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ABSTRACT
Irregular applications frequently exhibit poor performance
on contemporary computer architectures, in large part be-
cause of their inefficient use of the memory hierarchy. Run-
time data- and iteration-reordering transformations have been
shown to improve the locality and therefore the performance
of irregular benchmarks. This paper describes models for de-
termining which combination of run-time data- and iteration-
reordering heuristics will result in the best performance for
a given dataset. We propose that the data- and iteration-
reordering transformations be viewed as approximating min-
imal linear arrangements on two separate hypergraphs: a
spatial locality hypergraph and a temporal locality hyper-
graph. Our results measure the efficacy of locality metrics
based on these hypergraphs in guiding the selection of data-
and iteration-reordering heuristics. We also introduce new
iteration- and data-reordering heuristics based on the hy-
pergraph models that result in better performance than do
previous heuristics.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
data locality, locality metrics, run-time reordering trans-
formations, spatial locality graph, temporal locality hyper-
graph, optimization, inspector/executor

1. INTRODUCTION
Application performance depends on efficient memory hi-

erarchy usage. In almost all modern computers, whenever a
memory location is referenced by a program, the data in the
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referenced location and nearby locations are brought into
a fast, but small, data cache. Any additional references to
data already in the cache line (before the cache line is evicted
from the cache) will be one or two orders of magnitude faster
than references to main memory. When such usage occurs
during the execution of a program, it is referred to as spatial
locality for reuse within a cache line and temporal locality for
reuse of the same data prior to eviction.

As the performance gap between processor and memory
speeds grows, inefficient use of the memory hierarchy is be-
coming the dominant performance bottleneck in many ap-
plications. This situation is especially true in applications
that do not access memory in a sequential or strided fashion.
Such applications are referred to as irregular [31]. Figure 1
shows one possible implementation of iterating over edges
in a graph. Iterating over an edgelist exhibits the types
of memory references that occur in irregular applications,
such as partial differential equation solvers and molecular
dynamics simulations.

for i=1 to N

  ... X[l[i]] ...

  ... X[r[i]] ...

endfor
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Figure 1: Example of an irregular loop and associ-
ated data array X and index arrays l and r.

The data locality of such an application can be improved
by changing the order of computation (iteration reordering)
and/or the assignment of data to memory locations (data
reordering) so that references to the same or nearby loca-
tions occur relatively close in time during the execution of
the program. Run-time reordering transformations use in-
spector/executor strategies [26] to reorder irregular applica-
tions effectively. An inspector traverses the memory refer-
ence pattern (e.g., edges in the edgelist example) at runtime,
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Figure 2: The data array X has been remapped into
X’. The pointer update optimization has been used
so that the index arrays refer to the new data loca-
tions.
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Figure 3: The iterations of the loop can be reordered
by lexicographically sorting index arrays l’ and r’
into l’’ and r’’.

for i=1 to N

  ... X'[l''[i]] ...

  ... X'[r''[i]] ...

endfor

Figure 4: The executor that uses the remapped data
and index arrays.

generates data-reordering and iteration-reordering functions
based on the observed pattern, creates new schedules, and
remaps affected data structures accordingly. Figure 2 shows
an inspector-generated data remapping of the X data array
based on the access pattern in the original l and r index ar-
rays. Pointer update [12] is used to update the values in the
index arrays to reference the new data locations. Figure 3
shows how the entries in the l’ and r’ arrays can then be
lexicographically sorted to implement iteration reordering.
The executor is a transformed version of the original pro-
gram that uses the schedules and remapped data structures
generated by the inspector. Figure 4 shows how the original
code in Figure 1 is transformed to use the remapped data
array X’ and the updated and remapped index arrays l’’
and r’’. Run-time reordering transformations are beneficial
if the overhead due to the inspector can be amortized over
many executions of the improved executor.

Run-time data- and iteration-reordering transformations
have been shown to improve the locality and therefore the
performance of loops containing irregular access patterns [9,
2, 12, 27, 24, 22, 17, 15]. Selecting the combination of data
and iteration reordering transformations that will best im-
prove the performance of the executor while maintaining the
ability to amortize the overhead of the inspector for a given

irregular application and input is an open problem. In some
irregular applications the initial data access pattern is driven
by a static entity such as a mesh or molecular interaction
list. Since the data access pattern is known statically, a
preprocessing step allows the inspector cost to be amortized
over many executions of the executor. This preprocessing
step can include the evaluation of metrics that compare var-
ious data and iteration reordering schemes. Metrics based
on the irregular data access pattern avoid the unwieldy and
potentially unprofitable alternative of running the entire ap-
plication with various reorderings.

