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∗Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.

Email: {robert.speck, daniel.ruprecht, rolf.krause}@usi.ch
†Lawrence Berkeley National Laboratory, Berkeley, USA.

Email: mwemmett@lbl.gov
‡Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA.

Email: mlminion@gmail.com
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Abstract—We present a novel space-time parallel version of
the Barnes-Hut tree code PEPC using PFASST, the Parallel Full
Approximation Scheme in Space and Time. The naive use of
increasingly more processors for a fixed-size N-body problem
is prone to saturate as soon as the number of unknowns per
core becomes too small. To overcome this intrinsic strong-
scaling limit, we introduce temporal parallelism on top of PEPC’s
existing hybrid MPI/PThreads spatial decomposition. Here, we
use PFASST which is based on a combination of the iterations
of the parallel-in-time algorithm parareal with the sweeps of
spectral deferred correction (SDC) schemes. By combining these
sweeps with multiple space-time discretization levels, PFASST
relaxes the theoretical bound on parallel efficiency in parareal.
We present results from runs on up to 262,144 cores on the IBM
Blue Gene/P installation JUGENE, demonstrating that the space-
time parallel code provides speedup beyond the saturation of the
purely space-parallel approach.

I. INTRODUCTION

Time-dependent partial differential equations are ubiquitous
in scientific and industrial applications and usually must be
solved numerically. Because of the tremendous number of
degrees-of-freedom in contemporary large-scale problems, us-
ing massively parallel computer systems is essential to absorb
overwhelming memory requirements and to obtain results in
reasonable times. This requires the employed solution algo-
rithms to expose a sufficient degree of parallelism in order to
allow for a decomposition of the discrete problem into sub-
problems, which can be processed by individual cores.

The typical approach is to decompose the (spatial) compu-
tational domain into sub-domains and let each core process
the degrees-of-freedom of one sub-domain. We refer to this
approach as spatial parallelization. While this strategy works
very well and can provide near perfect speedup to rather large
numbers of cores, its strong scaling inevitably saturates as the
number of degrees-of-freedom per core becomes too small and
communication time begins to dominate. If, for a problem
of fixed size, more cores are to be used to further speed
up simulations, additional directions of parallelism must be
considered. As the number of cores in state-of-the-art high-
performance computing systems continues to increase, new
inherently parallel algorithms for the solution of PDEs are
required to fully exploit the possibilities of upcoming systems.
This will be particularly important when systems capable

of exascale computing, anticipated to feature processing unit
counts of the order of 108 [1], begin to become available. One
possible and promising strategy is to employ parallelization
along the time direction in conjunction with spatial paralleliza-
tion.

First approaches to parallelizing solution algorithms for
differential equations in time go back as early as [2]. However,
the topic gained considerable momentum with the introduction
of the parareal parallel-in-time algorithm in [3], which can be
used for large numbers of processors. Parareal relies on the
iterative application of two integration schemes: an accurate
and computationally expensive (“fine”) scheme running in
parallel on multiple time slices and a less accurate and
cheaper (“coarse”) scheme used to serially propagate correc-
tions through time. The method iterates over both schemes
and converges to a solution of the same accuracy as would
be provided by the fine scheme run in serial. Over the last
decade, a growing body of literature has emerged, dealing with
different mathematical and algorithmic aspects of parareal, see
for example [4], [5]. The algorithm’s performance has been
investigated for very different applications, for example quan-
tum control [6], simulation of oceanic flow [7], or simulation
of turbulent plasma [8]. An event-based implementation of
parareal is investigated in [9]. Studies of the related parallel
implicit time integration (PITA) algorithm for fluid-structure
interactions and structural dynamics can be found in [10], [11],
[12]. Most authors focus on the algorithmic aspects of parareal
while studies on the performance of time-parallel schemes
in combination with spatial domain decomposition for large
core counts are scarce. An evaluation of parareal including
spatial parallelization for the three-dimensional Navier-Stokes
equations on up to 2,048 cores was conducted in [13].

However, all prior investigations for PDEs use grid-based
methods, and the coupling of parallel-in-time algorithms and
particle-based spatial solvers has not been considered so far.
Like in space-parallel grid-based methods, the efficiency of
classical parallelization strategies for particle methods – for
direct summation as well as for sophisticated multipole-based
summation techniques such as the Barnes-Hut tree code [14]
or the Fast Multipole Methods [15] – saturates as the number
of unknowns per core becomes too small. Beyond this point,
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using additional cores for spatial decomposition may even
increase runtime due to data management and communication
overhead.

A pivotal problem of parareal is its rather strict inherent
limit on parallel efficiency, which is bounded by the inverse
of the number of performed iterations, see e. g. [16]. Very
recently, the Parallel Full Approximation Scheme in Space and
Time (PFASST), a time-parallel scheme based on intertwining
the iterations of parareal with the sweeps of spectral deferred
correction (SDC, see [17]) integration schemes was introduced
in [18], [19]. By using a fine integrator of iteration-dependent,
increasing accuracy, PFASST overcomes the strict limit on
parallel efficiency of parareal and features a much less severe
efficiency bound.

PFASST and parareal both profit from decreasing the runtime
of the coarse scheme by not only coarsening in time but also
using a coarser spatial discretization, either by using fewer
degrees-of-freedom in the spatial discretization of the coarse
scheme [20] and/or by using lower order stencils [21]. PFASST
essentially improves this strategy by using a full approximation
scheme (FAS) technique to recycle coarse grid information
efficiently and to increase the accuracy of the coarse grid SDC
sweeps. While coarsening in time can be easily obtained in
PFASST by using less intermediate collocation points, coarsen-
ing in space has to date only been studied using a hierarchical
multigrid approach. This mechanism can naturally be applied
in the case of grid-based methods, but it is not clear how such
a strategy can be employed for purely particle-based methods.

