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1 Introduction

Wavelets are a mathematical tool for hierarchically decomposing functions. Wavelets
allow any function to be described in terms of a coarse overall shape, plus details
that range from broad to narrow. Regardless of whether the function of interest is an
image, a curve, or a surface, wavelets provide an elegant technique for representing
the levels of detail present.

Although wavelets have their roots in approximation theory [6] and signal process-
ing [15], they have recently been applied to many problems in computer graphics.
These graphics applications include image editing [1] and compression [7], automatic
level-of-detail control for editing and rendering curves and surfaces [9, 11, 14], sur-
face reconstruction from contours [16], and fast methods for solving simulation prob-
lems in global illumination [3, 12, 19] and animation [13]. This primer is intended to
provide those working in computer graphics with some intuition for what wavelets
are, as well as to present the mathematical foundations necessary for studying and
using them.

The remainder of the primer is laid out as follows. In Section 2, we set the stage
by presenting the simplest form of wavelets, the Haar basis. We cover both one-
and two-dimensional wavelet transforms and basis functions. Then in Section 3,
we discuss image compression as a first application of wavelets. In Section 4, we
present the mathematical theory of wavelets based on Mallat’s “multiresolution
analysis” [15], using the Haar wavelets as a running example. The original formu-
lation of multiresolution analysis is applicable to functions defined on the infinite
real line. Following Lounsbery et al. [14], we generalize the theory to functions de-
fined on a bounded interval by making use of block matrices instead of convolution
filters. Section 5 introduces smooth wavelets based on bounded-interval B-splines.
We make use of these spline wavelets in a second application of wavelets, which
we present in Section 6: multiresolution editing of curves and surfaces. Finally, we
include as appendices a brief review of linear algebra and a summary of the matrices
required for B-spline wavelets of low degree.



2 The Haar wavelet basis

The Haar basis is the simplest wavelet basis. We will first discuss how a one-
dimensional function can be decomposed using Haar wavelets, and then describe
the actual basis functions. After that, we will extend both the decomposition and
the basis functions to two dimensions, so that we can make use of wavelets for image
compression in Section 3.

2.1 The one-dimensional Haar wavelet transform

To get a sense for how wavelets work, let’s start out with a simple example. Suppose
we are given a one-dimensional “image” with a resolution of 4 pixels, having the
following pixel values:

8 4 1 3

This image can be represented in the Haar basis, the simplest wavelet basis, as
follows. Start by averaging the pixels together, pairwise, to get the new lower-
resolution image with pixel values:

6 2]

Clearly, some information has been lost in this averaging and downsampling process.
In order to be able to recover the original four pixel values from the two averaged
pixels, we need to store some detail coefficients, which capture that missing infor-
mation. In our example, we will choose 2 for the first detail coefficient, since the
average we computed is 2 less than 8 and 2 more than 4. This single number allows
us to recover the first two pixels of our original 4-pixel image. Similarly, the second
detail coefficient is —1, since 24+ (—1) =1 and 2 — (—1) = 3.

Summarizing, we have so far decomposed the original image into a lower-resolution
2-pixel image version and detail coefficients as follows:

Resolution Averages Detail coefficients
4 (8 4 1 3]
2 (6 2] (2 —1]

Repeating this process recursively on the averages gives the full decomposition:



Resolution Averages Detail coefficients

4 (8 4 1 3]
2 (6 2] (2 —1]
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Finally, we will define the wavelet transform of the original 4-pixel image to be the
single coefficient representing the overall average of the original image, followed by
the detail coefficients in order of increasing resolution. Thus, for the one-dimensional
Haar basis, the wavelet transform of our original 4-pixel image is given by

4 2 2 -1|.

Note that no information has been gained or lost by this process: The original image
had 4 coeflicients, and so does the transform. Also note that, given the transform, we
can reconstruct the image to any resolution by recursively adding and subtracting
the detail coefficients from the lower-resolution versions.

Storing the wavelet transform of the image, rather than the image itself, has a
number of advantages. One advantage of storing the wavelet transform of the image
is that often a large number of the detail coefficients turn out to be very small in
magnitude, as in the larger example of Figure 1. Truncating, or removing, these small
coefficients from the representation introduces only small errors in the reconstructed
image, giving a form of “lossy” image compression. We will discuss this particular
application of wavelets in Section 3, once we have presented the one- and two-
dimensional Haar basis functions.

2.2 One-dimensional Haar wavelet basis functions

In the previous section we treated one-dimensional images as sequences of coeffi-
cients. Alternatively, we can think of images as piecewise-constant functions on the
half-open interval [0, 1). In order to do so, we will use the concept of a vector space
from linear algebra (see Appendix A for a refresher on linear algebra). A one-pixel
image is just a function that is constant over the entire interval [0, 1); we’ll let V° be
the space of all these functions. A two-pixel image has two constant pieces over the
intervals [0,1/2) and [1/2,1). We'll call the space containing all these functions V1.
If we continue in this manner, the space V7 will include all piecewise-constant func-
tions on the interval [0, 1), with the interval divided equally into 27 different pieces.

We can now think of every one-dimensional image with 27 pixels as being an element,
or vector, in V7. Note that because these vectors are all functions defined on the unit
interval, every vector in V7 is also contained in V/T!. For example, we can always
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Figure 1 A sequence of decreasing-resolution approximations to a function (left),
along with the detail coefficients required to recapture the finest approximation
(right). Note that in regions where the true function is close to being flat, a
plecewise-constant approximation is a good one, and so the corresponding detail
coefficients are relatively small.



describe a piecewise-constant function with two intervals as a piecewise-constant
function with four intervals, with each interval in the first function corresponding
to a pair of intervals in the second. Thus, the spaces V7 are nested; that is,

vecvtcv?c ..
This nested set of spaces V7 is called a multiresolution analysis.

Now we need to define a basis for each vector space V7. The basis functions for the
spaces V7 are called scaling functions, and are usually denoted by the symbol ¢. A
simple basis for V7 is given by the set of scaled and translated “box” functions:

$z) = G2z —1i), i=0,...,2—1,
where
1 for0<z<1
o) == { 0 otherwise.

As an example, the four box functions forming the basis for V2 are shown in Figure 2.
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Figure 2 The box basis for V2.

