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Abstract

A hybrid simulation approach is developed to study chemical reactions coupled with long-range mechanical phenomena
in materials. The finite-element method for continuum mechanics is coupled with the molecular dynamics method for an
atomic system that embeds a cluster of atoms described quantum-mechanically with the electronic density-functional method
based on real-space multigrids. The hybrid simulation approach is implemented on parallel computers using both task and
spatial decompositions. Additive hybridization and unified finite-element/molecular-dynamics schemes allow scalable parallel
implementation and rapid code development, respectively. A hybrid simulation of oxidation of Si(111) surface demonstrates
seamless coupling of the continuum region with the classical and the quantum atomic regions.  2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In recent years, various forms of nanostructured materials [1,2] such as nanoparticles, thin films, and nanophase
materials have attracted much attention due to their improved mechanical, catalytic, and opto-electronic properties
[3] resulting from their nanometer-size domains [1,3]. Understanding formation dynamics of nanostructured
materials and their resulting unique physico-chemical properties requires accurate dynamic simulations of
chemically reacting atoms in these materials. Highly accurate simulations based on energy density-functional
theory (DFT) [4,5] for electronic structures have been used extensively to study chemical reactions in clusters
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of atoms [6]. Despite considerable progress in formulation, algorithms, and parallel computing techniques, DFT-
based dynamic simulations are currently limited to systems containing less than a few hundred atoms due
to long computation times [7,8]. To overcome this limitation, we have recently developed a hybrid quantum-
mechanical/molecular-dynamics (QM/MD) approach [9] to dynamic simulation of materials on parallel computers.
The approach follows the idea on which hybrid quantum-mechanical/molecular-mechanics (QM/MM) methods
[10–18] for geometrical optimization of large biological molecules are based: Computation can be made less when
we partition a simulation system into different regions that are modeled with varying degrees of approximation.
In the hybrid QM/MD approach, a QM system described by DFT based on real-space multigrids [8,9,19–24] is
embedded in a classical system of atoms interacting via an empirical interatomic potential. Handshake atoms are
introduced to couple the quantum and the classical systems dynamically based on the scaled position method [9].
The hybrid QM/MD approach enables dynamic simulations of material processes involving chemical reactions
such as oxidation [9].
There is growing demand for large-scale materials simulations involving chemical reactions, e.g., to study the

interplay between stress fields and chemical reactions. Stress in materials is long-ranged; it decays in proportion
to the inverse-square-root of the distance from a crack [2,3]. Stress fields, which depend on the size and the
overall shape of the system, may affect local atomic diffusion rates and hence chemical reactions. There are
attempts to fabricate three-dimensional patterns in opto-electronic devices by controlling local atomic-diffusion
and oxidation rates through stress [25–28]. Large-scale dynamic simulations with realistic stress fields are expected
to play a key role in understanding atomistic mechanisms of these processes. Another example that requires
large-scale simulations involving chemical reactions deals with micro-electro-mechanical systems (MEMS) [29],
in which feature sizes are submicrons. Constitutive relations and scaling laws [2] in engineering mechanics
have not been validated at such small length scales, and consequently lifetime prediction of MEMS is currently
impractical [29]. Large-scale simulations involving chemical reactions will contribute significantly in this area by
providing atomistic understanding of environmental effects on fracture and fatigue processes in MEMS.
Recent advances in algorithms and parallel computers have enabled MD simulations [30] involving 108−109

atoms with system sizes exceeding 0.1µm [31,32]. With the hybrid QM/MD approach [9], systems with similar
sizes can be simulated in which 103−104 atoms are treated quantum-mechanically, using scalable DFT algorithms
[8]. To simulate entire MEMS and device structures (> 1µm), however, it is necessary to coarse-grain atomic
details in the peripheral region of the system. The coarse-graining can be achieved with the finite element (FE)
method [33], in which a material is regarded as a continuum and is decomposed into a mesh of finite elements.
Various handshake schemes have been proposed to couple the MD and the FE regions in hybrid FE/MD