In this paper, we study experimentally the ability of an
existing data-reordering model and corresponding metric to
predict performance and cache behavior. We refer to the
model as the spatial locality graph. We also introduce a new
model, the temporal locality hypergraph, and corresponding
metrics for iteration reordering. We identify one existing
iteration-reordering heuristic that implicitly uses the con-
cept of the temporal locality hypergraph, and we develop
three new iteration-reordering heuristics that explicitly use
the new model and result in improved performance over ex-
isting heuristics. We then extend the spatial locality graph
to a spatial locality hypergraph for loops that use more than
two index arrays to access one or more data arrays. Ex-
perimental results show that data reordering heuristics that
leverage the spatial locality hypergraph extension result in
better performance than those that use only the spatial lo-
cality graph model.

2. MODELING DATA REORDERING
In general, run-time data-reordering transformations im-

prove the spatial locality in a computation. The typical
model used to guide data-reordering transformations is a
graph with one vertex for each data item and edges connect-
ing data accessed within the same iteration [30, 18]. We refer
to this graph as the spatial locality graph since ordering data
items that share an edge in this graph consecutively in mem-
ory improves the spatial locality of the computation. Many
data-reordering algorithms heuristically solve the graph lay-
out problem of minimal linear arrangement [19], or optimal
linear ordering [16], for the spatial locality graph. Figure 5
shows the spatial locality graph for the edgelist example in
Figure 1. If each data item v is mapped to storage loca-
tion σ(v), then the spatial locality metric based on minimal
linear arrangement is

X

(v,w)∈GSL(E)

|σ(v)− σ(w)|,

where GSL(E) is the set of edges in the spatial locality
graph. Note that this model and corresponding metric take
only the spatial locality within a single iteration into account
and therefore the metric does not measure spatial locality
between iterations.

In our experiments, we calculate the spatial locality met-
ric for various data-reordering heuristics applied to a num-
ber of datasets. We use the benchmark irreg [7, 17, 34]
to gather execution times for several irregular graphs. The
irreg benchmark is a kernel abstracted from a partial dif-
ferential equation solver. It iterates (10 times) over edges in
a graph that are stored in an edgelist data structure such
as the one shown in Figure 1. We interleave the data ar-
rays in the base-line code to improve spatial locality [13].
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Figure 5: The spatial locality graph for the example
in Figure 1. Each vertex (square) represents a data
item. Two vertices share an edge if they are accessed
the same iteration.

Table 1 lists the datasets used with the irreg benchmark
and their sources. The Adams datasets are available at the
Finite Element Market [1]. The Davis datasets are available
at the University of Florida Sparse Matrix Collection [11].
The COSMIC datasets are available at the COSMIC project
website [7].

We perform our experiments on a Sun-Fire-280R 1.2 GHz
with 1GB memory, 64K of L1 cache, and 1MB of L2 cache,
and a Xeon 2.2 GHz with 4GB of memory, 8K of L1 cache,
and 512K of L2 cache. The irreg benchmark is compiled
using the default compiler flags for the Sun ‘cc’ compiler1

on the Sun-Fire and ‘gcc -O3’ 2 on the Xeon. For each
combination of benchmark, dataset, data reordering, and
iteration reordering, we record the minimum execution time
over three runs. All runs are performed on a single proces-
sor of these dual processor machines. We use PAPI [23] to
collect L1 cache, L2 cache, and TLB miss information on
the Xeon.

For each experiment, we use a data-reordering heuristic
followed by an iteration-reordering heuristic, which is the
same strategy used in [12] and [17]. Other strategies, such
as iterating between data and iteration reordering multiple
times [34], are not covered in this paper. The spatial locality
metric is affected only by the data-reordering heuristic be-
cause the metric depends only on the storage mapping σ(),
which maps each data item to a storage location.

We use three data-reordering heuristics:
Consecutive Packing (CPACK) [12]: CPACK is the

simplest and fastest data-reordering heuristic. It traverses
the edgelist in the current iteration order and packs data
into a new ordering on a first-come-first-serve basis. In the
spatial locality graph each edge represents an iteration in
the loop. CPACK visits the edges in the graph in order and
consecutively packs the data items at the edge endpoints.

Breadth-First Search (BFS) [2]: The BFS heuristic
converts the edgelist representation of a graph into a graph
data structure that stores the neighbors for each data item
or node in the spatial locality graph. It then performs a
breadth-first search of the nodes in this graph, ordering each
data item based on when its corresponding node in the spa-
tial locality graph is visited.

Gpart [17]: Gpart is a graph-partitioning heuristic. It

1Sun WorkShop 6 update 2 C 5.3 2001/05/15
2gcc version 3.3.3

Source Dataset ratio MB
Adams CylLargeCut.graph 22.70 2.56
Adams Wing22K.graph 20.20 3.78
Adams Plate.graph 10.90 3.89
Davis ex11.graph 32.50 4.37
Davis li.graph 29.20 5.41
Adams Cone.graph 32.02 5.72
Davis rma10.graph 24.43 9.44
COSMIC foil.graph.txt 7.43 10.40
Adams Cant.graph 31.58 16.00
Adams CCSphere.graph 35.56 23.88
Davis nd6kg.graph 191.09 26.52
Davis pre2.graph 3.86 29.44
Davis torso1.graph 34.47 32.32
Davis cage13.graph 7.90 33.63
Davis StanfordBerkeley.graph 5.46 38.90
Adams Sphere150.graph 36.64 45.67
Davis kim2r.graph 11.90 48.45

Table 1: Datasets used with irreg benchmark. The
column labeled “ratio” reports the average number
of interactions for each molecule. The “MB” column
reports the dataset size based on the data structures
used in the irreg benchmark.

builds the same graph data structure as the one generated
by the BFS heuristic to represent the spatial locality graph.
Gpart then performs a graph partitioning on the spatial lo-
cality graph and orders the data consecutively within each
partition. We select the parameters for the Gpart algorithm
as described in [17].