The next step is to choose an inner product defined on the vector spaces V7. The
standard inner product,

(Flo) = [ f@aterde,

for two elements f, g € V7 will do quite well for our running example. We can now
define a new vector space W7 as the orthogonal complement of V7 in V71, In other
words, we will let W7 be the space of all functions in V7*! that are orthogonal to
all functions in V7 under the chosen inner product (see Appendix A for more on
inner products and orthogonality).

A collection of functions ¢Z($) spanning W/ are called wavelets. These basis func-
tions have two important properties:

e the basis functions ¢Z of W7, together with the basis functions (bf of V7 form
a basis for V/*1: and

e every basis function ¢Z of W7 is orthogonal to every basis function (bf of V7
under the chosen inner product.!

!This property is convenient, but not strictly necessary for most of our development of wavelets.



Informally, we can think of the wavelets in W7 as a means for representing the
parts of a function in V/*! that cannot be represented in V7. Thus, the “detail
coeflicients” of Section 2.1 are really coeflicients of the wavelet basis functions.

The wavelets corresponding to the box basis are known as the Haar wavelets, given

by
V@) = @ —i),  i=0,...,%,
where

1 for0<z<1/2
P(x) = -1 forl/2<z<1
0 otherwise.

Figure 3 shows the two Haar wavelets spanning W!.
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Figure 3 The Haar wavelets for W.
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Before going on, let’s run through our example from Section 2.1 again, but now
applying these more sophisticated ideas.

We begin by expressing our original image Z(z) as a linear combination of the box
basis functions in V%

I(z) = cgop(x) + F () + 3o3(x) + c3d3(x).

A more graphical representation is

I(z) = 8 x I

+ 4 x 1
+ 1 x 1
+ 3 X 1
Note that the coefficients ¢2,...,c3 are just the four original pixel values [8,4, 1, 3].

We can rewrite the expression for Z(x) in terms of basis functions in V! and W,



using pairwise averaging and differencing:

I(x) = codolz) + cidi(e) + dydbg(z) + dii(e)

= 6 x l
+ 2 X [ 1
.
+ 2 X |
—
+ -1 X _I

These four coeflicients should look familiar as well.

Finally, we’ll rewrite Z(z) as a sum of basis functions in V°, W9 and W1:

I(x) = egadp(x) + dgvg(e) + dyvi(e) + diy(x)

= 4 X

+ 2 X

-1 x I__I

Once again, these four coefficients are the Haar wavelet transform of the original
image. The four functions shown above constitute the Haar basis for V2. Instead
of using the usual four box functions, we can use these four functions representing
the overall average, the broad detail, and the two types of finer detail possible in a
function in V2. The Haar basis for V7 with j > 2 includes these functions as well
as narrower translates of the wavelet ().
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Note that for the sake of clarity, we have not normalized the basis functions given
above (see Appendix A for an explanation of normalization). If we normalize the
basis functions, we replace our earlier definitions with

$l(x) = 2420w - i)
Gle) = 2122 — ).

This normalization also modifies the wavelet transform somewhat: When consider-

ing two neighboring values, rather than dividing their sum by 2 and their difference
by 2, we divide both the sum and the difference by /2.



2.3 Two-dimensional Haar wavelet transforms

In preparation for image compression, we need to generalize Haar wavelets to two
dimensions. First, we will consider how to perform a wavelet transform of the pixel
values in a two-dimensional image. Then in the next section we will describe the
scaling functions and wavelets that form a two-dimensional wavelet basis.

There are two ways we can use wavelets to transform or decompose the pixel val-
ues within an image. Each of these is a generalization to two dimensions of the
one-dimensional wavelet transform described in Section 2.1. Note that a multi-
dimensional wavelet transform is frequently referred to in the literature as a wavelet
decomposition.

To obtain the standard decomposition [2] of an image, we first apply the one-
dimensional wavelet transform to each row of pixel values. This operation gives us an
average value along with detail coefficients for each row. Next, we treat these trans-
formed rows as if they were themselves an image, and apply the one-dimensional
transform to each column. The resulting values are all detail coefficients except for
a single overall average coefficient. We illustrate each step of the standard decom-
position in Figure 4.

The second type of two-dimensional wavelet transform, called the non-standard de-
composition, alternates between operations on rows and columns. First, we perform
one step of horizontal pairwise averaging and differencing on the pixel values in
each row of the image. Next, we apply vertical pairwise averaging and differencing
to each column of the result. To complete the transformation, we repeat this process
recursively on the quadrant containing averages in both directions. Figure 5 shows
all the steps involved in the non-standard decomposition of an image.

2.4 Two-dimensional Haar basis functions

The two methods of decomposing a two-dimensional image yield coefficients that
correspond to two different sets of basis functions. The standard decomposition of
an image gives coefficients for a basis formed by the standard construction [2] of a
two-dimensional basis. Similarly, the non-standard decomposition gives coefficients
for the non-standard construction of basis functions.

The standard construction of a two-dimensional wavelet basis consists of all possible
tensor products of one-dimensional basis functions. For example, when we start with
the one-dimensional Haar basis for V2, we get the two-dimensional basis for V2 that
is shown in Figure 6.

The non-standard construction of a two-dimensional basis proceeds by first defining
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Figure 4 Standard decomposition of an image.
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Figure 5 Non-standard decomposition of an image.
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Figure 6 The standard construction of a two-dimensional Haar wavelet basis
for V2. In the unnormalized case, functions are 4+1 where plus signs appear,
—1 where minus signs appear, and 0 in gray regions.

a two-dimensional scaling function,

o(z,y) = o(z)(y),

and three wavelet functions,

oY(x,y) == o(x)d(y)
Yo, y) = Y(z)(y)
V(@ y) = P(x)P(y).

The basis consists of a single coarse scaling function along with all possible scales
and translates of the three wavelet functions. This construction results in the basis
for V2 shown in Figure 7.

We have presented both the standard and non-standard approaches to wavelet trans-
forms and basis functions because they each have advantages. The standard decom-
position of an image is appealing because it can be accomplished simply by perform-
ing one-dimensional transforms on all the rows and then on all the columns. On the
other hand, it is slightly more efficient to compute the non-standard decomposition
of an image. Fach step of the non-standard decomposition computes one quarter of
the coefficients that the previous step did, as opposed to one half in the standard
case.