simulations [34–39]. In one of the first attempts by Mullins and Dokainish [34], pseudo-atoms embedded in
finite elements interact with the MD atoms through the MD interatomic potential. Kohlhoff, Gumbsch, and
Fischmeister [35] introduced a transition zone between the FE and the MD regions and scaled down the finite-
element size to the atomic scale in the transition zone. Abraham et al. [36] further improved the FE/MD coupling
by constructing an explicit Hamiltonian for the atoms and the FE nodes in the transition zone as an average of the
MD and the FE Hamiltonians. The FE/MD approach has been applied to crack propagation in Si, in which QM
calculations based on the semi-empirical tight-binding method are coupled with the MD and the FE methods [36,
37]. Lidorikis et al. [38] have extended the FE/MD approach and used it to study atomistically-induced stresses in
Si/Si3N4 nanopixels.
In this paper, we develop a hybrid FE/MD/QM approach to materials simulations on parallel computers by

combining the FE method with our hybrid QM/MDmethod [9] based on the FE/MD coupling scheme in Refs. [36–
38]. Seamless coupling between the FE, MD and QM regions is demonstrated through a simulation run of oxidation
of Si(111) surface. Sections 2 and 3 describe the present hybrid FE/MD/QM approach and its implementation on
parallel computers, respectively. The parallel code is applied to oxidation of Si(111) surface in Section 4, and
concluding remarks are given in Section 5.
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2. Hybrid simulation scheme

In describing the present hybrid scheme, it is helpful to use the initial configuration of the hybrid simulation of
oxidation of Si(111) surface (see Section 4). Fig. 1(a) shows the decomposition of the system into FE, MD, and
QM regions. The system is periodic in two horizontal directions, while free boundary conditions are applied in the
vertical direction, i.e. [111]. In the FE method, the system is regarded as a continuum and is decomposed into a
mesh of finite elements. In Fig. 1(a), the FE mesh points (nodes) are plotted as magenta spheres, whereas the atoms
are depicted as blue spheres. In the handshake (HS) region between the FE and the MD regions, the FE mesh is

Fig. 1. (a) Initial configuration of the hybrid simulation of oxidation of Si(111) surface. Magenta spheres represent FE nodes; yellow, FE/MD-HS
atoms; blue, MD atoms; red, O atoms. (b) Close up view of the QM and the QM/MD-HS atoms. Yellow spheres represent Si atoms; red, O atoms;
blue, handshake Si atoms; magenta, termination H atoms. Charge densities are shown in grayscale.
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refined down to the atomic scale in such a way that each FE node coincides with an MD atom [36–40]; yellow
spheres in Fig. 1(a) represent these composite atoms/nodes constituting the FE/MD-HS region. The FE calculations
apply to the FE and the FE/MD-HS regions, whereas the MD calculations apply to the MD and the FE/MD-HS
regions. Red spheres above the top Si(111) layer in Fig. 1(a) represent an O2 molecule. Fig. 1(b) shows the QM
atoms as well as the HS atoms between the QM and the MD regions for the DFT calculations: red (O) and yellow
(Si) spheres are the QM atoms, and blue spheres bonding to the yellow spheres represent the QM/MD-HS atoms.
Magenta spheres in Fig. 1(b) correspond to virtual hydrogen atoms introduced in the DFT calculations to terminate
dangling bonds of the QM atoms. Details of the termination scheme are described in Section 2.2.
Fig. 2 shows two-dimensional views of the FE/MD-HS region and its surroundings from two different directions.

Hatched polygons with dots (nodes) at their corners or on their edges represent the finite elements. The finite
elements, which are either prismatic or rectangular, occupy the whole FE and FE/MD-HS regions by sharing their
corners or edges [38]. Total number of nodes in the finite element varies between 8 and 20 [38]. Twenty-node
elements are used in the FE region far from the FE/MD-HS region, while eight-node elements are used close to the
FE/MD-HS region. Side length of the finite element scales down to the atomic spacing in the FE/MD-HS region.
We denote positions of the FE nodes, MD atoms, and QM atoms as {#rFE(i)}, {#rMD(i)}, and {#rQM(i)},

respectively. Similarly, {#rHSFE/MD(i)} represents the FE/MD-HS atoms, and {#rHSQM/MD(i)} the QM/MD-HS atoms.
The dynamics of the system is determined by the Hamiltonian

H = H
system
FE/MD( #Rall, #̇Rall) + Ecluster

QM
(

{#rQM}, {#rHSQM/MD}
)

− Ecluster
MD

(

{#rQM}, {#rHSQM/MD}
)

(1)

where #Rall = {{#rMD}, {#rFE}, {#rQM}, {#rHSFE/MD}, {#rHSQM/MD}} and #̇Rall = d #Rall/dt .
H
system
FE/MD in Eq. (1) is the FE/MD Hamiltonian (see Section 2.1) of the total system (including the FE, MD, and

