
SQRT() Incidence: Next-Gen GPU
From: "Luo, Ye" <yeluo@anl.gov>
Subject: Re: LED
Date: September 18, 2019 at 2:41:16 PM PDT
To: Aiichiro Nakano <anakano@usc.edu>, Ken-Ichi Nomura <knomura@usc.edu>
Cc: Pankaj Rajak <rajak@usc.edu>

We have no luck with GCC for offload sqrt() as well. I'm giving high hopes to Intel delivering the beta compiler release in two weeks. Intel fortran side is lagging behind
and none of the kernels Pankaj and I made works so far. Once we verified the situation with the beta release, we will move or file bug reports.

Best,
Ye

> From: Aiichiro Nakano <anakano@usc.edu>
> Sent: Wednesday, September 18, 2019 4:37 PM
> To: Ken-Ichi Nomura <knomura@usc.edu>
> Cc: Luo, Ye <yeluo@anl.gov>; Pankaj Rajak <rajak@usc.edu>
> Subject: Re: LED
>
> Thank you very much, Kenichi. Something like this for now?
>
> On Sep 18, 2019, at 2:24 PM, Ken-Ichi Nomura <knomura@usc.edu> wrote:
>
> Dear All,
>
> Summary of today’s work. Code compilation was successful by commenting out sqrt(). We would need to use a hand-written sqrt() for now.
>
> # env vars for profiling
> export LIBOMPTARGET_PROFILE=T,usec
> export LIBOMPTARGET_DEBUG=1
>
> # Intel compiler + IRIS GPU test
> qsub -I -q iris -t 30 -n 1
> export MODULEPATH=/soft/restricted/CNDA/modulefiles
> module load omp
> icpx -fiopenmp -fopenmp-targets=spir64=-fno-exceptions led.C four1s.c -o led
>
> # GNU compiler + NVIDIA GPU test
> qsub -I -q gpu_mules -t 30 -n 1
> export MODULEPATH=$MODULEPATH:/soft/restricted/intel_dga/modulefiles:/home/yeluo/privatemodules
> module load openmpi/2.1.6-gcc gcc/9.2
> /soft/libraries/mpi/openmpi/2.1.6/bin/mpic++ -fopenmp -foffload=nvptx-none -foffload=-lm led.C four1s.c -o led

Basic Computer Architecture

M. M. Mano, Computer System Architecture (Prentice-Hall)

Taek-Jun Kwon Proposal

How Time Consuming Is SQRT()?

• Latency: How many clock cycles to compete 1 operation
• Throughput: Cycles before the next operation can be issued

Hardware Implementation of SQRT()
• Newton-Raphson method

• Series expansion

Simple SQRT() Routine
• Initial Guess

where 0.1 < r2 < 1.0
c0 = 0.188030699; c1 = 1.48359853
c2 = –1.0979059; c3 = 0.430357353
• Newton-Raphson Refinement

𝑟 = 𝑠
!
"

≈ 𝑓 𝑠 = 𝑐# + 𝑐!𝑠 + 𝑐"𝑠" + 𝑐$𝑠$
= 𝑐# + 𝑠× 𝑐! + 𝑠× 𝑐" + 𝑠×𝑐$

𝛿𝑠 ← 𝑠 −)𝑓(𝑠 "

)𝑟 ← 𝑓 𝑠 + 𝛿 ⁄𝑠 2 𝑓(𝑠

M.P. Allen & D.J. Tildesley, Computer Simulation of
Liquids (Oxford Univ. Press, Oxford, 1987) p.143

Fused multiply-add (FMA) unit

𝑎 ← 𝑎 + 𝑏×𝑐
with 1-cycle throughput

𝛅𝐬

𝑟 − 𝑓 𝑠 ≈ !"
!#
𝛿𝑠

!"
!#
= $

%
𝑠&$/% ≈ $

%((#)

SIMD/Vector Operation
• Single-instruction multiple-data (SIMD) parallelism: An

arithmetic operation is operated on multiple operand-pairs
stored in vector registers, each of which can hold multiple
double-precision numbers.

Example: Vector multiplier (VMUL) loads data from two vector registers, R1 and R2,
each holding 4 double-precision numbers, concurrently performs 4 multiplications, and
stores the results on vector register R3.

• Peak performance enhancement on top of FMA.

Vector Processing at CARC
Node information
https://www.carc.usc.edu/user-information/user-guides/hpc-basics/discovery-resources

Intel & AMD advanced vector extension (AVX):
• AVX2 operates on 4 double-precision floating-point numbers
• AVX512 8

Theoretical Peak Flop/s

Example: Xeon-6130

𝑓 = 2.1 [GHz]
𝑛%&'(= 16
𝑛)*+ = 2
of double-precision (64 bits) operands per AVX-512 register:
𝑛,(%-&' = ⁄512 64 = 8

∴ 𝑃 = 2.1×16×8×2×2 = 1075.2 [⁄G@lop s]

𝑃 ⁄G@lop s = ⏞𝑓
%.&%/ [123]

× 𝑛%&'(
&6 %&'(7

× 𝑛,(%-&'
&6 &8('9:;7/,(%-&'

×2 𝑛)*+
&6)*+

https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html