Another consideration is the support of each basis function, meaning the portion
of each function’s domain where that function is non-zero. All of the non-standard

11
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Figure 7 The non-standard construction of a two-dimensional Haar wavelet basis for V2.

basis functions have square supports, while some of the standard basis functions
have non-square supports. Depending upon the application, one of these choices
may be more favorable than another.

3 Application I: Image compression

In this section we discuss image compression as an application of wavelets to com-
puter graphics. First we define what we mean by compression, and then we outline a
general method and apply it to images using a two-dimensional Haar wavelet basis.
The approach presented here is only introductory; for a more complete treatment
of wavelet image compression, see the article by DeVore et al. [7].

3.1 Compression

The goal of compression is to express an initial set of data using some smaller set of
data, either with or without a loss of information. For instance, suppose we are given

a function f(z) expressed as a weighted sum of basis functions ug(z), ..., upr—1(2):
M-1
=0

The data set in this case consists of the coefficients cq,...,cpr—1. We would like

to find a function approximating f(z) but requiring fewer coefficients, perhaps by
using a different basis. That is, given a user-specified error tolerance e (for lossless

12



compression, € = 0), we are looking for

M'—1
flz) = Z_: cii(a)

such that M’ < M and ||f(z)— f(z)|| < ¢ for some norm (see Appendix A for
more on norms). In general, one could attempt to construct a set of basis func-
tions g, ..., up—1 that would provide a good approximation with few coefficients.
We will focus instead on the simpler problem of finding a good approximation in a

fixed basis.

3.2 L, compression

One form of the compression problem is to order the coefficients c¢g,...,cpr—1 so
that for every M’ < M, the first M’ elements of the sequence give the best approx-

imation f(z) to f(2) as measured in the Ly norm. As we show here, the solution to
this problem is straightforward if the basis is orthonormal.

Let o be a permutation of 0,..., M — 1, and let f(z) be a function that uses the
coefficients corresponding to the first M’ numbers of the permutation o:

M'—1

f@) = 3 eofiytiag-

=0
The square of the L, error in this approximation is given by

2

@)= J@)|, = (@)= F@)] f) - f(a)

M-1 M-1

= (D oo | D Ca(j)ua<z>>
=M 7=M'
M-1 M-1

= Co(i)Ca () (Ua(i) | Ua(s)
=M j=M'
M-1

= (Ccr(i))z‘
=M

The last step follows from the assumption that the basis is orthonormal. We conclude
that in order to minimize this error for a given M’, the best choice for o is the
permutation that sorts the coefficients in order of decreasing magnitude; that is, o
satisfies |c, o) > -+ > [eq(ar—1)l-

Figure 1 demonstrated how a one-dimensional function could be transformed by a
filter bank operation into coeflicients representing the function’s overall average and
various resolutions of detail. Now we repeat the process, this time using normalized

13



Haar basis functions satisfying <q§f(w) | (bf(x» =1 and <¢Z(w) | ¢f(w)> = 1. We can
apply Ly compression to the resulting coefficients simply by removing or ignoring
the coeflicients with smallest magnitude. By varying the amount of compression, we
obtain a sequence of approximations to the original function, as shown in Figure 8.

LL

16 out of 16 coefficients 14 out of 16 coefficients
J_"LI_H_’_ J_LLI_I__._._
12 out of 16 coefficients 10 out of 16 coefficients
N . Y
8 out of 16 coefficients 6 out of 16 coefficients
. —
4 out of 16 coefficients 2 out of 16 coefficients

Figure 8 Coarse approximations to a function obtained using L» compression:
detail coefficients are removed in order of increasing magnitude.

3.3 Wavelet image compression in the [, norm

Wavelet image compression using the L; norm can be summarized in three steps:

1. Compute coefficients representing an image in a normalized two-dimensional
Haar basis.

2. Sort the coefficients in order of decreasing magnitude to produce the sequence

Co(0)s -+ -2 Co(M—1)-
3. Starting with M’ = M, find the least M’ for which Zf\i]_\/},(cg(i))Q < €2

The first step is accomplished by applying either of the two-dimensional Haar
wavelet transforms described in Section 2.3, making sure to use normalized basis
functions. Any standard sorting technique will work for the second step; however,
for large images sorting becomes exceedingly slow.

The pseudocode below outlines a more efficient method that only partitions subsets
of the coefficients when necessary to achieve the desired level of error. We use u to

14



denote a set of coefficients under consideration (“maybes”), and s to denote a set
of coefficients that will be used for the compressed image (“keepers”). The square
of the Lo error is accumulated in s. This method is similar to quicksort in the way
it partitions coefficients using a pivot element, but the process is only repeated on
one side of the partition.

Kk — 0
we—A{co,...,epm—1}
s— 10
repeat
p — pivot chosen from pu
P R N
G —1{cen:lel < ol}
A5<_Zceﬁ c?
if s + As > ¢? then
K— kK U«
p—=7p
else
po— o
discard coefficients in 3
s— s+ As
end if

until s ~ ¢?

Another efficient approach to L, compression is to repeatedly discard all coefficients
smaller in magnitude than a threshold, increasing the threshold by a factor of two
in each iteration, until the allowable level of error is achieved. This method was used
to produce the images in Figure 9. These images demonstrate the high compression
ratios wavelets offer, as well as some of the artifacts they introduce.

(d)

Figure 9 L, wavelet image compression: The original image (a) can be represented
using (b) 21% of its wavelet coefficients, with 5% relative L error; (c¢) 4% of its
coefficients, with 10% relative Ls error; and (d) 1% of its coefficients, with 15%
relative Lo error.
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3.4 Wavelet image compression in other L, norms

Images that have been compressed using the L, norm can exhibit large errors so
long as they are confined to small areas. An alternative approach to compression
uses the L., norm to ensure that no pixel has error greater than ¢. Shown below is
the pseudocode for a “greedy” L., compression scheme:

for each pixel (z,y) do
Sla]ly] — 0
end for
for each coefficient ¢; do
8"« & + |error from eliminating ¢;]|
if &’ < € everywhere then
eliminate coefficient ¢;
& — &
end if

end for

Note that this algorithm’s results depend on the order in which coeflicients are vis-
ited. One could imagine obtaining very different images (and amounts of compres-
sion) by eliminating fine-scale wavelet coefficients first, rather than small coefficients
first, for example. One could also imagine running a more sophisticated constrained
optimization procedure whose goal is to select the minimum number of coefficients
subject to the error bound.

