-mass position of the quasielectron
and quasihole), the inverse of the preceding residence time
on molecule i is used as the exciton-hopping rates r

hop
i→j . The

overlapping domains in the DC approach allow the construc-
tion of a graph data structure that spans the entire amorphous
DPT solid. In the graph, each DPT molecule constitutes a
node, and the nodes are interconnected by directed edges la-
beled by the corresponding exciton hopping rates obtained
by the NAQMD simulations. The NAC is also used to com-
pute the exciton annihilation rate rAN

i , at which an exciton
residing on molecule i recombines to the electronic ground
state. Note that the surface-hopping approach monitors ac-
cumulated transition probabilities from the current electronic
excited state to the electronic ground state, from which the ex-
citon annihilation rate is obtained. In addition to the phonon-
assisted contribution to electronic transitions computed by
NAQMD, we include the spontaneous emission contribution
to rAN

i calculated within a dipole approximation.42 We also
use time-dependent perturbation to compute the SF rate rSF

i .36

2. Kinetic Monte Carlo

We perform first-principles KMC simulation49–52 of ex-
citon dynamics42 using the hopping rates between DPT
molecules as well as SF and annihilation rates, which are
obtained from the NAQMD simulations and time-dependent
perturbation calculations.36 Each KMC simulation starts by
placing an exciton on a randomly selected DPT molecule and
resetting the time to be 0. At each KMC step, the exciton ei-
ther: (i) hops to one of the nearest neighbor DPT molecules;
(ii) annihilates to the ground state; or (iii) splits into two
triplet excitons via SF. Let i be the molecule on which the
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spin-singlet exciton resides at a given KMC step, and rAN
i and

rSF
i be the annihilation and SF rates, respectively, for the ex-

citon on the molecule. In addition, we have exciton-hopping
rates r

hop
i→j for all molecules j in the set of neighbor molecules

of molecule i, neighbor(i). Let us denote the total rate of
events as

ri = rAN
i + rSF

i +
∑

j∈neighbor(i)

r
hop
i→j . (18)

The event to occur is chosen stochastically with the prob-
ability proportional to the corresponding rate:

i = minj

{
j∑

k=1

rk

r
> u1

}

, (19)

where the cumulative rate is given by

r =
∑

k

rk. (20)

After one of the hopping events is chosen, the time is
incremented by

3t = − ln(ξ )/r, (21)

where ξ is a uniform random number in the range [0, 1]. The
simulation then continues by replacing molecule i by the des-
tination molecule j of the chosen hopping. Else, if the exciton
annihilates, the simulation terminates, and the number of sin-
glet excitons is decreased by 1. Else (i.e., SF is chosen), the
simulation also terminates. For the SF event, the number of
singlet excitons is decreased by 1, while that of triplet exci-
tons is increased by 2.

III. LEAN DIVIDE-AND-CONQUER ALGORITHM AND
SCALABLE PARALLEL IMPLEMENTATION

In this section, we first present our LDC-DFT algo-
rithm to significantly reduce the O(N) prefactor of the DC-
DFT algorithm. We then discuss scalable implementation of
the LDC-DFT algorithm as well as its extension to DCR-
DFT using a NAQMD-KMC approach on massively parallel
computers.

A. Optimization of DC domain size through
computational complexity analysis

In order to reduce the prefactor of the O(N) computa-
tional cost of DC-DFT, we first optimize the size of the DC
domains, based on an analysis of its computational cost.23 The
result is summarized in the following theorem.

Theorem. Consider a cubic system of side length L, and
let the core length and the buffer thickness of a cubic do-
main in the DC-DFT algorithm be l and b, respectively (see
Fig. 2). The computational complexity of the DFT computa-
tion within each domain is assumed to be the νth power of the
system size. Then, the optimal domain size l∗, which incurs
the minimal computational cost, is given by

l∗ = 2b

ν − 1
. (22)

Proof. The number of domains is Ndomain = (L/l)3, and
the computational cost per domain can be written as

Tdomain = c(l + 2b)3ν, (23)

with a prefactor c. The total computational cost as a function
of l is thus

Tcomp(l) = Tdomain · Ndomain = c

(
L

l

)3

(l + 2b)3ν . (24)

The optimal domain size to minimize the computational
cost is given by minimizing Eq. (24) with respect to l:

l∗ = arg min[Tcomp(l)] = 2b

ν − 1
, (25)

which proves the theorem. !
The computational complexity of the DFT problem is

O(n2) for typical domain sizes, where the number of atoms per
domain is n < 100,18 and thus l∗ = 2b. Namely, the buffer size
is usually chosen as half the core length of each domain. The
asymptotic complexity, which has rarely been encountered in
practical DFT calculations,18 arises from the orthonormaliza-
tion of KS orbitals and is O(n3). In this limit, l∗ = b.