The spatial locality metric does not predict the actual exe-
cution time or number of cache misses; instead, a lower met-
ric value predicts which strategy results in better executor
performance. To determine the effectiveness of the spatial
locality metric in selecting the data-reordering heuristic that
results in the best performance for a given dataset, we re-
port the geometric mean of the normalized execution times
for the data reordering that achieves the lowest metric value
on each dataset and the data reordering that achieves the
lowest execution time on each dataset. Figure 6 summarizes
the results of the irreg benchmark on the Sun-Fire-280R.
We normalize the execution time of irreg on each of 22
different datasets with various data reorderings against the
execution time of irreg on the original dataset. The exe-
cution times do not include the overhead of performing the
reorderings (the inspector execution time), because our fo-
cus is on modeling the data and iteration reorderings that
will result in the fastest executor. Although the iteration
reordering does not affect the spatial locality metric, it does
affect the cache behavior and therefore the performance of
the executor. For the first set of results on the Sun-Fire
280R, we summarize the effectiveness of the spatial locality
metric in selecting the data reordering with the lowest ex-
ecution time when no iteration reordering follows the data
reordering versus when lexicographical sorting follows the
various data reorderings.

When data reorderings are applied to the original ordering
of the datasets there is not much improvement in the exe-
cution time, and it is difficult to judge how well the metric
predicts the best or close to best data reordering. There-
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Figure 6: Results for the irreg benchmark on the
Sun-Fire-280R. Each bar represents the geometric
mean of the normalized execution times for the
datasets in Table 1. All execution times are normal-
ized to the execution time for the original ordering
of the dataset. Random ordering indicates that the
data and iterations for the datasets are randomly
permuted before performing a data- and iteration-
reordering strategy.
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Figure 7: Results for the irreg benchmark on the
Xeon Pentium 4. Each bar represents the geomet-
ric mean of the normalized execution times or miss
counts for the datasets in Table 1. All execution
times and miss counts are normalized to the exe-
cution time or miss counts for the original ordering
of the dataset. Random ordering indicates that the
data and iterations for the datasets are randomly
permuted before performing a data- and iteration-
reordering strategy.

fore, we also ran the experiments, in which the original data
and iteration orderings are randomly permuted. Techniques
such as adaptive mesh refinement [4] and partitioning for
parallelism [25] have the effect of perturbing the original
ordering; therefore, a complete random ordering represents
the extreme of how badly a dataset could perform after the
application of such techniques. Starting from the random or-
dering, it is easier to see that the spatial locality metric does
not always select the best data reordering, but the execu-
tion time of the executor using the data reordering selected
is usually within 2% of the best execution time achieved
through data reordering.

Figure 7 shows similar results for the Xeon Pentium 4
except that all the data reorderings are followed by the lexi-
cographical sorting iteration reordering, and we use PAPI to
record the L1, L2, and TLB misses. The summarized execu-
tion results are similar to those on the Sun-Fire-280R. When
the performance is broken down in terms of cache and TLB
misses, it is interesting to note that randomly permuting the
order has the largest effect on the TLB performance. Also,
L2 misses do not correlate well with performance. This sug-
gests that data-reordering heuristics that take into account
architectural features such as cache size should also consider
using the amount of data referenced in the TLB as a param-
eter.

Since no data-reordering heuristic results in the lowest ex-
ecution time in all cases, the spatial locality metric can be
used to make a data reordering decision for each dataset.
The results that start from a random ordering show that
when there is a significant difference between the perfor-
mance for various data orderings, selecting the data reorder-
ing with the lowest spatial locality metric gets close to the
best possible performance amongst the data-reordering heuris-
tics used. The fact that all of the datasets in Table 1 do not
benefit from data reordering was surprising and suggests
the need to determine when the execution time due to the
original ordering cannot be improved through heuristic re-
orderings.

3. MODELINGITERATIONREORDERING
Temporal locality occurs when the same memory location

is reused before its cache line is evicted. In general, run-
time iteration reordering improves the temporal and spatial
locality in an irregular application, by ordering iterations
that touch the same data item sequentially in the schedule.
Since each edge in the spatial locality graph corresponds to
an iteration, reordering the edges in this graph reorders the
computation or iterations of the loop. Typically edges are
ordered based on some variant of the lexicographical order-
ing enforced by the new data ordering. We introduce a new
model called the temporal locality hypergraph and show that
heuristics based on this model result in better executor per-
formance than those based on lexicographical sorting. We
also show that a metric corresponding to the temporal local-
ity hypergraph can effectively select an iteration-reordering
heuristic for a particular dataset that results in either the
fastest execution time or close to the fastest execution time.