QM regions). The last two terms on the right hand side of Eq. (1) represent the QM correction to the MD potential
energy for the cluster of atoms in the QM region [9,15,16]. The gradient of H with respect to the position #ri of the
ith atom gives the force #Fi on the atom as a summation of three partial forces corresponding to the three terms of

Fig. 2. Two-dimensional projections of the FE/MD-HS region and its surroundings in two different directions. The MD atoms and the FE nodes
are plotted as dots. The finite elements are depicted as hatched polygons.
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H in Eq. (1): #Fi = −∂H/∂#ri = #F system
FE/MD,i + #F cluster

QM,i − #F cluster
MD,i . We note that #F cluster

QM,i = #F cluster
MD,i = 0 for those atoms

which are neither the QM nor QM/MD-HS atoms

2.1. Coupling FE with MD

Following linear elasticity theory for continua, we may write the potential energy of the finite elements as [33]

elements
∑

m

∫

element(m)

d#r 1
2

3
∑

i,j,k,l

εij (#r)Cijklεkl(#r) (2)

with the strain tensor field given by

εij (#r) = ∂ui(#r)
∂rj

+ ∂uj (#r)
∂ri

, (3)

where #u(#r) is the displacement field and the elastic matrix Cijkl of the material is either obtained experimentally
or calculated theoretically. We perform each integral in Eq. (2) by interpolating #u(#r) between the FE nodes using
a linear (for the 8-node elements) or quadratic (for the 20-node elements) function of #r [33]. Denoting the total
number of FE nodes for element-l as nnode(l), Eq. (2) reduces to

elements
∑

l

nnode(l)
∑

µ,ν

1
2

#uµ · ↔
Kl

µ,ν · #uν, (4)

where
↔
Kl

µ,ν is the stiffness matrix [33] for element-l. We employ the lumped-mass approximation [33,38,40] for
the kinetic energy of the finite elements, i.e. each FE node-a is assigned a massma calculated with the mass density
ρmass of the material:

ma =
elements
∑

l

nnode(l)
∑

i

ρmassVlδa,i/nnode(l),

where Vl is the volume of element-l, and δa,i = 1 if node-a coincides with node-i of element-l and δa,i = 0
otherwise. The FE mass reduces to the atomic mass mi in the FE/MD-HS region.
We consider MD interatomic potentials that are composed of two-body (φ2(i, j)) and three-body (φ3(i, j, k))

terms as in Stillinger–Weber (SW) potential [41] for Si. To link the FE and the MD regions in a seamless manner,
we introduce a weight function w for the MD atoms and the FE nodes [36–38]. We assign w = 1 for the MD
atoms in the MD region, and w = 0 for the FE nodes in the FE region. In the FE/MD-HS region, all MD atoms in
an atomic layer are assigned a single w value, and the value of w varies from 1 to 0 layer-by-layer in a stepwise
manner. Similarly, w for the FE nodes in the FE/MD-HS region is graded element-by-element. Using the weight
function,H system

FE/MD in Eq. (1) is written as

H
system
FE/MD =

atoms&elements
∑

i

1
2
miv

2
i + 1

2!
atoms
∑

i,j

w(i)φ2(i, j)+ 1
3!

atoms
∑

i,j,k

w(i)φ3(i, j, k)

+ 1
2!
elements
∑

l

nnode(l)
∑

µ,ν

[1−w(µ)]#uµ · ↔
Kl

µ,ν · #uν, (5)

where {#vi} are velocities of the atoms and the FE nodes.
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2.2. Coupling DFT with MD

An atomic cluster to be treated quantum-mechanically using the DFT is selected in the system, as depicted by
red (O) and yellow (Si) spheres in Fig. 1(b). We consider an insulator such as ceramics or semiconductors, whose
bonding pairs are known. Stabilizing atomic configuration of the cluster requires termination of its dangling bonds
by hydrogen (H) atoms. The positions of the termination H atoms are determined from those of the QM/MD-
HS atoms (blue spheres in Fig. 1(b)) as follows. Let #rj (i) and nc(i) be the positions of the QM atoms bonding
to a QM/MD-HS atom at #ri and the number of different j for each i , respectively. A termination H is placed
at #xHi,j = β#ri + (1 − β)#rj (i) for each (i, j) pair with a control parameter β [9]. The DFT calculations of the H-
terminated atomic cluster are performed with free boundary conditions to obtain Ecluster