In the present paper, we demonstrate the coupling of the
parallel-in-time scheme PFASST with the parallel Barnes-Hut
tree code PEPC, the Pretty Efficient Parallel Coulomb Solver.
We introduce a concept of spatial coarsening for the Barnes-
Hut approach that allows time-and-space coarsening for grid-
free algorithms and thereby improves the scaling of PFASST
significantly in this case. The performance of the resulting
space-time-parallel code is explored on the IBM Blue Gene/P
machine JUGENE with runs using up to 262,144 cores. It is
demonstrated that time-parallelism can provide considerable
additional speedup beyond the saturation of the spatial paral-
lelization. Besides proving the success of combining PFASST
with a particle scheme, this also constitutes by far the largest
test run reported to date using a combination of a time-parallel
integration scheme with spatial parallelization. The results
give a conclusive illustration of the potential of time-parallel
methods, even for extreme-scale applications. Summarized, the
major contributions of this work are:
• first large-scale combination of parallel-in-time integra-

tion methods with particle discretization techniques,
• effective particle-based coarsening by means of multipole

approximation,
• unique combination of the hybrid MPI/Pthreads Barnes-

Hut tree code PEPC with an MPI-based time-
decomposition method,

• significant speedup of the full space-time parallel algo-
rithm using PFASST beyond the saturation of the purely
space-parallel version,

• largest space-time parallel simulations performed up to
now (to the best of our knowledge).

Section II describes the model problem, which is based on
the 3D vortex particle method. Here, the discretization leads to
(a) an N -body problem that can be handled using multipole-
based fast summation algorithms, and (b) evolution equations
for particle position and vorticity that require integration in
time. A concise overview of the combination of PFASST and
PEPC with respect to the implementation is given in Section III,
followed by a more detailed description of PEPC and its space-
parallel capabilities in Section III-A and of SDC and PFASST
in Section III-B. The accuracy of SDC and PFASST for a
direct N -body solver and a small problem size is analyzed
in Section IV-A, in order to find a setup where PFASST and
serial SDC provide comparable accuracy. This should make
sure that the subsequent speedup studies are fair and compare
runtimes of solutions of similar quality. Speedups for large-
scale problems for the combination of PFASST with PEPC are
reported in Section IV-B. Finally, results are summarized in
Section V.

II. THE VORTEX PARTICLE METHOD

To analyze the combination of particle-based algorithms and
parallelized time integration, we focus on the vortex particle
method for incompressible, inviscid Newtonian fluid flows in
three spatial dimensions, see [22]. Based on the vorticity-
velocity formulation of the Navier-Stokes equations

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u (1)

for a solenoidal velocity field u and the corresponding vorticity
field ω = ∇ × u, the velocity field can be determined by
the Green’s function G(x) = 1

4π|x| for three-dimensional un-
bounded domains (omitting boundary and irrotational effects)
with

u(x, t) =

∫
K(x− y)× ω(y, t) dy, K = ∇G. (2)

This explicit formula exemplifies one big advantage of
vorticity-based formulations of the Navier-Stokes equations in
contrast to many other approaches in CFD.

The integral and therefore the vorticity field ω in (2) is
discretized using N regularized vortex particles xp, so that

u(x, t) ≈ ũσ(x, t) =

N∑
p=1

Kσ(x− xp)× ω(xp, t)volp, (3)

Kσ = ∇G ∗ ζσ. (4)

Here, each quadrature point xp is connected to a volume volp
in the 3D simulation domain. Its vorticity vector ω(xp) is
‘smeared’ onto the support of a radial symmetric smoothing
function ζσ with small core size σ. The evolution equations
for the particles are then given by

dxq(t)

dt
= ũσ(xq(t), t), (5)

dω(xq(t), t)

dt
= (ω(xq(t), t) · ∇T ) ũσ(xp(t), t). (6)



(a) time 1

(b) time 25

Fig. 1: Time evolution of the spherical vortex sheet. Down-
wards movement is filtered out in the pictures, size and color
of the particles correspond to the magnitude of the velocity:
small/blue = low velocity, large/red = high velocity. N =
20,000 particles, second-order Runge-Kutta with ∆t = 1.
Sixth-order algebraic kernel with σ ≈ 18.53h.

As our 3D model problem, we choose the time evolution
of a spherical vortex sheet. A given number of N particles is
initially placed on a sphere with radius R = 1, centered at
the origin, and attached with vorticity ω, volume h and core
radius σ using

ω(x) = ω(ρ, θ, ϕ) =
3

8π
sin(θ) · eϕ, (7)

h =

√
4π

N
, σ ≈ 18.53h, (8)

where eϕ is the ϕ-unit-vector in spherical coordinates. For our
simulations, we use a sixth-order algebraic kernel, see [23]
for details. Fig. 1 visualizes the evolution of this setup for
N = 20,000 particles and a classical, second-order Runge-
Kutta time-stepping scheme with ∆t = 1. As noted in [24], the
initial conditions are the solution to the problem of flow past a
sphere with unit free-stream velocity along the z-axis. While
moving downwards in the z-direction, the sphere collapses
from the top and wraps into its own interior, forming a large,
traveling vortex ring in the inside, see [23], [24], [25], [26]
for comparison.