The temporal locality hypergraph models the relationships
between iterations of the loop. A hypergraph is a general-
ization of a graph where each hyperedge can involve more
than two vertices. It can be described with a set of vertices
V and a set of hyperedges E, where each hyperedge is a
vertex set. The temporal locality hypergraph has a vertex
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Figure 8: The temporal locality hypergraph for the
example in Figure 1. Each vertex (circle) represents
an iteration. Two or more vertices belong to the
same hyperedge if they access the same data item.

i for each iteration and a hyperedge e for each data item.
For each data item an iteration accesses, the iteration ver-
tex is included in the hyperedge representing the data item.
Figure 8 shows the temporal locality hypergraph for the ex-
ample in Figure 1. Notice that iterations two, five, and six
are in the same hyperedge because l[2], l[5], and r[6]
index the same location in X.

Using a hypergraph representation instead of a graph with
only two nodes per edge offers several advantages. The tem-
poral locality hypergraph is significantly more compact than
the corresponding temporal locality graph (with edges for all
pairs of iterations that access the same memory location).
Also, the temporal locality hypergraph is the dual of the spa-
tial locality (hyper)graph. Therefore it can be constructed
via a matrix transpose operation, essentially equivalent to
converting from a compressed sparse row representation to
a compressed sparse column representation. Consequently,
the spatial locality graph and temporal locality hypergraph
have nearly identical storage requirements.

3.1 Iteration-reordering Heuristics Based on
the Temporal Locality Hypergraph

Iteration-reordering heuristics based on the new tempo-
ral locality hypergraph model attempt to order iterations
within the same hyperedge sequentially. This differs from
many existing iteration-reordering heuristics that view it-
erations as edges in the spatial locality graph and perform
some variation of lexicographical sorting.

Lexicographical Sorting (lexSort) [17]: lexSort lexi-
cographically sorts the edges in an edgelist such as the one
shown in Figure 1 based on the end points of the edges. Lo-
cality grouping [12] and bucket tiling/irregular blocking [27,
25] are variations of lexicographical sorting that require less
inspector overhead.

Das et al. [10] introduced an iteration-reordering heuristic
that groups all the iterations that access the first data item,
then the second, etc. We refer to this iteration-reordering
heuristic as consecutive packing for iterations (CPACKIter),
because one interpretation of this heuristic is that it con-
secutively packs iterations in the temporal locality hyper-
graph while visiting the hyperedges according to the data

1l''
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i=1 2 3 4 5 6

1 2 3 4 5 6
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Figure 9: Reordering the iterations (represented by
edges in the l’ and r’ arrays) using consecutive
packing for iterations instead of lexicographical sort-
ing.

ordering. This differs from lexicographical sorting in that
lexicographical sorting treats edges in the spatial locality
graph as ordered pairs. In Figure 2, the edges represented
by the l’ and r’ index arrays are reordered into l’’ and r’’
(see Figure 3) using lexicographical sorting. Using CPACK-
Iter results in the edge (6, 1) being ordered third instead of
last (see Figure 9). It is also possible to interpret the Ding
and Kennedy [12] locality grouping heuristic as equivalent
to CPACKIter.

Consecutive packing for iterations (CPACKIter):
CPACKIter visits the hyperedges/data items in order and
packs the iterations in each of these hyperedges on a first-
come-first-serve basis. This heuristic is analogous to the
CPACK data-reordering algorithm that operates on the spa-
tial locality graph. Although CPACKIter is logically based
on the temporal locality hypergraph, it is possible to create
this iteration reordering with the list of edges in the spatial
locality hypergraph without generating the temporal local-
ity hypergraph. Specifically, this heuristic corresponds to
sorting the edges based on their minimal endpoint.

In addition to recognizing the temporal locality graph in-
terpretation of CPACKIter equivalent heuristics, we also in-
troduce three new iteration-reordering heuristics based on
the temporal locality hypergraph model.

Breadth-first ordering for iterations (BFSIter): BF-
SIter performs a breadth-first-search ordering on the vertices
in the temporal locality hypergraph. Figure 10 lists pseu-
docode for this algorithm. The algorithm requires the cre-
ation of the temporal locality hypergraph GTL(V, E) and
uses the spatial locality graph GSL(V, E). For the edgelist
example in Figure 1, the edgelist itself represents the spatial
locality graph.

Temporal hypergraph partitioning (HPart): Pa-
ToH [6] is a hypergraph partitioning package. We use the
partitions generated by PaToH to reorder the iterations,
analogously to the GPart data-reordering algorithm.