B. Optimization of DC buffer thickness through error
analysis and a density adaptive boundary condition:
LDC-DFT

The choice of the buffer thickness b is dictated by accu-
racy requirement. The quantum nearsightedness principle22

indicates that the error involved in the DC-DFT algorithm
(which is due to the artificial boundary condition imposed at
the domain boundary ∂#α) decays exponentially as a func-
tion of b.23 Due to the artificial boundary condition at ∂#α ,
the domain density ρα(r) deviates from the total density ρ(r).
Let λ be the exponential decay constant of the density pertur-
bation, 3ρα(r) = ρα(r)/pα(r) − ρ(r), away from ∂#α . In the
case of an insulating material, λ is related to that of the Wan-
nier function of the highest occupied band.23 Suppose that an
error tolerance of ε⟨ρα(r)⟩ is imposed on |3ρα(r)| at the pe-
riphery of #0α , where ⟨ρα(r)⟩ is the average density in #α .
To satisfy the error tolerance, the buffer depth needs to be as
large as

b = λ ln
(

max{|3ρα(r)||r ∈ ∂#α}
ε⟨ρα(r)⟩

)
. (26)

Since the computational complexity of the DC-DFT al-
gorithm scales with the buffer depth asymptotically as b3ν

= b6 ∼ b9 (see Eq. (23)), the large b value required for obtain-
ing a sufficient accuracy in energy (e.g., 10−3 a.u. per atom)
represents a major computational bottleneck. According to
Eq. (26), key to reducing the prefactor of the O(N) compu-
tational cost of DC-DFT is to minimize 3ρα(r) at ∂#α . We
address this problem through an improved treatment of do-
main boundaries as explained below.

As stated in Sec. II, the key approximation of DC-DFT
is the replacement of the global KS Hamiltonian Ĥ by a lo-
cal KS Hamiltonian Ĥα for each spatially localized domain
α. The local Hamiltonian approximation in Eq. (3) can be in-
terpreted as either projection or a boundary potential. In the
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projection formalism, the domain Hamiltonian

Ĥα =
∑

s,t∈#α

|s⟩⟨s|Ĥ |t⟩⟨t | (27)

is expanded by basis functions |s⟩ that are localized in the do-
main #α . In projection approaches using molecular orbitals,
purification of dangling bonds is often performed by filter-
ing out eigenstates with outlier eigenvalues.32 However, this
requires case-by-case treatment with prior knowledge of the
expected energy spectrum.

To have general recipes independent of material, geome-
try, and basis, we take another view of the local Hamiltonian,
i.e., a boundary condition on the electronic wave functions
ψα

s (r) imposed at the domain boundary ∂#α . The boundary
condition can alternatively be considered as a boundary po-
tential included in the domain KS Hamiltonian. An example
of the boundary potential is a hard-wall (or Dirichlet) bound-
ary condition:

vbc
α (r) =

{
0 (r ∈ #α)

∞ (r /∈ #α)
. (28)

An improved boundary potential may be obtained as fol-
lows. According to the Hohenberg-Kohn theorem,17 the local
density ρα(r)/pα(r) corresponds to a unique external potential
v(r), which is distinct from that corresponding to the global
density ρ(r). To reduce the discrepancy 3ρα(r) = ρα(r)/pα(r)
− ρ(r), we use a linear-response formula for the boundary
potential,

vbc
α (r) =

∫
dr′ ∂v(r)

∂ρ(r′)
3ρα(r′). (29)

We adopt a local approximation,75

∂v(r)
∂ρ(r′)

= δ(r − r′)
ξ

, (30)

so that

vbc
α (r) = 3ρα(r)

ξ
. (31)