The smoothing function ζσ is commonly chosen with non-
compact support, so it can be interpreted as a long-range
potential. As we can see from Eq. (3), this formulation yields
an N -body problem: to evaluate the right-hand side of the
evolution equations (5) and (6) for a particle xq , q = 1, . . . , N ,
we need to compute the N summands of ũσ(xq(t), t) and
(ω(xq(t), t) · ∇T ) ũσ(xp(t), t), thus leading to a total of
O(N2) operations for all particles. For generalized algebraic
smoothing kernels, multipole expansion techniques such as the
Barnes-Hut tree code can be applied to speed up these evalu-
ations, see [23] for details. In Section III-A, we describe one
implementation of this approach. Moreover, Eqs. (5) and (6)
are the basis for the time integration scheme. Classically, time-
serial third- or fourth-order Runge-Kutta schemes are used to
update particle positions and vorticity strengths, see e. g. [27],
and spatial parallelization is used to speed up evaluations of
the right hand side. Here, a new direction of parallelization
is added by using PFASST for integration in time, which we
describe in detail in Section III-B.

III. SPATIAL AND TEMPORAL PARALLELIZATION: PEPC
AND PFASST

The PFASST algorithm [19] is a parallel-in-time solver for
initial value problems

∂u

∂t
= f(t, u), u(0) = u0. (9)

It is based on intertwining the iterations of parareal [3] with the
iterations of Spectral Deferred Correction (SDC) integration
schemes [17]. As in parareal, it relies on a coarse propagator
G to generate approximations of the solution at later points
in time. These are then corrected by a fine propagator F
which is run concurrently on multiple time-slices. A Full
Approximation Scheme (FAS) approach allows for an effective
transfer of information from the fine to the coarse scheme
so that G can be made faster by using a coarsened spatial
discretization as well. The close coupling of SDC with parareal
iterations leads to a significant improvement of the parallel
performance compared to the original parareal approach [19].
For evaluating the right-hand side f in (9) in PFASST –
corresponding to the right-hand sides of Eqs. (5) and (6) in the
setup considered here – we choose a space-parallel approach
based on the Barnes-Hut tree code PEPC [28]. By means
of the multipole acceptance criterion explained below, PEPC
computes approximations of f with different accuracy for the
G and F SDC sweep. PEPC also provides the decomposition
of the particle systems using MPI communicators in the spatial
direction. PFASST, on the other hand, uses separate instance
of PEPC (each with a given number PS of compute nodes for
the spatial parallelism) for each time slice (up to PT instances
simultaneously) and connects them using MPI communicators
in the temporal direction, see Fig. 2. Hence, a compute node
is always a member of two communicators: it is responsible
for a subset of the particles within PEPC, at a specific time
slice within PFASST.



Fig. 2: The combination of PEPC with PFASST uses PT × PS nodes. Spatial decomposition for each of the PT time slices is
performed by PEPC using PS nodes within each PEPC-communicator (depicted as one box in the figure). Within PEPC, one
MPI-rank per node is used to act as data and communication management thread, while the other cores perform the traversal
of the tree using Pthreads, see Section III-A. For PFASST, this structure is duplicated PT times to create independently running
instances of PEPC. PFASST connects the ith node of each box to one new MPI communicator, which results in PS separated
PFASST-communicators for the temporal decomposition.

In the following two sections, we describe the PEPC and
PFASST codes in more detail, focusing on the parallelization
strategies in space and time.

A. The Barnes-Hut tree code PEPC

In order to avoid the infeasible quadratic complexity for
evaluating f for particle-based, long-range dominated systems,
the idea of multipole-based summation techniques is to re-
place interactions with distant particles by interactions with
particle clusters via multipole expansions that approximate
the contribution of the corresponding distant particles. By
hierarchically integrating particles into these clusters using
a tree data structure, the number of interactions for all N
particles and therefore the overall complexity of this approach
can be estimated as O(N logN) in the case of the Barnes-Hut
tree code [14].

In the Barnes-Hut algorithm, all particles are inserted into
an oct-tree data structure to efficiently group nearby particles
into clusters and to identify interaction partners. First, space
is recursively subdivided: the simulation domain is halved
in each spatial direction on each level of recursion until
every particle resides inside its own sub-box. All boxes that
contain particles – including the coarser boxes of previous
subdivisions – are inserted into the tree. The different levels of
subdivision correspond to different tree levels: While the root
node represents the single box covering the whole simulation
domain, the finest boxes containing the individual particles are
leaf-nodes in the tree. Fig. 3 shows a symbolic sketch of the
tree construction process for a two-dimensional example that
results in a quad-tree structure. Obviously, nearby particles
are also in close relationship to each other in the tree since
they share their ancestor nodes. This information is used for
clustering the particles: Every intermediate-level box corre-
sponds to a group of particles (or even clusters) representing
them through their multipole moments. These moments can
be efficiently calculated from the leaf nodes towards the root
node that finally covers all particles.