Temporal hypergraph partitioning and CPACK for
iterations (CPACKIter-HPart): This heuristic combines
CPACKIter with the hypergraph partitioner PaToH. First
the iterations are ordered using CPACKIter. The iterations
are placed into partitions by the partitioner. Iterations are
ordered consecutively within each partition and they main-
tain their relative CPACKIter ordering.

3.2 Metrics based on the temporal locality hy-
pergraph

We introduce three metrics based on the temporal locality
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Algorithm BFS hypergraph(GTL(V, E),GSL(V, E),n)

! Initialization
1: count = 0
2: select vertex i from GTL(V ) and add to iter-queue
3: do

! While there are still iterations in iter-queue
4: while (iter-queue is not empty)
5: i = dequeue(iter-queue)
6: put i next in iteration ordering
7: count = count + 1

! Determine all hyperedges v and w for which
! iteration i belongs

8: for each (v, w) = Ei where Ei ∈ GSL(E)
9: if not visited(v) then
10: add v to data-queue and mark as visited
11: if not visited(w) then
12: add w to data-queue and mark as visited
13: end for each

! Put all iterations in hyperedges corresponding
! to v and w into iter-queue

14: while v = dequeue(data-queue)
15: for each i in v where v ∈ GTL(E)
16: if not visited(i) then
17: add i to iter-queue and mark as visited
18: end for each
19: end while

20: end while

! If the temporal locality hypergraph GTL is
! unconnected then reinitialize the iter-queue

21: if (count < n) then
22: add a non-visited iteration to iter-queue
23: while (count < n)

Figure 10: BFS hypergraph algorithm that im-
plements both breadth-first search on the tem-
poral locality hypergraph (BFSIter) and breadth-
first search on the spatial locality hypergraph
(BFS hyper).

hypergraph. The absolute distance temporal locality met-
ric is similar to the spatial locality metric. We extend the
metric to hypergraphs by summing across all hyperedges
the distances between all pairs of iterations belonging to the
same hyperedge. Specifically, if each iteration i is mapped
to a relative time/ordering δ(i), then the distance temporal
locality metric is

X

e∈GT L(E)

0

@
X

ij ,ik∈GT L(E)

|δ(ij)− δ(ik)|

1

A ,

where GTL(E) is the set of edges in the temporal local-
ity graph. The iteration-reordering heuristics should aim to
minimize the value of the metric.

We also introduce the span and density metrics. Prelimi-
nary results indicate that these metrics select the iteration-

reordering heuristic with the same accuracy as the distance
temporal locality metric and they are less expensive to com-
pute. The span metric sums across all hyperedges the dis-
tance between the minimally and maximally ordered itera-
tions in each hyperedge,

X

e∈GT L(E)

max
i∈e

(δ(i))−min
i∈e

(δ(i)).

The density metric sums across all hyperedges the span di-
vided by the number of iterations in each hyperedge,

X

e∈GT L(E)

maxi∈e(δ(i))−mini∈e(δ(i))
|e| .

3.3 Experimental Results
To compare spatial locality graph and temporal local-

ity hypergraph based iteration-reordering heuristics and to
determine the effectiveness of the temporal locality met-
ric in predicting the best iteration reordering, we vary the
iteration-reordering heuristic used after data reordering on
the irreg benchmark. Figures 11 and 12 compare differ-
ent iteration-reordering heuristics applied to the randomly
permuted datasets for irreg. Within each iteration re-
ordering (the x axis), we separate how that iteration re-
ordering performs when it is preceded by different data-
reordering heuristics. The final two groups of bars sum-
marize the iteration-reordering heuristic that results in the
smallest metric value (Low Metric) and lowest execution
time (Low Exec) for each dataset. From this graph we can
conclude that the iteration-reordering heuristic BFSIter is
a significant improvement over existing iteration-reordering
heuristics such as lexicographical sorting. BFSIter is one of
the new iteration-reordering heuristics that explicitly oper-
ates on the temporal locality hypergraph.

The close match between the iteration-reordering heuristic
with the smallest metric and the iteration-reordering heuris-
tic with the lowest execution time indicates that the tem-
poral locality metric is useful for selecting a good iteration-
reordering heuristic for a particular dataset, even if it does
not always select the best.