The same density-template potential as Eq. (31) was used by
Ohba et al.14 to augment the hard-wall boundary potential,
Eq. (28). Here, we instead use the periodic boundary condi-
tion on the KS wave functions, incorporating the boundary
potential, Eq. (31), in the KS Hamiltonian

Ĥα = −1
2
∇2 + V̂ion + VH + V̂xc + vbc

α (r) (32)

to replace Eq. (4). The local approximation may be justified
by the quantum nearsightedness principle22 as formulated by
Prodan and Kohn.23 Namely, the response kernel ∂v(r)/∂ρ(r′)
is short-ranged with respect to |r − r′|. In the numerical tests
in this paper, we take the adjustable parameter ξ in Eq. (31)
to be 0.333 in the atomic unit.14

C. Efficient and scalable numerical implementation
and parallelization

1. Hybrid real-reciprocal (HR2) space approach

Our implementation of the LDC-DFT algorithm com-
bines a local plane-wave basis within each DC domain for
high numerical efficiency and a global real-space multigrid
for scalability on massively parallel computers:

1. A plane-wave basis20 is used to represent local electronic
wave functions and charge density within each domain
(containing ∼100 atoms), which takes advantage of a
highly efficient numerical implementation based on fast
Fourier transform.76

2. A real-space multigrid is used to represent the global
charge density of the total system, which is highly scal-
able on massively parallel computers due to the locality
preserving octree data structure.10, 13

Within each domain, the electronic pseudo-wave func-
tions and the pseudo-charge density are expanded by plane
waves. As in our previous DC-DFT algorithm,10, 13 the
Hartree potential in the KS potential, Eq. (32), is obtained
globally from the total density ρ(r) using a real-space multi-
grid method. To prevent charge sloshing in large systems, we
combine the Pulay charge mixing method with a real-space
formulation of the Kerker preconditioning.77

2. Hybrid space-band (HSB) decomposition
on parallel computers

The LDC-DFT QMD simulation code is implemented
on massively parallel computers by employing two levels of
parallelism. At the coarser level, we use spatial decomposi-
tion among overlapping domains #α . The program is imple-
mented using the message passing interface (MPI) library for
interprocessor communications, and each domain is assigned
a dedicated MPI communicator (i.e., programming construct
that combines a process group and a system-defined con-
text identifier) using a MPI_COMM_SPLIT call. At the finer
level, the plane-wave-basis calculations within each domain
are further parallelized by a hybrid approach combining spa-
tial decomposition (i.e., distributing real-space or reciprocal-
space grid points among processors) and band decomposi-
tion (i.e., assigning the calculations of different KS orbitals to
different processors)67, 68 within the communicator assigned
to the domain. The iterative band-by-band minimization is
carried out by band decomposition, where the eigenenergy
of each band is minimized in each processor independently
from the others under an approximate orthonormal condition.
The electron density is also calculated by band decomposi-
tion. On the other hand, the KS orbitals are orthonormalized
by first constructing an overlap matrix between them using
reciprocal-space decomposition, where the Fourier compo-
nents of the wave functions are distributed among multiple
processors. This is followed by parallel Cholesky decompo-
sition of the overlap matrix, which introduces an additional
parallelization axis. To switch between the spatial and band
decompositions, all-to-all communications are required only
within the communicator. In addition, global communication
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within the communicator is necessary to calculate the scalar
products between the wave functions.

3. Parallelization of KMC

The naive KMC algorithm presented in Sec. II B is not
scalable to larger system sizes. The cumulative event rate in
Eq. (20) grows as O(N), and accordingly the time scale of the
simulation determined by its inverse becomes progressively
smaller in larger systems. To overcome this scaling problem,
KMC simulation is parallelized approximately in a DC fash-
ion as well, using a synchronous formulation and graph col-
oring to avoid conflicting events.78 Here, the cumulative rate
in Eq. (20) is computed for each non-overlapping domain
#0α as rα , and then the global maximum rate is defined as
rmax = maxα{rα}. KMC simulation is performed concurrently
among all the domains similarly to the sequential algorithm in
Sec. II B, except that a null event (where nothing occurs) is
generated with the rate of r0α = rmax − rα . This allows global
synchronous time evolution, where the time is incremented
by 3t = −ln(ξ )/rmax at each KMC step. To avoid conflicting
events to occur between neighboring domains, the domains
are colored so that no domains of the same color are adjacent
to each other. Each KMC simulation step then consists of a
loop over colors, where at each color step events occur only
in the domains of the chosen color.