For each particle, the tree is traversed to identify interaction
partners (clusters or particles) using a multipole acceptance

criterion (MAC): In the classical Barnes-Hut approach [14],
[29] as depicted in Fig. 4, interaction with a cluster is allowed
if the ratio between the size s of the corresponding box and
its distance d from the current particle is smaller than a
parameter ϑ ≥ 0, that is s

d ≤ ϑ . Otherwise, the respective
node has to be resolved into its children. We refer to [30] for
an overview and in-depth discussion on multipole acceptance
criteria for Barnes-Hut tree codes. Large values of ϑ lead to
interactions with larger clusters, which is a faster, more inexact
representation of the right-hand sides of Eqs. (5) and (6), while
smaller values of ϑ improve yet slow down the summation.
In combination with PFASST, we exploit this mechanism to
provide a concept of spatial coarsening to accelerate the coarse
propagator G by using a significantly larger value of ϑ for the
coarse than for the fine scheme.

Parallelization of the original Barnes-Hut algorithm – thus,
parallelization in the spatial direction – is commonly per-
formed via the Hashed-Oct-Tree scheme by Warren and
Salmon [31], [32]. Here, data parallelism is obtained by
distributing distinct tree sections onto the MPI-ranks that
reside on the distributed memory nodes of a compute cluster.
To this end, before starting the tree construction, each particle
is assigned a unique key that represents its position on a space-
filling curve. This curve is then partitioned and redistributed
across the MPI-ranks. Afterwards, all MPI-ranks construct
their local trees. Their respective root nodes are inserted into
a common global tree that is shared among the ranks and
forms the starting point for the tree traversals. In Fig. 3, the
distribution of a particle set among 3 MPI-ranks is shown as
an example. The local root nodes (or branch nodes) are shown
as colored boxes. These nodes must be exchanged between all
MPI-ranks for building the globally shared tree above them.
As shown in Fig. 5, this significantly contributes to the overall
runtime of the parallel Barnes-Hut tree code.

In [28], we have presented a novel hybrid MPI/Pthreads
implementation of the Pretty Efficient Parallel Coulomb Solver
PEPC, which is developed at Jülich Supercomputing Centre.
The code has undergone a transition from a pure gravita-
tion/Coulomb solver to a multi-purpose N -body suite that
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Fig. 3: Tree construction for a two-dimensional example
(quad-tree, shown bottom-up here). The root node covers
the whole simulation domain; leaf nodes represent individual
particle boxes. The orange line shows the space-filling curve
used to repartition the set of particles across the MPI-ranks.
The particles’ color indicate their rank assignment; box colors
represent the MPI-ranks’ local root nodes, colored lines the
local trees. The gray tree is shared globally.
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Fig. 4: The classical Barnes-Hut MAC can be interpreted
as a cone with opening angle ϑ, exemplarily shown for a
selected particle in the two-dimensional setup from Fig. 3.
Boxes being larger than the cone diameter at their position,
i. e. sidi > ϑ, have to be further resolved into their child boxes.
Consequently, the green boxes B1 and B3 are accepted for
interaction while the red box B2 has to be resolved further.
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Fig. 5: Scaling of the parallel Barnes-Hut tree code PEPC
across all 300k cores of the Blue Gene/P system JUGENE for
a homogeneous neutral Coulomb system and different particle
numbers N , from [28].

is utilized for numerous applications due to a convenient
exchangeability of interaction kernels. Today, it is applied
to modelling laser-plasma and plasma-wall interaction, stellar
disc dynamics using Smooth Particle Hydrodynamics (SPH),
and vortex particle methods for fluid simulations as depicted
in Section II. We refer to [28], [33] and references therein for
further details. One key aspect of this code is, that, by using
node-local Pthreads parallelization for the force computation,
an additional layer of concurrency is achieved. Communication
and traversal tasks are distributed among several sub-threads
on the different cores of shared-memory nodes. Consequently,
force evaluation and communication, i. e. exchange of tree
nodes (particle cluster properties) with remote MPI-ranks,
now run completely asynchronously and overlap natively. This
approach leads to a highly efficient use of resources on HPC
systems with many-core compute nodes.

As shown in Fig. 5, PEPC exhibits excellent scalability with
up to 2 billion particles across all 300k cores of the IBM
Blue Gene/P installation JUGENE at Jülich Supercomputing
Centre, provided the number of particles per compute core is
sufficiently large. Naturally, when approaching small numbers
of particles per core, communication, in particular the branch
node exchange, dominates the actual computational work. This
is critical for all algorithms designed to efficiently reduce
the computational work: Every spatial domain decomposition
approach, not only particle-based solvers for long-range inter-
acting N -body systems, is naturally restricted in its strong-
scaling capabilities and additional concepts are required to
further reduce time-to-solution.

B. SDC and PFASST

The PFASST algorithm is a novel synthesis of parareal, SDC,
and FAS. SDC methods are variants of traditional deferred
or defect correction methods for ODEs, and were originally
introduced in [17]. High-order accurate solutions within one
time step are constructed by iteratively approximating a series



of correction equations at intermediate nodes using low-order
methods. The FAS corrections provide an elegant way of
interpolating the results of coarse SDC sweeps in both space
and time as well as initializing the coarse problem itself using
the results of SDC on the fine level [19]. Thus, PFASST’s
coarse and fine propagators are connected in the same manner
as FAS for non-linear multigrid methods.