Figure 13 presents similar results for the molecular dy-
namics benchmark moldyn. moldyn performs the nonbonded
force calculation as implemented in CHARMM [3]. The
moldyn benchmark iterates (ten times) over interactions be-
tween molecules to determine changes in the force, velocity,
and position for each molecule. In the base-line code for
moldyn, we interleave the data arrays to improve spatial lo-
cality [13]. Table 2 lists the molecular dynamics datasets we
use with moldyn. The HIV, ER-GRE, ApoA1, and POPC
datasets are all generated from real biomolecular configura-
tions. The configuration of HIV-1 Nef bound to Thioesterase
II (HIV dataset) is distributed by the Scuola Internazionale
Superiore di Studi Avanzat (SISSA) [5]; the configurations
of estrogen receptor bound to a glucocorticoid response ele-
ment and Apolipoprotein A-I (ER-GRE and ApoA1 datasets)
are distributed by the Theoretical and Computational Bio-
physics Group, University of Illinois (UIUC) [35]; and the
configuration of Bacteriorhodopsin embedded in a POPC
membrane (POPC dataset) is distributed by the Leibniz-
Rechenzentrum High Performance Computing Group (LRZ)
[20, 21]. The mol1 dataset is a quasi-uniform distribution of
molecules distributed by the COSMIC group at the Univer-
sity of Maryland [7]. We generate variants of each dataset
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Figure 11: Results that compare various iteration-
reordering heuristics applied to the irreg bench-
mark on the Xeon Pentium 4. Each bar represents
the geometric mean of normalized execution times
for the smallest twelve datasets in Table 1 when a
particular data-reordering heuristic is applied before
the iteration reordering indicated on the X-axis. We
first randomly permute the data and iteration order-
ing of each dataset.
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Figure 12: Results that compare various iteration-
reordering heuristics applied to the irreg bench-
mark on the Sun-Fire-280R. Each bar represents
the geometric mean of normalized execution times
for the datasets in Table 1 when a particular data-
reordering heuristic is applied before the iteration
reordering indicated on the X-axis. We first ran-
domly permute the data and iteration ordering of
each dataset.

Source Dataset ratio MB
SISSA HIV-3.graph 5.62 1.27
SISSA HIV-4.graph 11.42 1.78
LRZ popc-br-3.graph 4.10 2.49
LRZ popc-br-4.graph 10.24 3.66
UIUC er-gre-3.graph 4.64 3.81
SISSA HIV-6.graph 36.15 3.93
UIUC er-gre-4.graph 12.34 5.95
LRZ popc-br-6.graph 34.12 8.20
UIUC apoa1-3.graph 4.95 9.81
SISSA HIV-10.graph 145.03 13.41
UIUC er-gre-6.graph 40.55 13.82
UIUC apoa1-4.graph 12.27 14.96
UMD mol1-1.8.graph 9.00 18.00
SISSA HIV-12.graph 235.15 21.26
LRZ popc-br-10.graph 143.99 29.08
UIUC apoa1-6.graph 41.90 35.82
LRZ popc-br-12.graph 237.76 46.91
UMD mol1-3.graph 43.00 52.00
UIUC er-gre-10.graph 178.03 52.19
UIUC er-gre-12.graph 298.81 85.89
UIUC apoa1-10.graph 185.43 136.80
UIUC apoa1-12.graph 313.22 226.72
UMD mol1-6.graph 383.00 392.00

Table 2: Datasets used with moldyn benchmark. The
column labeled “ratio” reports the average number
of interactions for each molecule. The “MB” column
reports the dataset size based on the data structures
used in the moldyn benchmark.

by using the same three-dimensional molecule locations and
determining the interaction list using different cutoff dis-
tances. For example, HIV-3 indicates that the interaction
list is built using a 3 angstrom cutoff with the HIV dataset.

Even with a large range of dataset sizes and ratios of inter-
actions to molecules, the CPACK data reordering followed
by the BFSIter iteration reordering always results in the
lowest execution time for these datasets on this benchmark.
The temporal locality metric correctly predicts BFSIter will
result in the lowest execution time in all cases.

4. SPATIAL LOCALITY HYPERGRAPH
Many applications, including several phases of scientific

simulations, involve iterating over edges, faces, or elements
of unstructured meshes. The data access patterns of such
applications are best modeled by 2-, 3-, or 4-regular hyper-
graphs, that is, spatial locality hypergraphs with a constant
number of vertices per hyperedge. Data reorderings based
on the spatial locality hypergraph model may be more effec-
tive than reorderings based on the pairwise spatial locality
graph, which can be represented with an edgelist. Similarly,
metrics based on the spatial locality hypergraph model may
offer a more accurate indication of which reorderings will be
most effective. We implement two hypergraph-based data-
reordering heuristics.

Consecutive packing for hypergraphs (CPACK):
CPACK for spatial locality hypergraphs visits the hyper-
edges (iterations) in order and packs the data items in each
of these hyperedges on a first-come-first-serve basis. This
heuristic is equivalent to the CPACK data-reordering algo-
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Figure 13: Results that compare various iteration-
reordering heuristics applied to the moldyn bench-
mark on the Xeon Pentium 4. Each bar represents
the geometric mean of normalized execution times
for the datasets in Table 2 when a particular data-
reordering heuristic is applied before the iteration
reordering indicated on the X-axis. We first ran-
domly permute the data and iteration ordering of
each dataset.

rithm when a hyperedge is converted to all edge pairs in the
natural way.

Breadth-first search for hypergraphs (BFS hyper):
This data-reordering algorithm applies the algorithm pre-
sented in Figure 10 to the spatial locality hypergraph rather
than the temporal locality hypergraph.