QM and the corresponding
forces on the QM and the QM/MD-HS atoms. Value of β is determined to minimize mean square displacements of
the QM atoms caused by cluster formation. In the oxidation simulation of Si(111) surface in Section 4, we choose
β = 0.625.
In the Kohn–Sham (KS) formulation of DFT [4–6], total energy of a cluster of atoms located at {#rk} is written as

Ecluster
QM

(

{#rk}
)

= 2
occ
∑

i=1
ψ∗

i

(

−∇2

2

)

ψi d#x + 1
2

∫ ∫

ρ(#x)ρ(#x ′)
|#x − #x ′| d#x d#x ′

+
∫

Vion(#x)ρ(#x)d#x + Exc(ρ) + Eion
(

{#rk}
)

(6)

with the KS electronic wave functions {ψi} and the charge density ρ(x) = 2
∑occ

i=1 |ψi (#x)|2. Atomic units are
used in Eq. (6) and only doubly occupied states are considered. The KS wave functions obey the orthonormality
constraint:

∫

ψ∗
i ψj d#x = δij . The Vion in Eq. (6) is the pseudopotential for valence electrons; Exc and Eion are the

exchange-correlation energy and the interaction energy between ion cores, respectively [4–6]. We may obtain {ψi}
as solutions to the following nonlinear differential equations [5–7]:

[

−∇2
2 + Vion(#x) + VHartree(#x) + δExc

δρ (#x)

]

ψi = eiψi (7)

with the Hartree potential VHartree(#x) =
∫

ρ(#x ′)/|#x − #x ′|d#x ′.
We use real-space multigrids for DFT calculations [8,9,22–24], in which {ψi} and VHartree are represented on a

uniform real-space mesh in Cartesian coordinates with an auxiliary set of coarser meshes. Details of the method
are explained in Refs. [8,9]. We use norm-conserving pseudopotentials [42] for Vion with the generalized gradient
correction [43]. The second derivative of {ψi} in Eqs. (6) and (7) is calculated by the sixth-order finite difference
method [19–21]. The {ψi} are solved by repeating the self-consistent field (SCF) iteration cycle [8,9,44]. Denoting
ρold and {ψi,old} as input charge density and wave functions, we may summarize the SCF cycle as the following
five steps:

(i) Iterative solution to the Poisson equation ∇2VHartree(#x) = −4πρold(⇀x);
(ii) unitary transformation of {ψi,old} to {ψ̃i,old} to diagonalize the corresponding Hamiltonian matrix;
(iii) conjugate-gradient [45] solutions {ψi,new} to Eq. (7) with a preconditioning scheme [8,9], in which {ψ̃i,old}

are used as initial values;
(iv) estimation of improved charge density ρnew by mixing ρold with 2

∑occ
i=1 |ψi,new|2 by the Pulay scheme [44];

and
(v) orthonormalization of {ψi,new} with the Gram–Schmidt method [45].

Convergence of both the Poisson equation in step (i) and Eq. (7) in step (iii) is accelerated with the multigrid method
introduced originally by Brandt [46]. In the multigrid acceleration for Eq. (7), Vion(#x) + VHartree(#x) + δExc/δρ(#x)

is fixed to ignore nonlinear coupling of the wave functions and eigenvalues [8,9,45].
For the calculations of Ecluster

MD in Eq. (1), we similarly introduce classical termination atoms by displacing
the QM/MD-HS atoms to minimize surface effects on atomic forces on the QM atoms [9]. Position #xi,{j} of the
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termination atom-i is #xi,{j} = α#ri + (1 − α)〈#rj (i)〉j , where α is a parameter and 〈· · ·〉j denotes taking average
over different j . If a surface atom in the atomic cluster interacts only with its first nearest-neighbor atoms in the
empirical interatomic potential, as in the SW potential for Si, we may set α = 1. Value of Ecluster

MD is obtained as the
MD potential energy of the terminated atomic cluster.