1) Spectral Deferred Correction Methods: To describe
SDC, we consider the initial value problem (9). It is convenient
to work with the equivalent Picard integral form

u(t) = u0 +

∫ t

0

f
(
τ, u(τ)

)
dτ. (10)

As with traditional deferred correction methods, a single time
step [tn, tn+1] is divided into a set of intermediate sub-steps
by defining M + 1 intermediate points tm ∈ [tn, tn+1] such
that tn = t0 < t1 < · · · < tM = tn+1. Then, the integrals of
f
(
τ, u(τ)

)
over the intervals [tn, tm] are approximated by∫ tm

tn

f
(
τ, u(τ)

)
dτ = ∆t

M∑
j=0

qm,jf(tj , Uj), (11)

where Uj ≈ u(tj), ∆t = tn+1 − tn, and qm,j are quadrature
weights. The quadrature weights qm,j that give the highest
order of accuracy for given intermediate points tm are ob-
tained by computing exact integrals of Lagrange interpolating
polynomials.

To simplify notation, we define the integration matrix
Q to be the M × (M + 1) matrix consisting of entries
qm,j . We also define the vectors U = [U1, · · · , UM ] and
F (U) = [f(t1, U1), · · · , f(tM , UM )]. Finally, it is convenient
to decompose Q as Q = [q|S], where q is the first column
of Q and S is a square M ×M matrix.

With these definitions, the SDC method employed here is
an iterative method for solving

U −∆tSF (U) = U0 + ∆tqf(t0, U0) (12)

for U . The method begins by computing a provisional solution
U0 = [U0

1 , · · · , U0
M ] at each of the intermediate nodes.

Subsequent iterations (denoted by k superscripts) proceed
by applying the quadrature matrix S to F k and correcting
the result using a low-order time-stepper. For fully explicit
equations (such as those in PEPC), a first-order time-stepping
method similar to forward Euler for computing Uk+1 is given
by

Uk+1
m+1 = Uk+1

m +∆tm
[
f(tm, U

k+1
m )−f(tm, U

k
m)
]
+SmF

k,
(13)

where ∆tm = tm+1 − tm and SmF
k approximates∫ tm+1

tm
f(τ,Uk) dτ . Implicit-explicit (IMEX) schemes can be

built in a similar fashion using forward/backward Euler [17].
The process of solving (13) at each node tm is referred

to as an SDC sweep. The accuracy of the solution generated
after k SDC sweeps done with a first-order method is formally
O(∆tk) as long as the spectral integration rule is at least of
order k.

To construct a parallel time-stepping scheme from SDC we
note that: (a) the SDC and parareal iterations can be combined
into a single hybrid iteration, and (b) the intermediate nodes
of SDC schemes can be coarsened and refined to form a
multigrid hierarchy in time with each level corresponding to a
different time propagator. The use of an iterative time-stepper
is of fundamental importance to the efficiency of PFASST: the
costs of performing multiple SDC sweeps is amortized over
the parareal iterations. Furthermore, the intermediate nodes of
the SDC scheme lead to a multigrid structure in time within
which FAS corrections can be computed directly. The black-
box nature of the time-stepping schemes G and F in parareal
does not allow this to be done so easily.

2) Full Approximation Scheme: The FAS correction τCF for
SDC iterations from the fine level F to the coarse level C is
determined by considering SDC as an iterative method for
solving (12). For a non-linear equation of the form A(x) = b
the corresponding residual equation is

A(x̃+ e) = A(x̃) + r, (14)

where e is the error and r = b − A(x̃) is the residual. In
the multigrid approach, the residual equation is re-written by
replacing the coarse residual rC by the restriction TCF r

F of
the fine residual rF , where the restriction operator is denoted
by TCF . With yC = x̃C+eC , the coarse FAS residual equation
becomes AC(yC) = bC +τCF , where the FAS correction term
is given by

τCF = AC(x̃C)− TCF AF (x̃F ). (15)

Returning to SDC methods, combining (12) with (15), the FAS
correction becomes

τCF = ∆t
(
TCF S

FF F − SCFC
)
. (16)

This allows the coarse SDC iterations to achieve the accuracy
of the fine SDC iterations at the resolution of the coarse
grid, and ultimately allows the PFASST algorithm to achieve
similar accuracy as a serial computation performed on the fine
level [19].

Note that for a three level scheme the fine and coarse grid
equations are

U0 −∆tS0F 0(U0) = B0 (17a)

U1 −∆tS1F 1(U1) = B1 = T 1
0B

0 + τ 1
0 (17b)

U2 −∆tS2F 2(U2) = B2 = T 2
1B

1 + τ 2
1 (17c)

where the restriction operator TCF applied to integral terms
corresponds to summing the fine values between coarse nodes
(that is, integration in time) and subsequently restricting in
space, and

B0 = U0 + ∆tqf(t0,U0). (18)

3) PFASST algorithm: For a PFASST run with L levels
(with level 0 being the finest), the time interval of interest
[0, T ] is divided into N uniform intervals [tn, tn+1] which are
assigned to processors1 Pn, n = 0 . . . N − 1. Each interval

1Note that in the case of combined space and time parallelization, Pn is not
a single processor but one communicator collecting all processors handling
the distributed solution at the corresponding point in time, see Fig. 2.
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is subdivided on each level ` by defining M` + 1 SDC nodes
t` = [t`,0 · · · t`,M`

] such that tn = t`,0 < · · · < t`,M`
= tn+1.

The SDC nodes t`+1 on level `+ 1 are chosen to be a subset
of the SDC nodes t` on level ` to facilitate interpolation and
restriction between coarse and fine levels. The solution at the
mth node on level ` during iteration k is denoted U(`, k,m).
For brevity, let

U(`, k) = [U(`, k, 0), · · · , U(`, k,M`)] (19)

and

F (`, k) = [F (`, k, 0), · · · , F (`, k,M`)] (20)
= [f(t`,0, U(`, k, 0)), · · · , f(t`,M`

, U(`, k,M`))].