DeVore et al. [7] suggest that the L; norm is best suited to the task of image
compression. Rather than repeat their results, we refer the interested reader to
their article. We also note that the algorithm for L., compression above can easily
be modified to measure Ly error: Instead of eliminating coefficients when 6’ < ¢
everywhere, do so only when the sum of all entries in ¢’ is smaller than e.

4 Multiresolution analysis

The Haar wavelets we have discussed so far are just one among many sets of basis
functions that can be used to treat functions in a hierarchical fashion. In this sec-
tion, we develop a mathematical framework known as multiresolution analysis for
studying wavelets. Our examples will continue to focus on the Haar basis, but the
more general mathematical notation used here will come in handy for discussing
other wavelet bases in later sections. Multiresolution analysis relies on many results
from linear algebra; some readers may wish to consult Appendix A for a brief review.

The starting point for multiresolution analysis is a nested set of vector spaces

Ve c vt cvE -
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As 7 increases, the resolution of functions in V7 increases. The basis functions for
the space V7 are known as scaling functions.

The next step in multiresolution analysis is to define wavelet spaces. For each j,
we define W7 as the orthogonal complement of V7 in V7', This means that W/
includes all the functions in V7*! that are orthogonal to all those in V7 under some
chosen inner product. The functions we choose as a basis for W7 are called wavelets.

4.1 A matrix formulation for refinement

It is often convenient to put the different scaling functions (bf (z) for a given level j
together into a single row matrix,

®i(a) = [ghlr) - dhyy(2)];

where M is the dimension of V7. We can do the same for the wavelets:

W(z) = [d(a) - Vi (@),
where N is the dimension of WY.

The condition requiring that the subspaces V7 be nested is equivalent to requiring
that the scaling functions be refinable. That is, for all j = 1,2, ... there must exist
a constant matrix P7 such that

M) = ®i(x) P (1)

In other words, each scaling function at level 7 — 1 must be expressible as a linear
combination of “finer” scaling functions at level j. Note that if V7 and V7/~! have
dimensions M and M’, respectively, then P’ is an M x M’ matrix.

Since the wavelet space W7~ is by definition also a subspace of V7, we can write the
wavelets ¥/=1(z) as a product of the scaling functions ®/(z) and another constant
matrix ¢7:

W) = @i(2) Q" (2)

Thus, each wavelet at level j — 1 is also expressible as a linear combination of “finer”
scaling functions at level 5. If V7 and V/~! have dimensions M and M’, respectively,
then W7~! has dimension M — M’, and @’ must be an M x (M — M’') matrix.

Example: In the Haar basis, at a particular level j there are M = 27
scaling functions and N = 27 wavelets. Thus, there must be refinement
matrices describing how the two scaling functions in V1 and the two

17



wavelets in W1 can be made from the four scaling functions in V?2:

pP? =

e Y e R S
[ e =)
&
=
ol
QO
[N~}

[l
e Y e R S
e T e Bl

Remark: In the case of wavelets constructed on the unbounded real
line, the columns of P/ are shifted versions of one another, as are the
columns of Q7. One column therefore characterizes each matrix, so P’
and Q7 are completely determined by sequences («.oyP-1,P0,P1,--.)
and (...,9-1,90,¢1,--.), which also do not depend on j. Equations (1)
and (2) therefore often appear in the literature as expressions of the
form

Plz) = Zpﬂb(?w—i)
P(z) = Zf]ﬂb(%—i)-

Note that equations (1) and (2) can be expressed as a single equation using block-
matrix notation:

[0t [ wimt] = @l [Pl Qi (3)

Example: Substituting the matrices from the previous example into
Equation (3) along with the appropriate basis functions gives

[60 &1 vo il = [ &1 ¢ 3]

O O ==

—__= O O
|

O O ==

—__= O O

It is important to realize that once we have chosen scaling functions and their
synthesis filters P7, the wavelet synthesis filters Q7 are somewhat constrained. In
fact, since all functions in ®/~!(x) must be orthogonal to all functions in ¥/ ~1(z),
we know (¢, " |¥7") = 0 for all k and {. We can rewrite this condition using the
compact matrix notation of Appendix A to get

(@t [wi7h)] = o. (4)
Substituting Equation (2) into Equation (4) yields

[(@/~!|27)]Q" = o. (5)

18



The columns of @7 must therefore form a basis for the null space of [(®/~1 | ®7)] (see
Golub and Van Loan [10] for a discussion of null spaces). There are a multitude of
bases for the null space of a matrix, implying that there are many different wavelet
bases for a given space W7. Ordinarily, we impose further constraints in addition to
the orthogonality requirement to uniquely determine the Q7 matrices. For example,
the Haar wavelet synthesis matrix can be found by requiring the least number of
non-zero entries in each column.

4.2 The filter bank

The previous section showed how scaling functions and wavelets could be related
by matrices. In this section, we show how matrix notation can also be used for the
decomposition process outlined in Section 2.1.

Consider a function in some scaling function space V. Let’s assume we have the
coefficients of this function in terms of some scaling function basis. We can write
these coefficients as a column matrix of values C" = [c¢f --- ¢}, _,]". The coeffi-
cients ¢} could, for example, be thought of as pixel colors, or alternatively, as the
z- or y-coordinates of a curve’s control points in IR?.

Suppose we wish to create a low-resolution version C"~! of €™ with a smaller
number of coefficients M'. The standard approach for creating the M’ values of ¢!
is to use some form of linear filtering and downsampling on the M entries of C".
This process can be expressed as a matrix equation

clo = AnCT (6)
where A" is a constant M’ x M matrix.

Since C™~! contains fewer entries than C”, it is intuitively clear that some amount
of detail is lost in this filtering process. If A™ is appropriately chosen, it is possible
to capture the lost detail as another column matrix D"~', computed by

Dt = pron (7)

where B” is a constant (M — M') X M matrix related to A™. The pair of matrices A"
and B™ are called analysis filters. The process of splitting the coeflicients C'™ into a
low-resolution version C"~! and detail D"~ ! is called analysis or decomposition.