3. Parallel hybrid simulation

The present hybrid approach is implemented on parallel computers using both task and spatial decompositions.
Processors in a parallel computer are grouped into classical (CL) processors for FE and MD calculations and
QM processors for DFT calculations (task decomposition). Taking advantage of the formal similarity in formula
between the two-body MD interaction and the inter-node interaction between the FE nodes (see Eq. (5)), we
modify an existing parallel MD code [31,32] such that it can also calculate the FE inter-node interaction. In
this unified FE/MD code, particles are either FE nodes or MD atoms, and their positions and velocities are
stored in common arrays. The linked cell lists [30] in the MD code are used to efficiently keep track of the
element-node relations. The unified FE/MD algorithm is parallelized using spatial decomposition: The FE and
MD regions are decomposed into sub-domains and mapped onto the CL processors [31,32]. The data associated
with particles (either FE nodes or MD atoms) of a subsystem are assigned to the corresponding processor. To
calculate the force on a particle in a subsystem, particle coordinates in the neighbor subsystems are “cached”
from the corresponding processors. Particles that have moved out of a subsystem due to a time-stepping procedure
are “migrated” to the proper destination processors. With the spatial decomposition, the computation time on
a P -processor computer scales as N/P while communication scales in proportion to (N/P)2/3 for an N -
particle system. The mesh points for discretizing the Hartree potential, VHartree, and the KS wave functions, {ψi},
for the DFT calculations are likewise decomposed and mapped onto the QM processors. The present parallel
code is written in the single-program multiple-data programming style [47], which uses selection statements
for the QM and the CL processors to execute only the corresponding code segments. The Message Passing
Interface (MPI) [48] standard is used for data communication between the processors. To reduce the memory
size required to run the code, dynamic allocation/deallocation operations in Fortran90 are applied to all the array
variables [9].
At the start of a simulation, the hybrid code reads the stiffness matrices,

↔
K

l
µ,ν , for all the elements in addition

to the positions, velocities, and masses of the MD atoms and the FE nodes. Fig. 3 shows a flowchart of subsequent
parallel computations:

(i) the classical forces { #F system
FE/MD} for all the MD atoms and the FE nodes are calculated in the CL processors;

(ii) atomic data for the QM and the QM/MD-HS atoms that are necessary to create an H-terminated cluster are
transferred to the QM processors;

(iii) the QM processors perform the DFT calculations to obtain QM forces { #F cluster
QM } for the QM and the

QM/MD-HS atoms, while the CL processors calculate corresponding MD forces { #F cluster
MD } using the

empirical interatomic potential;
(iv) the QM forces are sent back to the CL processors; and,
(v) the total forces { #F } = { #F system

FE/MD + #F cluster
QM − #F cluster

MD } are calculated in the CL processors, which in turn are
used for time-integration of the equations of motion using the velocity-Verlet algorithm [30].

In our additive hybridization scheme, the total energy of the system is a linear combination of FE/MD and
QM energies. Consequently the CL and the QM subtasks are executed independently except for the exchange of
small messages containing species, coordinates, and QM forces for the cluster-atoms, as shown in the flowchart
in Fig. 3. This modularity makes the present parallel implementation highly scalable, in contrast to multiplicative
hybridization schemes that couple CL and QM tasks inseparably.
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Fig. 3. A flowchart of parallel computations in the hybrid simulation code.

4. Demonstration of hybrid simulation on a parallel computer

The parallel hybrid simulation code is applied to oxidation of Si(111) surface to demonstrate seamless coupling
of the FE, MD, and QM regions. Understanding mechanisms of Si oxidation is crucial in successful design of
MEMS and electronic devices [25–29]. Characteristic energy released in chemical reactions of an O2 molecule
with a Si surface is on the order of 1 eV [49–52]. The reaction energy as well as associated stress and strain
are transferred to the surrounding atoms and may substantially affect subsequent dynamic processes. It is thus
important that dynamic simulations of oxidation include a large environmental region in addition to reacting atoms.
For the hybrid simulation, a slab with dimensions (212.8, 245.7, 83.1 Å) in ([2̄11], [01̄1], [111]) directions

is cut out from bulk Si. The MD and the FE/MD-HS regions consist of 12 and 4 atomic layers along [111]
direction, respectively, whereas the FE region corresponds to bottom two-thirds of the Si slab (see Fig. 1(a)).
Periodic boundary conditions are applied in [2̄11] and [01̄1] directions. The total number of atoms and FE nodes
for the Si slab is N =15,212. The elastic matrix elements of Si at zero temperature are obtained using the SW
potential with mass density ρmass = 2.35 g/cm3 [53].
Initial configuration of the hybrid simulation is obtained by placing an O2 molecule (oriented along [2̄11]

direction with zero velocity) 2.0 Å above the (111) surface of the slab. Total number of atoms treated in the
DFT calculations is 25 that includes 10 Si atoms, 2 O atoms, and 13 H atoms for termination, see Fig. 1(b). Initial
charge densities of the terminated atomic cluster obtained in the DFT calculations are also shown in grayscale in
Fig. 1(b). Neither QM/MD-HS nor MD atoms are found within the interaction ranges of the O atoms during the
present simulation. Accordingly the MD interatomic potentials for O–O and Si–O pairs may be arbitrary, since the
potential energies for O–O and Si–O pairs in Ecluster