IV. NUMERICAL RESULTS

A. Numerical convergence and computational cost

We first test the convergence of calculation with respect
to the buffer length b, which controls the data locality of the
algorithm (see Fig. 2). Figure 4 shows the calculated potential
energy as a function of b for an amorphous cadmium selenide
(CdSe) system containing 512 atoms in a cubic simulation
box of length 45.664 a.u. The side length l of each cubic do-

FIG. 4. Effects of boundary conditions on the energy convergence with re-
spect to the localization control parameter. Potential energy is plotted as a
function of the buffer length b for an amorphous CdSe system (512 atoms in
a cubic simulation box of side length 45.664 a.u.). The solid and open circles
represent results for the LDC-DFT and original DC-DFT algorithms, respec-
tively. The domain size is fixed as 11.416 a.u. The atomic units are used for
both energy and length.

main is fixed as 11.416 a.u. To study the effect of boundary
conditions on the energy convergence with respect to the lo-
calization control parameter b, we compare results of two cal-
culations: (1) our original DC-DFT algorithm with the Dirich-
let boundary condition, where the KS wave functions ψα

s (r)
in domain α are made zero at the domain boundary ∂#α; and
(2) the LDC-DFT algorithm that uses the periodic bound-
ary condition within #α along with the boundary potential,
Eq. (31). We see that the LDC-DFT calculation converges
much more rapidly than the DC-DFT calculation. The LDC-
DFT potential energy converges within 10−3 a.u. per atom
above b = 4 a.u.

In order to assess the impact of the improved convergence
of LDC-DFT on the computational cost, let us consider an ex-
ample of the error tolerance of 5 × 10−3 a.u. for the energy.
According to Fig. 4, the buffer length b to achieve this con-
vergence criterion is decreased from 4.73 a.u. for DC-DFT to
3.57 a.u. for LDC-DFT. According to Eq. (24), this amounts
to the computational speedup by a factor of [(11.416 + 2
× 4.72)/(11.416 + 2 × 3.57)]3ν = 2.03 (for ν = 2) − 2.89
(for ν = 3).

The convergence property of the LDC-DFT algo-
rithm has been tested for other material systems as well.
Figure 5 shows the calculated potential energy as a function
of the buffer length b for crystalline and amorphous silicon
carbide (SiC) systems. For crystalline SiC, we consider both
the zero-temperature configuration and a QMD configuration
at a temperature of 300 K. Here, the total system contains
128 atoms in a rectangular cell of side lengths 16.61 × 16.61
× 33.22 a.u., and the side length l of each cubic domain is
fixed as 8.305 a.u. The potential energy converges within
10−3 a.u. per atom above b = 4 a.u. for all systems, where
more rapid convergence is observed for the amorphous sys-
tem. In all cases, the LDC-DFT calculation values con-
verge to conventional plane-wave DFT calculation values for
large b.

FIG. 5. Potential energy as a function of the buffer length b for crystalline
and amorphous SiC systems, where each system contains 128 atoms in a
rectangular cell of side lengths, 16.61 × 16.61 × 33.22 a.u. The cubic do-
main size is fixed as 8.305 a.u. Arrows indicate conventional plane-wave cal-
culation values with cutoff energies of 30 and 250 Ry, respectively, for the
electronic pseudo-wave functions and the pseudo-charge density.
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FIG. 6. Effects of boundary conditions on the force convergence with re-
spect to the localization control parameter. The average of the deviations of
the atomic forces {δFi = |Fi − Fref

i |} obtained by the LDC-DFT method for
crystal and amorphous SiC is shown as a function of the buffer length b.

We also analyze the accuracy of atomic forces in the
LDC-DFT method. We define the deviations of the forces on
atoms δFi = |Fi − Fref

i | from the reference values Fref
i cal-

culated by a conventional plane-wave DFT method with the
same plane-wave cutoff. Figure 6 shows the average of δFi

over all atoms i as a function of the buffer length b for crys-
talline and amorphous SiC systems. Both maximum and av-
erage of δFi decrease significantly as b increases. The max-
imum of δFi is less than 0.01 a.u. for b = 8.7 a.u. for all
systems.