Finally, the FAS corrections on level ` for iteration k are
denoted by τ (`, k).

To begin we employ an initialization scheme wherein each
processor Pn performs n coarse SDC sweeps (lowest F1

sweeps in Fig. 6, where F1 replaces the former coarse propa-
gator G of parareal). This procedure is similar to the classical
parareal initialization stage and propagates starting values
for the subsequent parallel iterations. It has the same total
computational cost of doing one SDC sweep per processor in
serial, but the additional SDC sweeps compared to parareal
can improve the accuracy of the solution significantly, as was
demonstrated in [19].

After the initialization stage, the provisional solution is
interpolated to the fine levels and the PFASST iterations on each
processor are started immediately. In Algorithm 1, we describe

Go down the V -cycle
for ` = 0 . . . L− 2 do

Sweep and send
U(`, k + 1), F (`, k + 1) =
SDCSweep

(
U(`, k), F (`, k), τ (`, k)

)
;

if n < N − 1 then
Send U(`, k + 1,M`) to Pn+1;

Restrict and compute FAS correction
U(`+ 1, k + 1) = Restrict

(
U(`, k + 1)

)
;

F (`+ 1, k + 1) = FEval
(
U(`+ 1, k + 1)

)
;

τ (`+ 1, k + 1) =
FAS

(
F (`, k), F (`+ 1, k + 1), τ (`, k + 1)

)
;

Coarsest level: get new initial value, sweep, and send
if n > 0 then

Receive U(L− 1, k, 0) = U(L− 1, k,ML−1) from
Pn−1;

U(L− 1, k + 1), F (L− 1, k + 1) =
SDCSweep

(
U(L− 1, k), F (L− 1, k), τ (L− 1, k)

)
;

if n < N − 1 then
Send U(L− 1, k + 1,ML−1) to Pn+1;

Return up the V -cycle
for ` = L− 2 . . . 1 do

Interpolate (time and space)
U(`, k + 1) = Interpolate

(
U(`+ 1, k + 1)

)
;

F (`, k + 1) = FEval
(
U(`, k + 1)

)
;

Get new initial value, interpolate correction, sweep
if n > 1 then

Receive U(`, k + 1, 0) = U(`, k + 1,M`) from
Pn−1;
U(`, k + 1, 0) =
Interpolate

(
U(`+ 1, k + 1, 0)

)
;

U(`, k + 1), F (`, k + 1) =
SDCSweep

(
U(`, k + 1), F (`, k + 1), τ (`, k + 1)

)
;

Interpolate at finest level (time and space)
U(0, k + 1) = Interpolate

(
U(1, k + 1)

)
;

F (0, k + 1) = FEval
(
U(0, k + 1)

)
;

if n > 0 then
Receive U(0, k+ 1, 0) = U(0, k+ 1,M0) from Pn−1;
U(0, k + 1, 0) = Interpolate

(
U(1, k + 1, 0)

)
;

Algorithm 1: PFASST iteration k on processor Pn

the multigrid-like V-cycle in more detail, cf. also Fig. 6. Here,
we use the following functions:
• FEval(x): evaluate the right-hand side function f(t, x)

for the initial value problem (9) given the solution x (e. g.
using PEPC).

• SDCSweep(x, y, τ): perform one SDC sweep (iteration)
given the current solution x, y = FEval(x) and FAS
correction τ to generate a new solution z. This also



returns FEval(z) so that the FAS correction can be
computed.

• FAS(FC , FF , τF ): Compute the cumulative FAS correc-
tion using (16) and (17) given the coarse and fine function
evaluations FC and FF , and the fine FAS correction τF .

• Interpolate(x) and Restrict(x): Compute the
interpolation/restriction of the coarse/fine solution to the
fine/coarse grid.

4) Parallel speedup and efficiency: The parallel speedup S
of PFASST can be estimated by comparing the cost of a PFASST
run with PT processors to a serial SDC method. The parallel
efficiency then is S/PT . In all comparisons, we assume that
the serial SDC and PFASST method compute the solution to
approximately the same accuracy, and hence we denote by Ks

and Kp respectively the number of serial and parallel iterations
needed to achieve the desired accuracy.

Let τ` denote the cost of the method used for each of M`

sub-steps of the SDC sweep on level `. Hence Υ0 = M0τ0 is
the cost of one SDC sweep at the finest level, and the total
cost for PT steps of the serial SDC method is

Cs = PTKsΥ0. (21)

In the PFASST algorithm, let n` denote the total number of
SDC sweeps performed at level ` per PFASST iteration and Γ`
the additional cost of the operations performed for the FAS
procedure (restriction, interpolation, and additional function
evaluations). If the PFASST iterations converge to the required
accuracy in Kp iterations, the total cost on PT processors
assigned to the temporal parallelization is

Cp = PTnLΥL +Kp

L∑
`=0

(n`Υ` + n`Γ`). (22)

Using these definitions, the parallel speedup is

S(PT ) =
Cs
Cp

=
PTKsΥ0

PTnLΥL +Kp

∑L
`=0(n`Υ` + n`Γ`)

. (23)

For a two level PFASST run (L = 1) the speedup becomes

S(PT ;α) =
PTKs

PTnLα+Kp(1 + nLα+ β)
, (24)

where α = Υ1/Υ0 is the ratio between a sweep at the
coarse level (` = 1) and a sweep at the fine level (` = 0).
Reducing the runtime of coarse sweeps by also coarsening
in space reduces Υ1 and α and hence increases the speedup
S(PT ;α) for fixed PT . The parameter β is the total overhead
per iteration relative to Υ0. Note that the maximum speedup
in the two level case is bounded by

S(PT ;α) ≤ Ks

Kp
PT (25)

independently of α. This allows for a maximum parallel
efficiency of Ks/Kp in contrast to the much stricter bound
of 1/Kp in parareal, cf. [19]. Nevertheless, as with parareal,
PFASST cannot provide optimal efficiency and is hence con-
sidered as an additional direction for parallelization on top of
a saturated spatial parallelization.