If A™ and B™ are chosen correctly, then the original coeflicients C'"™ can be recovered
from C"~! and D"~! by using the matrices P" and Q™ from the previous section:

Cn — Pncn—l + QnDn—l‘ (8)

Recovering C" from C"~! and D"~ ! is called synthesis or reconstruction, and in
this context, P™ and Q" are called synthesis filters.
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Example: In the unnormalized Haar basis, the matrices A® and B"
are given by:

A" =

N | —

B" = P

N | —

where blank entries are taken to be zero, and the dots indicate that the
previous row is repeated, shifted right by two columns each time. In fact,

A" = (P™)"/2 and B" = (Q™)" /2 for the Haar basis.

Remark: Once again, the matrices for wavelets constructed on the
unbounded real line have a simple structure: the rows of A7 are shifted
versions of each other, as are the rows of B7. The analysis Equations (6)
and (7) often appear in the literature as

-1 _ J
cr = Z ar—2kCp

¢

J

Z be—akcy
‘

n—1
dk

where the sequences (...,a_1,a9,a1,...)and (...,b_1,bg,b1,...) are the
entries in a row of A” and B™, respectively. Similarly, Equation (8) for
reconstruction often appears as

qo= > (Pk—zzcg_l + Qk—zzd?_l) -
7

Note that the procedure for splitting C™ into a low-resolution part C”~! and a de-
tail part D"~ can be applied recursively to the low-resolution version C"~1. Thus,
the original coefficients can be expressed as a hierarchy of lower-resolution versions
C° ...,C" ! and details D°,..., D" !, as shown in Figure 10. This recursive pro-

cess is known as a filter bank.

Since the original coefficients C™ can be recovered from the sequence C°, D°, D', ..,
D=1, this sequence can be thought of as a transform of the original coefficients,
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A" Cn—l An—l Cn—Z Cl Al

Dn—l Dn—2 DO

Cn

CO

Figure 10 The filter bank.

known as a wavelet transform. Note that the total size of the transform C°, D°, ...,
D1 is the same as that of the original version (", so no extra storage is required.?

In general, the analysis filters A7 and B’ are not necessarily multiples of the synthesis
filters, as was the case for the Haar basis. Rather, A’ and B’ are formed by the
matrices satisfying the relation

@i—L | gi-t v = 7, 9
[ | ] (9)
B

Note that [Pj ‘ Q]] and

—| are both square matrices. Thus, combining Fqua-
B
tions (3) and (9) gives

Al

| = [PiQi] (10)

Although we have not been specific about how to choose matrices A7, B7, P7,

and @7, it should be clear from Equation (10) that and [Pj ‘ Q]] must at

BI
least be invertible.

4.3 Designing a multiresolution analysis

The multiresolution analysis framework presented above is very general. In practice
one often has the freedom to design a multiresolution analysis specifically suited to
a particular application. The steps involved are:

1. Select the scaling functions ®'(z) for each j =0,1,....
This choice determines the nested vector spaces V7, the synthesis filters P7,
and the smoothness — that is, the number of continuous derivatives — of the
analysis.

2However, the wavelet coefficients may require more bits to retain the accuracy of the original
values.
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2. Select an inner product defined on the functions in VO, V1, ...,
This choice determines the Ly norm and the orthogonal complement spaces W7,
Although the standard inner product is the common choice, in general the in-
ner product should be chosen to capture a measure of error that is meaningful
in the context of the application.

3. Select a set of wavelets W/ (z) that span W7 for each j = 0,1,. ...
This choice determines the synthesis filters ¢)7. Together, the synthesis fil-
ters P7 and ()7 determine the analysis filters A7 and B’ by Equation (10).

It is generally desirable to construct the wavelets to have small support and to form
an orthonormal basis for W7. However, orthonormality often comes at the expense
of increased supports, so a tradeoff must be made. In the case of the spline wavelets
presented in Section 5, the wavelets are constructed to have minimal support, but
they are not orthonormal (except for the piecewise-constant case). Wavelets that are
both locally supported and orthonormal (other than Haar wavelets) were thought to
be impossible until Daubechies’ ground-breaking work showing that certain families
of spaces V7 actually do admit orthonormal wavelets of small support [6].

5 Spline wavelets

Until now, the only specific wavelet basis we have considered is the Haar basis. Haar
basis functions have a number of advantages, including:

e simplicity,

¢ orthogonality,

e very compact supports,

e non-overlapping scaling functions (at a given level), and
e non-overlapping wavelets (at a given level),

which make them useful in many applications. However, despite these advantages,
the Haar basis is a poor choice for applications such as curve editing [9] and anima-
tion [13] because of its lack of continuity.

There are a variety of ways to construct wavelets with k& continuous derivatives. One
such class of wavelets can be constructed from piecewise-polynomial splines. These
spline wavelets have been developed to a large extent by Chui and colleagues [4, 5].
The Haar basis is in fact the simplest instance of spline wavelets, resulting when
the polynomial degree is set to zero.

In the following, we briefly sketch the ideas behind the construction of endpoint-
interpolating B-spline wavelets. Finkelstein and Salesin [9] have developed a collec-
tion of wavelets for the cubic case, and Chui and Quak [5] present constructions for
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arbitrary degree. Although the derivations for arbitrary degree are too involved to
present here, in Appendix B we give the synthesis filters for the piecewise-constant
(Haar), linear, quadratic, and cubic cases. The next three sections should paral-
lel the three steps of designing a multiresolution analysis that were described in
Section 4.3.

5.1 B-spline scaling functions

Our first step is to define the scaling functions for a nested set of function spaces.
We'll start with the general definition of B-splines, and then specify how to make
uniformly spaced, endpoint-interpolating B-splines from these.

Given positive integers d and k, with £ > d, and a collection of non-decreasing val-

ues g, ..., Tp+d+1 called knots, the non-uniform B-spline basis functions of degree d
are defined recursively as follows. For ¢ = 0,...,k, and for r = 1,...,d, let?
1 iz, <z<ainq
NO _ [ ; 1+
i) { 0 otherwise
r— X —
Nie) = ———— N7 o) + NI (@),
Ligr — 4 Titr41 — Ti41

The endpoint-interpolating B-splines of degree d on [0, 1] result when the first
and last d + 1 knots are set to 0 and 1, respectively. In this case, the functions
Né(z),...,Ni(z) form a basis for the space of piecewise-polynomials of degree d
with d—1 continuous derivatives and breakpoints at the interior knots x 441, ..., 21 [8].