To test the applicability of the LDC-DFT algorithm
to QMD simulations, we have calculated the total energy
as a function of time for a 432-atom liquid rubidium sys-
tem, where the equations of motion for the nuclei are inte-
grated using the velocity Verlet algorithm with a time step of
3t = 4.8 fs. The result is comparable (but with much
less computational time) to that with our previous DC-
DFT algorithm.13 The total energy is conserved within
2 × 10−4 a.u./ps per atom, which is two orders-of-magnitude
smaller than the variation in the potential energy.

B. Scalability on massively parallel computers

Next, we test the scalability of the parallel LDC-DFT al-
gorithm for SiC crystal. The program is written in Fortran
90 with MPI for massage passing. Numerical tests are per-
formed on the IBM Blue Gene/Q computer at the Argonne
National Laboratory. The Blue Gene/Q consists of 48 racks
each with 1024 nodes. Each node has a 16-core processor
operating at 1.6 GHz for computation, 32 MB of L2 cache
with hardware transactional memory and speculative opera-
tion functionality,79 and 16 GB DDR3 main RAM. The pro-
cessor employs PowerPC A2 architecture that supports quad
floating operation units, 16 KB of L1 instruction and data
cache, and 4-way multithreading per core enabling 64 con-
current threads on one node. Though it is highly energy ef-
ficient (55 watts per node) thanks to the relatively low clock
speed, the Blue Gene/Q chip delivers a peak performance of
204.8 Gflop/s. Each node has 11 links—10 links to connect

FIG. 7. Wall-clock time per QMD simulation step of the parallel LDC-
DFT algorithm, with scaled workloads—64P-atom SiC system on P cores
(P = 16, . . . , 786 432) of Blue Gene/Q.

computing nodes and one link to I/O node. Each link can si-
multaneously transmit and receive data at 2 GB/s, amounting
to a total bandwidth of 44 GB/s. A 5-dimensional torus net-
work is used for peer-to-peer communications.

We perform an isogranular scaling benchmark of LDC-
DFT code on the Blue Gene/Q, in which the number of atoms
per core N/P is kept constant. Figure 7 shows the wall-clock
time per QMD simulation step with scaled workloads—64P-
atom SiC system on P cores of Blue Gene/Q. The execu-
tion time includes 3 self-consistent (SC) iterations to deter-
mine the electronic wave functions and the KS potential, with
3 CG iterations per SC cycle to refine each wave function.
By increasing the number of atoms linearly with the num-
ber of cores, the wall-clock time remains almost constant,
indicating excellent scalability. To quantify the parallel effi-
ciency, we first define the speed of the LDC-DFT algorithm
as a product of the total number of atoms and the number of
self-consistent iterations executed per second. The isogranu-
lar speedup is given by the ratio between the speed of P cores
and that of 16 cores as a reference system. The weak-scaling
parallel efficiency is the isogranular speedup divided by P.
With the granularity of 64 atom per core for SiC systems, the
parallel efficiency is 0.984 on P = 786 432 for a 50 331 648-
atom SiC system. This demonstrates the high scalability of
the LDC-DFT algorithm.

Compared with the above benchmark tests, the num-
ber of atoms involved in production QMD simulations is
orders-of-magnitude smaller. An example is our 16 661-atom
QMD simulation of a Li441Al441 particle in liquid water
(Fig. 8(a)). Hydrogen production using Al particles in wa-
ter could provide a renewable energy cycle, with a potential
application to on-board hydrogen production for hydrogen-
powered vehicles.67 However, the major problems are its low
reaction rate and poor yield. We are investigating the possi-
bility of accelerated high-yield production of H2 from water
using LiAl alloy particles instead. Figure 8(b) shows the num-
ber of H2 molecules produced during the QMD simulation
at a temperature of 1500 K. In total of 42 H2 molecules are
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FIG. 8. 16 661-atom QMD simulation on Blue Gene/Q based on LDC-DFT.
(a) A snapshot at 1 ps, where white, red and cyan spheres are H, O and Li
atoms, respectively, whereas the valence charge density colored in magenta is
centered at Al atoms. (b) The number of produced H2 molecules as a function
of time.