IV. NUMERICAL RESULTS

First we analyze the accuracy and order of integration of
SDC and PFASST using our model problem as introduced in
Section II. Since no analytical solution is available for this
problem (an issue that is typical for 3D fluid flow studies, at
least when using open boundaries), we perform a reference
run for N = 10,000 particles with eighth-order SDC and
very fine time step sizes, i. e. ∆t = 0.01, from t0 = 0 to
T = 16. In addition, to eliminate spatial errors, the evaluations
of the right-hand sides of Eqs. (5) and (6) are performed
using a direct solver with theoretical complexity O(N2).
Clearly, this procedure is unfeasible for larger number of
particles where fast summation methods must be used, but
it identifies a set of parameters for which SDC and PFASST
yield solutions of comparable accuracy. Thus, we distinguish
two different scenarios in the following: accuracy checks are
performed using direct summation on small ensemble sizes
(see Section IV-A) and performance test are performed with
the Barnes-Hut tree code PEPC (see Section IV-B). For the
latter, we monitor the residuals of PFASST to ensure that it
properly converges towards the SDC solution.

A. Accuracy analysis for a direct particle code

Fig. 7a shows the results of the accuracy tests using
time-serial SDC only. Here, the relative maximum errors of
N = 10,000 particle positions are depicted at time T = 16 for
different step sizes and numbers of SDC sweeps. In each run,
three Gauss-Lobatto nodes are used as intermediate points on
the fine level, see [34] for a detailed discussion on the choice
of quadrature nodes. In addition, we indicate theoretical curves
for second-, third- and fourth-order convergence. Clearly, SDC
with two, three and four iterations matches these curves down
to the limit induced by the number of intermediate collocation
nodes used, thus verifying the expected corresponding integra-
tion orders.

To obtain third- and fourth-order accuracy, as commonly ap-
plied in recent vortex method implementations, see e. g. [27],
three and four sweeps of SDC are required in the serial case as
expected. In Fig. 7b, these time-serial SDC runs are depicted
as dashed/dotted lines. In addition, we show parallel PFASST
runs with one and two iterations on three fine and two coarse
Gauss-Lobatto nodes. To obtain a good approximation to third-
order SDC, one PFASST iteration is sufficient, while for a
fourth-order scheme, two iterations are necessary. However,
to achieve a comparable level of accuracy as SDC, PFASST
requires two coarse sweeps and one fine sweep per PFASST
iteration in our case. In Fig. 7b, PFASST(X,Y, PT ) runs with
X = 1, 2 iterations, Y = 2 coarse sweeps and PT = 8, 16 time
slices are shown and compared to serial SDC runs, both now
indicating similar accuracy orders and levels. For fourth-order
integration, fourth-order SDC (SDC(4) in short) with step size
∆t = 0.5 and PFASST with two iterations, two coarse sweeps
and step size ∆t = 0.5 yield an accuracy of approximately
10−7 in terms of the relative maximum error for the particle
positions with respect to our high-order SDC reference run
and can thus be compared in terms of parallel performance.
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Fig. 7: Relative max. error of N = 10,000 particle positions at time T = 16 vs. time step size ∆t for SDC(X) with
X = 2, 3, 4 sweeps on three fine nodes (left) and PFASST(X,Y, PT ) using X = 1, 2 iterations, each with Y = 2 coarse sweeps
and PT = 8, 16 time ranks, three fine and two coarse nodes (right). Direct summation of spherical vortex sheet with sixth-order
algebraic kernel, σ ≈ 18.53h, h ≈ 0.035.

B. Speedup results for PFASST and PEPC

The space-parallel version of PEPC provides excellent scala-
bility with up to 2 billion particles on PS = 300k cores of the
IBM Blue Gene/P installation JUGENE at Jülich Supercom-
puting Centre, provided the number of particles per compute
core is sufficiently large (see Section III-A). In particular, PEPC
scales well down to 2,000 particles/core up to PS = 8,192
cores and down to 300 particles per core up to PS = 512
cores.

To analyze the additional speedup gained by applying
PFASST, we use the example of the spherical vortex sheet
as described in Section IV-A for Nsmall = 125,000 and
Nlarge = 4,000,000 particles on JUGENE. We have seen that
in these cases PEPC with purely spatial parallelism scales well
up to approximately PS = 512 and PS = 2,048 nodes,
respectively. Therefore, we take these scenarios (Nsmall on
PS = 512 nodes, Nlarge on PS = 2,048 nodes) as the basis
for the time-serial SDC(4) runs with ∆t = 0.5 according to
our results of Section IV-A.