We apply these hypergraph-based reordering algorithms
and two edgelist-based reordering algorithms (GPart and
BFS) to a mesh quality improvement application [29]. This
application iterates over all of the elements in a mesh and
computes various functions for each element. Because all
vertices in an element are accessed in the same iteration, we
would expect data reorderings based on the spatial locality
hypergraph to perform better than orderings based on the
spatial locality graph.

Figures 14–16 compare the performance of the mesh qual-
ity improvement application on several meshes using the
hypergraph-aware data-reordering algorithms (BFS hyper and
CPACK) to the edgelist-based algorithms (BFS and GPart)
and no data reordering (NONE). Each data-reordering heuris-
tic is followed by the BFSIter iteration-reordering algorithm.
Performance is normalized against the original access pat-
tern with no data or iteration reordering. We perform our
experiments on the Xeon 2.2 GHz, a PowerPC G5 1.8 GHz
with 8GB memory, 32K of L1 data cache, and 512K of L2
cache, and an Opteron 242 1.6 GHz with 2GB memory, 128K
of L1 cache, and 1MB of L2 cache. The execution times
reported are the minimum over three runs (twelve for the
Opteron, due to anomalous behavior on early runs) on a
single processor of these dual processor machines, using ‘gcc
-O3’ 3 to compile the application. Table 3 lists the prop-

3gcc version 3.3.3 on the Xeon, version 3.3 on the PowerPC
G5, and version 3.3.1 on the Opteron

Source Mesh dims verts elems MB
TM rand10k 2 10400 20394 2.46
TM turtle 2 18322 36225 4.28
TM honey8 2 16796 33480 4.06
BM airfoil 2 22215 43806 5.28
TM duct 3 177887 965759 97.64
TM foam 3 190988 964210 83.56

Table 3: Characteristics of the meshes used in the
spatial locality hypergraph experiments.

erties of the meshes used in the experiments. The column
labeled “dims” indicates the number of dimensions–2 for a
triangular mesh and 3 for a tetrahedral mesh. The column
labeled “source” indicates the source of the mesh. The air-
foil mesh was supplied by Bijan Mohammadi (BM) of the
University of Montpellier as part of a 2-d Navier-Stokes test
problem. The other meshes were supplied by Todd Mun-
son (TM) of Argonne National Laboratory and were gen-
erated using triangle [32] (2-d meshes) or CUBIT [8] (3-d
meshes). The column labeled “MB” indicates the storage
required for the mesh quality improvement application, in
megabytes. Finally, the arrows in Figures 14–16 indicate
the data-reordering heuristic that results in the lowest spa-
tial locality metric value.

The experimental results show that some applications and
datasets can greatly benefit from data and iteration reorder-
ing transformations being applied to the original ordering. It
is clear that BFS hyper is the most effective data-reordering
heuristic and that the two edgelist-based heuristics, BFS and
GPart, are in general not as effective as the hypergraph-
aware heuristics. For the Xeon Pentium 4 and the PowerPC
G5, the metric either selects the data-reordering heuristic
that results in the lowest execution time or one that results
in performance within 1.5% of the best. In Figure 16, the
metric-selected data reordering is within 1.5% of the low-
est execution time except for the honey8 dataset, where the
metric-selected data reordering is approximately 8% slower
than the data reordering resulting in the fastest execution
time.

5. RELATEDWORK
Related work falls into three categories: modeling the re-

lationship between data items with a graph equivalent to the
spatial locality graph, modeling the effect of data locality on
performance, and data-reordering and iteration-reordering
heuristics.

Previous work has used a graph equivalent to the spatial
locality graph to drive data-reordering heuristics. Ou et al.
refer to this graph as the computational graph. Han and
Tseng [18] describe an equivalent graph as the basis for their
graph partitioning approach to data reordering. We use the
implicitly assumed spatial locality metric to select explicitly
among data-reordering heuristics. Our experiments verify
that using the data-reordering heuristic with the minimum
spatial locality metric results in executor performance that
is close to what is provided by the best performing data-
reordering heuristic.

The idea of looking at the distance in number of itera-
tions between reuses of data is what underlies our temporal
locality metric. Ding and Zhong [14] model temporal local-
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Figure 14: Results that compare various data-
reordering heuristics applied to the mesh improve-
ment application on the Xeon Pentium 4. Each bar
represents the execution time for that dataset nor-
malized to the execution time for the original order-
ing of that dataset. Each data reordering is followed
by BFSIter for iteration reordering. The arrow in-
dicates which data reordering results in the lowest
spatial locality metric value for each dataset.
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Figure 15: Results that compare various data-
reordering heuristics applied to the mesh improve-
ment application on the PowerPC G5. Each bar
represents the execution time for that dataset nor-
malized to the execution time for the original order-
ing of that dataset. Each data reordering is followed
by BFSIter for iteration reordering. The arrow in-
dicates which data reordering results in the lowest
spatial locality metric value for each dataset.
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Figure 16: Results that compare various data-
reordering heuristics applied to the mesh improve-
ment application on the Opteron. Each bar repre-
sents the execution time for that dataset normal-
ized to the execution time for the original ordering
of that dataset. Each data reordering is followed
by BFSIter for iteration reordering. The arrow in-
dicates which data reordering results in the lowest
spatial locality metric value for each dataset.