produced within 2 ps. From this plot, the H2 production rate
per LiAl pair is estimated to be k = (5.94 ± 0.02) × 1010

(s−1). We have also studied the dependence of this rate on
the temperature T using a smaller particle, Li30Al30. The cal-
culated rate is fitted well with the Arrhenius relation, k(T)
= k0exp(−3/kBT), where 3 is the activation barrier and k0 is
a constant. The best fit yields 3 = 0.0676 eV. This is an order-
of-magnitude lower than the calculated activation barrier of
0.3 eV for the H2 production from water using Al nanoparti-
cles, where the water-splitting reaction was the rate limiting
process.67 The estimated H2 production rate from this fit is
1.04 × 109 (s−1) at 300 K, which is much higher than 107 s−1

calculated for Al.67 The simulation results thus show a dra-
matically accelerated reaction of Li-alloyed Al particles com-
pared with pure Al particles for hydrogen production from
water.

C. Application to singlet fission in amorphous
organic solid

We have applied the DCR paradigm to the study of pho-
toexcitation dynamics in amorphous DPT solid. The system
consisting of 6400 atoms (or 128 DPT molecules) is prepared
in a cubic simulation box with the side length of 43.3 Å by the
melt-quench procedure in molecular dynamics (MD) simula-

tion. Periodic boundary conditions are applied in all Cartesian
directions. To provide a basis set for NAQMD simulations,
we first obtain electronic ground states using the projector-
augmented-wave method.80, 81 Projector functions are gener-
ated for the 2s and 2p states of C, and the 1s state of H. The
GGA61 is used for the exchange-correlation energy with non-
linear core corrections.82 The electronic pseudo-wave func-
tions and the pseudo-charge density are expanded by plane
waves with cutoff energies of 30 and 250 Ry, respectively.
We then include self-interaction correction based on a range-
separated hybrid functional that includes a long-range exact
exchange potential.62 Starting from the amorphous DPT con-
figuration prepared by the MD simulation, NAQMD simula-
tions are carried out in the canonical ensemble. The equa-
tions of motion for nuclei are integrated numerically with a
time step of 20 a.u. (∼0.48 fs), whereas the time-dependent
Schrödinger equation, Eq. (16), for electrons is integrated
with a time step of 0.04 a.u. NAQMD trajectories are analyzed
to obtain exciton-hopping rates between DPT molecules. The
NAC is also used to compute the exciton annihilation rate,
at which each exciton recombines to the electronic ground
state. In addition to the phonon-assisted contribution to elec-
tronic transitions computed by NAQMD, we include the spon-
taneous emission contribution calculated within the transition
dipole approximation.42 In addition to the exciton hopping
and annihilation rates, we estimate the SF rate of each singlet
excitonic state using a time-dependent perturbation theory.83

We then perform first-principles KMC simulations of exci-
ton dynamics using the calculated hopping rates between DPT
molecules as well as the SF and annihilation rates.19 In total
of 5000 KMC simulations are performed to take statistics.

Figure 9(a) shows the calculated population dynamics
of singlet and triplet excitons. Our first-principles KMC

FIG. 9. (a) Time evolution of the population of singlet (solid line) and
triplet (dashed line) excitons obtained by the DCR approach using NAQMD-
informed KMC simulation. (b) The same quantity observed experimentally
for singlet (squares) and triplet (circles) excitons in Ref. 37. Adapted with
permission from W. Mou et al., Appl. Phys. Lett. 102(17), 177301 (2013).
Copyright 2013 American Institute of Physics.
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result captures key features in the experimental data in
Ref. 37; see Fig. 9(b). In particular, the NAQMD-informed
KMC data reproduces the two time constants observed ex-
perimentally. Namely, rapid singlet-exciton decay and triplet-
exciton generation occur within ∼1ps, followed by slower
processes on the time scale of ∼100 ps. In both simulation
and experimental data, the number of generated triplet exci-
tons is larger than that of the initial singlet excitons, signifying
efficient SF in amorphous DPT.