To make uniformly spaced B-splines that are refinable, we choose k = 27 +d — 1
and 441,..., 7 to produce 2/ equally-spaced interior intervals. This construction
gives 2/ +d B-spline basis functions for a particular degree d and level j. We will use
these functions as the endpoint-interpolating B-spline scaling functions. Figure 11
shows examples of these functions at level j = 1 (two interior intervals) for various
degrees d. Note that the basis functions defined here are not normalized.

If we denote by V7(d) the space spanned by the B-spline scaling functions of degree d
with 2/ uniform intervals, it is not difficult to show that the spaces VO(d), V(d), ...
are nested as required by multiresolution analysis.

The rich theory of B-splines can be used to develop expressions for the entries of the
refinement matrix P/ (see Chui and Quak [5] for details). The columns of P’ are
sparse, reflecting the fact that the B-spline basis functions are locally supported.
The first and last d columns of P7 are relatively complicated, but the remaining
(interior) columns are shifted versions of column d+ 1. Moreover, the entries of these
interior columns are, up to a common factor of 1/2%, given by binomial coefficients.

®The fractions in these equations are taken to be 0 when their denominators are 0.
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Figure 11 B-spline scaling functions for V!(d) with degree d = 0,1,2, and 3.

Example: In the case of cubic splines (d = 3), the matrix P7 for j > 3
has the form

0| =
I Oy H
— o] o
— s O s
— R Oy
— s Oy s
[NCIN] gt
= Ovolw

4
8

where blank entries are taken to be zero, and the dots indicate that the
previous column is repeated, shifted down by two rows each time.

24



5.2 Inner product

The second step of designing a multiresolution analysis is the choice of an inner
product. We’ll simply use the standard inner product here,

(o) = " ) gl de.

5.3 B-spline wavelets

To complete our development of a B-spline multiresolution analysis, we need to
find basis functions for the spaces W7 that are orthogonal complements to the
spaces V7. As shown in Section 4.1, the wavelets are determined by matrices @7
satisfying Equation (5), which we repeat here for convenience:

[(@/~!|27)]Q" = o. (11)

Since this is a homogeneous system of linear equations, there is not a unique solution.
We must therefore impose additional conditions. We could, for example, require the
columns of Q71! to be sparse, and further require a minimal number of consecutive
non-zeros. This approach is taken by Finkelstein and Salesin [9] in their construction
of cubic spline wavelets. This same approach was used to construct the wavelets
summarized in Appendix B. The basic idea is to construct Q71! a column at a time.
The matrices in Appendix B reveal a simple structure for the locations of non-zero
entries; the values are determined by solving the linear system of constraints implied
by Equation (11). Chui and Quak [5] use a slightly different characterization based
on derivative and interpolation properties of B-splines.

5.4 B-spline filter bank

At this point, we have completed the steps in designing a multiresolution analysis.
However, in order to use spline wavelets we will need to implement a filter bank
procedure incorporating the analysis filters A7 and B7. These matrices allow us to
determine C/~! and D’~! from C7 using matrix multiplication as in Equations (6)
and (7). As discussed in Section 4, the analysis filters are uniquely determined by
the inverse relation in Equation (10):

Al

5| - [Pj ‘Qj]_l'

However, when implementing the filter bank procedure for spline wavelets, it is

generally not a good idea to form the filters A7 and B’ explicitly. Although P’
and (7 are sparse, having only O(d) entries per column, A’ and B’ are in general
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dense, so that matrix—vector multiplication would require quadratic instead of linear
time.

Fortunately, there is a better approach. The idea is to first notice that C7=' and D7~!
can be computed from €7 by solving the sparse linear system

it
Di—1

= (V.

Pl

The matrix [Pj ‘ Q’ ] can then be made into a banded matrix simply by interspers-

ing the columns of P? and 7. The resulting banded system can be solved in linear
time using LU decomposition [17].

6 Application II: Multiresolution curves and surfaces

Our second application of wavelets in computer graphics is that of curve design and
editing, as described in detail by Finkelstein and Salesin [9]. Their multiresolution
curves are built from a wavelet basis for endpoint-interpolating cubic B-splines,
which we discussed in the previous section.

Multiresolution curves conveniently support a variety of operations:

e the ability to change the overall “sweep” of a curve while maintaining its fine
details, or “character” (Figure 12);

o the ability to change a curve’s “character” without affecting its overall “sweep”
(Figure 14);

o the ability to edit a curve at any continuous level of detail, allowing an arbi-
trary portion of the curve to be affected through direct manipulation;

e continuous levels of smoothing, in which undesirable features are removed
from a curve;

e curve approximation, or “fitting,” within a guaranteed maximum error toler-

ance, for scan conversion and other applications.

Here we’ll describe just the first two of these operations, which fall out quite natu-
rally from the multiresolution representation.

6.1 Editing the sweep of the curve

Editing the sweep of a curve at an integer level of the wavelet transform is simple.
Let C™ be the control points of the original curve f*(¢), let C7 be a low-resolution
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version of C", and let (' be an edited version of C7, given by (= (9 4+ ACY. The
edited version of the highest-resolution curve C'" = C™ 4+ AC™ can be computed
through synthesis:

~

c" = C" 4+ AC"
= (" 4 prprlo pitlAC,

Note that editing the sweep of the curve at lower levels of smoothing j affects larger
portions of the high-resolution curve f"(¢). At the lowest level, when j = 0, the
entire curve is affected; at the highest level, when j = n, only the narrow portion
influenced by one original control point is affected. The kind of flexibility that this
multiresolution editing allows is suggested in Figures 12 and 13.

(a) (b) () (d)

Figure 12 Changing the overall sweep of a curve without affecting its character.
Given the original curve (a), the system extracts the overall sweep (b). If the user
modifies the sweep (¢), the system can re-apply the detail (d).

Figure 13 The middle of the dark curve is pulled, using editing at integer levels
1, 2,3, and 4.

6.2 Editing the character of the curve

Multiresolution curves also naturally support changes in the character of a curve,
without affecting its overall sweep. Let C'" be the control points of a curve, and
let €9, ..., C"= 1, DO ..., D"! denote the components of its multiresolution de-
composition. Editing the character of the curve is simply a matter of replacing the
existing set of detail functions D7, ..., D*~! with some new set ﬁj, .. .,D”_l.