MD cancel with corresponding terms in H
system
FE/MD in Eq. (1).
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We have performed the hybrid simulation for 1000 fs using 9 processors (550 MHz Intel Pentium III) on a PC
cluster interconnected with Fast Ethernet switches; 8 processors are assigned to the QM calculations. The MD time
step is 1.0 fs, and the finest mesh spacing of the real-space multigrids in the DFT calculations is 0.26 Å. Wall-clock
time per MD step is 15 min, 99% of which is spent for the electronic-structure calculations in the QM processors.
A single self-consistent field cycle in the DFT takes 130 s in total including 20 s for data communication between
the QM processors.
Fig. 4 shows snapshots of the atomic configuration at 150, 300, and 900 fs, in which [111] displacements of the

atoms and the FE nodes are color-coded. The O2 molecule dissociates and each O atom is captured by a Si–Si bond
at the surface to form a Si–O–Si structure, which is associated with increase in the Si–Si distance. Resulting strains
in the QM region are transferred to the surrounding Si atoms in the MD region as shown in Fig. 4. Such strain

Fig. 4. Snapshots at 150, 300, and 900 fs in the hybrid simulation of oxidation of Si(111) surface. Colors represent [111]-displacements of the
atoms and the FE nodes.
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waves reach the QM/MD-HS region at ∼ 300 fs, and propagate into the FE region at ∼ 900 fs with no reflection or
refraction observed at the QM/MD and MD/FE boundaries.
To analyze the transfer of kinetic energy, we partition the total system into slices along the [111] direction and

calculate the kinetic energy of the atoms and the FE nodes in each slice. Fig. 5 shows time evolution of the kinetic
energies in the slices; Z denotes the coordinate along the [111] axis and Zsurf corresponds to the position of the
top Si-layer. The four vertical lines around Zsurf − Z ≈ 5 Å in Fig. 5 represent the positions of the QM/MD-HS
atoms; the positions of the FE/MD-HS atoms are bounded by the two vertical lines at Zsurf−Z = 19.3 and 23.3 Å.
In Fig. 5, the kinetic energy varies smoothly as a function of Z at all times, indicating seamless coupling of the FE,
MD, and QM regions.
The total energy, H , in Eq. (1) is a conserved quantity in the present hybrid scheme. Fig. 6 compares time

evolution ofH system
FE/MD/N andH/N . WhileH

system
FE/MD/N changes by 2×10−5 eV during 200–260 fs,H/N conserves

Fig. 5. Time evolution of kinetic energies in slices. Z is the position of a slice in [111]-axis; Zsurf, position of the surface atomic layer. The
four vertical lines around Zsurf − Z ≈ 5 Å represent the QM/MD-HS atoms; the FE/MD-HS atoms are bounded by the two vertical lines at
Zsurf − Z = 19.3 and 23.3 Å.

Fig. 6. Time evolution of H
system
FE/MD/N and H/N. N is the total number of atoms and FE nodes.
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well with fluctuations of 2× 10−6 eV. Such an accurate conservation of the total energy is necessary to study heat
transfer from the QM region to the MD and FE regions.

5. Concluding remarks

We have developed a hybrid FE/MD/QM simulation approach by coupling the FE method for a continuum
with the MD method for atomistic simulations and the real-space multigrid-based DFT for QM calculations.
We have performed a hybrid simulation of oxidation of Si(111) surface to demonstrate seamless coupling of the
FE, MD, and QM regions. The present hybridization approach embeds a single QM cluster in a MD simulation,
but an extension to include multiple QM clusters described by various approximation methods such as the tight-
bindingmethod is straightforward.Our parallel FE/MD/QM algorithm based on the modular, additive hybridization
scheme requires little data communication between the CL and the QM processors, and accordingly, it can be
implemented efficiently on a set of loosely-coupled computer clusters with low inter-cluster data transfer rates, by
assigning the CL and the QM tasks to different computer clusters. Such hybrid simulations in “Grid”-computing
environments [54,55] are in progress.
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