The observed double exponential behavior in Fig. 9(b)
was previously interpreted by postulating the presence of
a subset of molecules only where SF can occur.37 Singlet
excitons photoexcited near these sites rapidly undergo
fission in ∼1 ps, while those generated elsewhere must dif-
fuse to these sites via a slow diffusion process. Our first-
principles KMC result also exhibits a similar two-stage pop-
ulation dynamics without any fitting parameter. Analysis of
the simulation data confirms the existence of the postulated
SF hot spots. Namely, 91% of all the SF events are ac-
counted for by 3.9% of the DPT molecules. Detailed analy-
ses of the data revealed geometric characteristics of SF hot
spots: Twist-stack conformation of DPT molecular dimers.
In addition to the geometric indicators for high SF rates,
we found that the topology of the exciton-flow network in-
fluences the hot spots. Namely, a molecule with a high re-
verse k-nearest neighbor degree (i.e., to how many other
molecules, a given molecule is within the k-th nearest neigh-
bors) acts as a hub of the exciton-flow network, to which
a large number of excitons flow into. When a network hub
coincides with a high SF-rate site, the site acts as a SF hot
spot. This result highlights the effectiveness of the DCR ap-
proach. While the exciton-flow network has been constructed
locally in a DC manner, the calculated DCR exciton dynam-
ics on the combined graph data structure reflects a system-
wide network-topology such as the distribution of network
hubs.36

In this simulation, quantum coherence was incorpo-
rated by solving the time-dependent Schrödinger equation,
Eq. (16), using the adiabatic basis, while decoherence due
to coupling to nuclei was taken into account using the DISH
approach.60 The calculated decoherence time was on the or-
der of 10 fs, indicating the lack of extensive quantum co-
herence. This is consistent with experimental observations,
where both optical absorption and emission spectra for vapor
deposited DPT films are nearly identical to those of single
DPT molecules.37

The domain-by-domain description of electronic excita-
tions described in Sec. II A is well justified in the amor-
phous DPT system. To do so, we quantify exciton lo-
calization using the participation number, np = 1/'i pi

2

(pi is the existing probability of the exciton in the ith
molecule). This quantity reflects the number of molecules,
over which the exciton is spread.36 It mostly takes a value
near unity, indicating that the exciton is localized on one
DPT molecule, except for short transient times when the ex-
citon extends over 2 molecules (i.e., np ∼ 2). The above
mentioned optical absorption and emission spectra also con-
firm the highly localized nature of excitons in amorphous
DPT.37

V. CONCLUSION

We have developed a highly scalable computational ap-
proach named DCR to describe large spatiotemporal-scale
material processes using local electronic structures from the
DC-DFT algorithm as a basis set. This paper presented a
LDC-DFT algorithm that reduced the prefactor of the O(N)
computational cost by a factor of 2−3 over that of our pre-
vious DC-DFT algorithm. The LDC-DFT algorithm achieved
an isogranular parallel efficiency of 0.984 on 786 432 IBM
Blue Gene/Q cores for a 50.3 × 106-atom system. The al-
gorithm was also used for 16 661-atom QMD simulation of
hydrogen production from water using LiAl alloy particles.
The DCR approach was demonstrated for SF of excitons in
a 6400-atom amorphous DPT with the use of NAQMD and
KMC simulation methods. The calculated exciton population
dynamics agreed well with ultrafast transient absorption mea-
surements, and revealed the molecular origin of the experi-
mentally observed two time scales.

The highly scalable parallel DCR approach has broad ap-
plicability for multiscale material problems, where electronic
structures and chemical reactions are inseparably coupled
to microstructures and long-range stress fields.84–86 These
problems can be addressed by multiscale modeling such
as the QM/MM method,87, 88 in which more accurate mod-
els are embedded in coarser models only where high accu-
racy is required. We have used the DC algorithmic frame-
work to develop an adaptive multiscale dynamics approach
that combines QMD, MD, and finite-element dynamics.89 In
this approach,90 DC-DFT based QMD simulations are in-
voked within coarser simulations on demand on the basis of
an additive hybridization scheme.91 Furthermore, the num-
ber of atoms in the QMD regions changes dynamically in
response to the progress of chemical reactions.90 In these
multiscale dynamics applications, reactive MD approaches
based on environment-dependent reactive force fields have
become an essential intermediate layer between QMD and
MD methods.92–96 In addition to the multiscale modeling, in-
novative recombination of DC solutions can be incorporated
into high-throughput screening to explore a large combinato-
rial search space for discovering new materials.97, 98
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