To obtain a fast coarse and an accurate fine propagator for
PFASST, we need to define the process of spatial coarsening
in the context of particle methods. In the context of the
Barnes-Hut approach, this can be done through the multipole
acceptance criterion as explained in Section III-A. For ϑ ap-
proaching zero, the results (and the runtimes) of the tree code
converge to the result (and the runtimes) of a direct summation.
Thus, smaller ϑ yield better and slower approximations for
the fine propagator, as e. g. higher-order Finite Differences
schemes do in the case of mesh-based approaches [21], while
larger ϑ yield a faster but less accurate coarse propagator. For
the fine and coarse propagators of PFASST(2, 2, PT ), we define

ϑ = 0.3 and ϑ = 0.6, respectively, both with ∆t = 0.5. We
then note:

• For Nsmall on PS = 512 nodes, the ratio between PEPC
runs with ϑ = 0.3 and with ϑ = 0.6 is approx. 2.65, for
Nlarge on PS = 2,048 nodes we find a factor 3.23. This
corresponds to

αsmall =
2

2.65 · 3 and αlarge =
2

3.23 · 3 , (26)

in (24), since PFASST uses two collocation nodes on the
coarse and three collocation nodes on the fine level.

• To check for convergence of PFASST, we define the
residual as the difference between the solution of iteration
n and iteration n + 1 of PFASST. PFASST(2, 2, PT ) runs
with PT = 2 time slices and ϑ = 0.3 on both levels
yield residuals of 1.93 · 10−5 and 1.90 · 10−5 on slice
1 and 2 after the iterations of the last time step, while
PFASST(2, 2) runs with ϑ = 0.6 on the coarse level give
1.93 · 10−5 and 5.22 · 10−5 on slice 1 and 2. For the
largest run with PT = 32 time slices we find 6.64 · 10−7

on the first and 0.11 · 10−5 on the last time slice with
ϑ = 0.6 on the coarse level.

Therefore, modifying the multipole acceptance criterion of
Barnes-Hut tree codes is a valid and convenient possibility
for particle methods to implement the coarsening required
in PFASST. The approach is not inhibiting the convergence
of PFASST in the examples studied here and provides an
acceleration of at least 2.65 for function evaluations of the
coarse propagator. As for mesh-based methods, this approach
controls the approximation quality of the right-hand side of
the evolution equations (5) and (6).
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Fig. 8: Speedup of PEPC and PFASST(2, 2, PT ) compared to SDC(4), ∆t = 0.5, with different number PT of parallel-in-time
instances on JUGENE, spherical vortex sheet setup with sixth-order algebraic kernel, σ ≈ 18.53h, h ≈ 0.035. The small
example used PS = 512 nodes (2,048 cores) for the spatial parallelization (which corresponds to one time instance in the
plot), the larger one PS = 2,048 nodes (8,192 cores). Using PT = 32 time slices we end up with 16,384 nodes (65,536 cores)
for the small example and 65,536 nodes (262,144 cores) for the larger one.

With these facts at hand, we present the results of
the speedup measurements in Fig. 8. The dashed lines
S(PT ;αsmall) and S(PT ;αlarge) represent the theoretical
speedup based on equation (24). Starting from serial SDC(4)
runs on PS = 512 and PS = 2,048 nodes (corresponding to
2,048 and 8,192 cores on JUGENE) for Nsmall and Nlarge, re-
spectively, PFASST(2, 2) resembles the theoretically predicted
scaling very well, even up to extreme scales with 65,536 and
262,144 cores. We stress that speedup of PFASST is measured
against the runtime of the time-serial solution with already
saturated spatial parallelization. While the parallel efficiency
of PFASST is limited according to Eq. (24), time-parallelism
allows additional speedup by a factor of seven for the large
and a factor of five for the small example. We note that it
is not advisable and may even not be possible to use that
many cores for purely spatial decomposition of these problem
sizes: in our cases, only 16 particles per core for the large and
barely 2 particles per core for the small setup would remain
after distributing the particles across all available cores in a
purely space-parallel approach.

V. CONCLUSION AND OUTLOOK

In this work, we describe and analyze a unique combination
of N -body solvers with parallel time integration schemes. We
verify integration order and accuracy for SDC and identify
matching PFASST variants for a direct summation algorithm
with vortex particles. To efficiently use a space-time parallel
N -body code on large scales, the algorithmic complexity of
the space-parallel part must be reduced and coarse/fine prop-
agators for the time-parallel part are required. We show that
both goals can be achieved by means of the multipole-based
Barnes-Hut approach. Combining the space-parallel Barnes-
Hut tree code PEPC with PFASST, we are able to simulate four

million particles on 262,144 cores on JUGENE, which is – to
the best of our knowledge – the largest space-time parallel run
to date.

In the PFASST approach, the parallel efficiency achieved
depends to a large extent on the reduction in computational
cost of the coarse problem. For grid-based problems, spatial
multigrid techniques can be used to efficiently create a hier-
archy of coarse problems, but this approach is not directly
applicable to particle systems. Our approach of using the
multipole acceptance criterion in Barnes-Hut tree codes is
shown to be effective, but more elaborate strategies could
further increase the overall efficiency. One possibility is to use
a splitting of the force summation by spatial proximity. Then
coarse problems could update the contribution from well sepa-
rated particle clusters less frequently than nearby clusters. The
spatial decomposition implicit in the tree structure provides a
natural hierarchy of spatial scales, and such a splitting could
be combined with the acceptance criterion model used here.

The novel combination of PEPC and PFASST presented in
this work appears to be scalable to machines with even more
cores than used here: the addition of time-parallelism con-
siderably extends the intrinsic strong scaling limit of classical
space-parallel codes and the peak performance for the coupling
of both concepts has seemingly not been reached yet.
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