Figure 14 demonstrates how the character of curves in an illustration can be modified
with the same (or different) detail styles. (The interactive illustration system used
to create this figure is described by Salisbury et al. [18].)
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Figure 14 Changing the character of a curve without affecting its sweep.

6.3 Multiresolution surfaces

Multiresolution editing can be extended to surfaces by using tensor products of B-
spline scaling functions and wavelets. Either the standard construction or the non-
standard construction from Section 2.4 can be used to form a two-dimensional basis
from a one-dimensional B-spline basis. We can then edit surfaces using the same
operations that were described for curves in the previous sections. For example, in
Figure 15 a bicubic tensor-product B-spline surface is shown after altering its sweep
at different levels of detail.

e me e e

.
- oy S =
(a) (b) (© @

Figure 15 Surface manipulation at different levels of detail: The original sur-
face (a) is changed at a narrow scale (b), an intermediate scale (¢), and a broad

scale (d).

Multiresolution analysis can be further generalized to surfaces of arbitrary topology
by defining wavelets on subdivision surfaces, as described by Lounsbery et al. [14].
This method allows any polyhedral object to be decomposed into scaling function
and wavelet coefficients. Then a compression scheme similar to that presented for
images in Section 3 can be used to display the object at various levels of detail
simply by leaving out small wavelet coefficients. An example of this technique is
shown in Figure 16.
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Figure 16 Surface approximation using subdivision surface wavelets: The original
surface (a), an intermediate approximation (b), and a coarse approximation (c).
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A Linear algebra review

Multiresolution analysis relies heavily on fundamental ideas from linear algebra.
We’ve included this appendix to remind you of a few important facts.

A.1 Vector spaces

The starting point for linear algebra is the notion of a vector space, which can be
loosely defined as follows: A collection V' of things is a vector space (over the reals)

if:
1. For all a,b € IR and for all u,v € V, au+bv € V.

2. There exists a unique element 0 € V such that
- for all w € V', Ou = 0; and
-foralu e V,0+u=u.

3. (Remaining axioms omitted; most of these are necessary to guarantee that
multiplication and addition behave as expected.)

The elements of a vector space V' are called vectors, and the element 0 is called the
zero vector. The vectors may be geometric vectors, or they may be functions, as is
the case when discussing wavelets and multiresolution analysis.

A.2 Bases and dimension

A collection of vectors uy,ug,...in a vector space V are said to be linearly inde-
pendent if

61U1+CQUQ—|-"'IO R 01202:"'20.
A collection uq,us,... € V of linearly independent vectors is a basis for V' if every

v € V can be written as
v o= E CiU;
7

for some real numbers ¢y, ¢y, . ... Intuitively speaking, linear independence means
that the vectors are not redundant, and a basis consists of a minimal set of complete
vectors.

If a basis for V has a finite number of elements wq,...,u,,, then V is finite-
dimensional and its dimension is m. Otherwise, V' is said to be infinite-dimensional.

Example: IR?is a 3-dimensional space, and ¢; = (1,0,0), e5 = (0, 1,0),
e3 = (0,0,1) is a basis for it.
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Example: The set of all functions continuous on [0, 1] is an infinite-
dimensional vector space. We’ll call this space 0, 1].

A.3 Inner products and orthogonality

When dealing with geometric vectors from the vector space IR?, the “dot product”
operation has a number of uses. The generalization of the dot product to arbitrary
vector spaces is called an inner product. Formally, an inner product (-|-) on a vector
space V is any map from V x V to IR that is:

e symmetric: (u|v) = (v|u)
e bilinear: (au + bv|w) = a(u|w) + b{v|w)
e positive definite: (u|u) > 0 for all u # 0.

A vector space together with an inner product is called, not surprisingly, an inner
product space.

Example: It is straightforward to show that the dot product on IR?
defined by

((a1,az,a3)| (b1,bg,b3)) = a1by 4 azby + asbs (12)

satisfies the requirements of an inner product.

Example: The following “standard” inner product on C[0,1] plays a
central role in most formulations of multiresolution analysis:

(o) = " ) gl de.

Example: To further emphasize how general an inner product can be,
here is a rather bizarre one on the space of twice-differentiable functions
on [0,1]:

o) = [ ot

o dx? dx?

One of the most important uses of the inner product is to formalize the idea of
orthogonality: Two vectors w, v in an inner product space are said to be orthogonal
if (u]v) = 0. It is not difficult to show that a collection wq,us,... of mutually
orthogonal vectors must be linearly independent, suggesting that orthogonality is a
strong form of linear independence. An orthogonal basisis one consisting of mutually
orthogonal vectors.
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A.4 Norms and normalization

A norm is a function that measures the length of vectors. In a finite-dimensional
vector space, we typically use the norm ||u||:={u| u>1/2 = /u - u. If we are working
with a function space such as C10, 1], we ordinarily use one of the L, norms, defined

ol = ([ o)

In the limit as p tends to infinity, we get what is known as the maz-norm:

l|lu||, = max u(z).

z€[0,1]

Even more frequently used is the Ly norm, which can also be written as ||u||, =

>1/2

(u|u)’* if we are using the standard inner product.

A vector w with ||u|| = 1 is said to be normalized. If we have an orthogonal ba-
sis composed of vectors that are normalized in the L, norm, the basis is called
orthonormal. Stated concisely, a basis uy, usg,...is orthonormal if

(ui|ug) = éij,

where ¢;; is called the Kronecker delta, and is defined to be 1 if ¢ = 7, and 0
otherwise.

Example: The vectors e; = (1,0,0), e3 = (0,1,0), e5 = (0,0, 1) form
an orthonormal basis for the inner product space IR® endowed with the
dot product of Equation (12).

A.5 Duals
With every basis uq, us, . .. for an inner product space V', there is a unique associated
basis Wy, Us, ... called the dual basis, characterized by the relation

(ug|@;) = &

Dual bases are the key to solving the following important problem: Given an arbi-
trary vector v, find the coefficients ¢, cs, ... such that

v o= Z:cZuZ (13)
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To compute the j-th coefficient ¢;, simply take the inner product of both sides of

Equation (13) with ;:
(0] ) = <Z ‘>

= ZCMWWJ?
= Zciéij
_—

In short, the coefficients in the expansion of v are given by ¢; = (v|a;).
Orthonormal bases are so useful because they are self-dual; that is, they satisfy

u; = u; for all 1.

A.6 Computing the duals

To see how to compute the duals, let’s define some new notation. Let A = [ay ay - -]
and B = [by by -] be two row matrices whose entries are vectors in an inner
product space, and define [(A| B)] as the matrix whose ij-th entry is (a;|b;).

Example: If A(z) = [a1(z) ax(z) ---] and B(z) = [bi(x) ba(a) -]
have entries in the vector space C'[0, 1] endowed with the standard inner
product, then the ¢j-th entry of [(A| B)] is

[(A|B);; = /01 a;(z)b;(z)dx.

Armed with this notation, if we gather the elements wuy, usg,... of a basis together
into a row matrix U = [uy ug - -], it is straightforward to verify that the dual basis
U=[wm 7uy --] can be computed from

U = v[uo.
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B Details on endpoint-interpolating B-spline wavelets

This appendix presents the matrices required to make use of endpoint-interpolating
B-spline wavelets of low degree.* These concrete examples should serve to elucidate
the ideas presented in Section 5. In order to emphasize the sparse structure of the
matrices, zeros have been omitted. Diagonal dots indicate that the previous column
is to be repeated the appropriate number of times, shifted down by two rows for
each column. All of the matrix entries given below are exact, except for those in
the last two @ matrices in the cubic case. Finally, note that the matrices given here
correspond to unnormalized basis functions. The P matrices have entries relating
the scaling functions defined in Section 5, while the entries of the () matrices are
scaled to be integers.

B.1 Haar wavelets

The B-spline wavelet basis of degree 0 is simply the Haar basis described in Sec-
tions 2 and 4. Some examples of the Haar basis scaling functions and wavelets are

depicted in Figure 17. The synthesis matrices P/ and @7 are given below.

Figure 17 The piecewise-constant B-spline (Haar) scaling functions and wavelets
for j = 3.

*The Matlab code used to generate these matrices is available from the authors upon request.
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B.2 Endpoint-interpolating linear B-spline wavelets

Figure 18 shows a few typical scaling functions and wavelets for linear B-splines. The
synthesis matrices P? and )7 for endpoint-interpolating linear B-spline wavelets are
given below.

=N

b
=
Il
M=
—

[SI

11 2 = —6 —6
P2=1 2 “ 111
11 —12
2
- 1o -
2 111
11 -6 —6
2 110 1
11 —6 —6
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p.]ZS:% 1 QJZ3: —6 -
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Figure 18 The linear B-spline scaling functions and wavelets for j = 3.
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B.3 Endpoint-interpolating quadratic B-spline wavelets

Figure 19 shows some of the quadratic B-spline scaling functions and wavelets. The
synthesis matrices P/ and ¢}’ for the quadratic case are given below.

2

1 _3 —75504
2 Q= 3 91806 10920
11|11 _2 —54637 —27286  —154
Pt =5 11 22913 48734 4466
2 Q% = —4466 —47068 —22652  —154
144 = 154 22652 47068 4466
—-177 =21 —4466 —48734 —22913
4 Q2 = 109 53 154 27286 54637
2 2 - —53 —109 —10920 —91806
P21 31 21 177 75504
1 13 —144
2 2
4 - —75504 -
91806 10920
M4 T —54637 —27286  —154
2 2 22913 48734 4466
31 —4466 —47068 —22638  —154
13 154 22652 46662 4466
31 —4466 —46662 —22638
13 154 22638 46662 —154
piz3 = 1 3 - Qi2t = —4466 —46662 - 4466
1 1 154 22638 - —22638  —154
-3 —4466 - 46662 4466
31 154 —46662 —22652  —154
13 22638 47068 4466
2 2 —4466 —48734 —22913
L 4 154 27286 54637
—10920 —91806
L 75504

o
/AN N
/\

N
AN
AN /\V/\
TN
N
N\

S

Figure 19 The quadratic B-spline scaling functions and wavelets for j = 3.
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B.4 Endpoint-interpolating cubic B-spline wavelets

Some examples of cubic B-spline scaling functions and wavelets are shown in Fig-
ure 20. The synthesis matrices P/ and )7 for endpoint-interpolating cubic B-spline

wavelets are given below. The matrices Q> and Q72* are approximate; entries were
rounded after each column was scaled to make its largest entry 1,000,000.

2
1_1|t?
=1 11
11 1
2 —2
Ql = 3
16 _f
8 8
12 4
=L 310 23 —1368
4 12 2064 240
8 8 —1793  —691
16 Q2 = 1053 1053
—691 —1793
e _ 240 2064
s 8 —1268
12 4
311 2 —686823
8 8 1000000 —254803
2 12 2 —798167 697530 14449
8 8 282460 —921763 —78158 17
2 12 —138342 1000000 314093  —2088
piz3 = & 8 - Q3 ~ 28284 —720755 —720755 28284
2 . 2 —2088 314093 1000000 —138342
.8 17 —78158 —921763 382460
12 2 14449 697530 —798167
8 8 —254803 1000000
2 11 3 —686823
412
s 8
L 16
- —686823 -
1000000 256326
—798167 —701422  —15882
282460 925781 85895 41
—138342 —1000000 —343712 —5110
28284 711467  T71597 69115 41
—2088 —297591 —1000000 —325750 —5110
17 62856 758322 761705 69115
—4647 —2323843 —1000000 —325750
37 68691 761705 761705 41
—5079 —325750 —1000000 —5110
Q2% & 41 69115 761705 - 69115 41
—5110 —2325750 -  —325750 —5079
41 69115 - 761705 68691 37
—5110 —1000000 —323843 —4647
41 761705 758322 62856 17
—325750 —1000000 —297591  —2088
69115 771597 711467 28284
—5110 —343712 —1000000 —138342
41 85895 925781 382460
—15882 —701422 —798167
256326 1000000
L —686823

39



P -

FAYA
VA
N N\
\J\/\/
N N
\IV\/
N N\
\/V\/
N N
\JV\/
NN,
/\ \/V
N\ ~

4

Figure 20 The cubic B-spline scaling functions and wavelets for j = 3.
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