ity by calculating the reuse distance metric that counts the
number of unique data accesses between data reuses. The
temporal locality hypergraph metric is not as accurate as
the reuse distance metric, because it counts the number of
iterations between two accesses to the same data, but does
not count the number of distinct data items that are ac-
cessed in those intervening iterations. The reuse distance
metric is more expensive to compute. In [14], Ding and
Zhong show that calculating reuse distance patterns across
full programs allows for execution time prediction on the
same program for different datasets. This is especially true
when the program has regular access patterns. Our work
focuses on the situation when the access pattern is irreg-
ular. An open problem is whether the increased accuracy
provided by reuse analysis would improve our predictions as
to which iteration-reordering heuristic is best.

In the domain of data and iteration reordering, [28, 36]
propose methods for guidance when some information, such
as the data access pattern, is not available until run-time.
Hu and Rauchwerger [36] determine attributes of the bench-
mark and dataset that aid in determining which dynamic
parallel reduction strategy will result in the best perfor-
mance. For example, the data locality experienced by the
local reduction computation is modeled with an attribute
called “degree of clustering.” Although data locality on
one processor is taken into account, the characteristics in
their model focus on selecting between parallel reduction
strategies and not data- and iteration-reordering strategies.
Mitchell et al. [28] assign a mode of access (sequential, strided,
random) to each memory access and then compose a per-
formance prediction based on benchmark experiments with

31



those modes on the relevant architecture. The spatial lo-
cality metric and temporal locality metrics we introduce do
not attempt to predict execution time of the full applica-
tion, but instead select amongst a number of data locality
improving heuristics.

Many data-reordering and iteration-reordering heuristics
for loops with no dependencies or only reduction depen-
dencies have been developed [9, 10, 33, 2, 12, 27, 24, 17,
15, 22]. Other than those approaches that use space-filling
curves [33, 24], the predominant model underlying data-
reordering heuristics is a graph equivalent to the spatial lo-
cality graph. Data reorderings based on space-filling curves
require coordinate information for each node of data and
then put nodes that are proximal in some physical space,
consecutive as much as is possible in memory as well. Much
of the related work uses iteration-reordering heuristics based
on lexicographical sorting after a data reordering, either spa-
tial locality graph based or space-filling curve-based. How-
ever, Das et al. [10] perform an iteration-reordering heuristic
equivalent to the CPACKIter heuristic we describe, which
has an interpretation on the temporal locality hypergraph.

6. FUTUREWORK
For the datasets used with the irreg and moldyn bench-

marks, the reordering heuristics and metrics had the most
effect when the original dataset was randomly permuted be-
fore performing experiments. The principal reason is that
the mesh-based and molecular datasets used in these exper-
iments appear to have good initial orderings. The original
order of the triangular and tetrahedral meshes used in the
mesh quality application do benefit from data- and iteration-
reordering heuristics. Although this can be estimated by
performing some reorderings and comparing the resulting
metrics to the original order, it would be better if some
knowledge of the spatial locality and temporal locality hy-
pergraph structures could be used to determine that a given
ordering is going to perform as well or better than heuristic
reorderings.

Exploring the ability of temporal and spatial locality met-
rics to determine when no additional reordering benefits per-
formance would also be useful in evaluating more complex
strategies. The experiments presented in this paper focus on
strategies where one data-reordering heuristic is performed
before one iteration-reordering heuristic. Preliminary re-
sults indicate that strategies involving multiple iterations
between data and iteration reordering [34], strategies in-
volving an iteration reordering before and after the data re-
ordering, and reordering strategies combined in a hierarchi-
cal manner (e.g., performing CPACKIter within each tem-
poral locality hypergraph partition) can result in even bet-
ter performance. Future work includes determining whether
the spatial and temporal locality hypergraph metrics predict
such improved performance or whether other metrics must
be taken into account. Along this same direction, we would
also like to pursue possible methods for combining the spa-
tial and temporal locality metrics to better predict relative
performance.

We also want to extend the models and metrics to handle
situations where there are multiple loops that can possibly
share data dependencies. In a situation where there are data
dependencies between loops, iteration- and data-reordering
heuristics such as full sparse tiling and tile packing [34] may
be performed to schedule and reorder across data depen-
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Figure 17: Results that compare the best data
and iteration reordering combination for each irreg
and moldyn dataset to the performance provided by
full sparse tiling by itself and in composition with
the best data and iteration reordering combination.
Each bar represents the geometric mean of normal-
ized execution times for the datasets in Table 1 for
irreg and in Table 2 for moldyn. Random ordering in-
dicates that the data and iterations for the datasets
are randomly permuted before performing a data-
and iteration-reordering strategy.

dencies. Doing so requires determining a reordering strat-
egy for each loop involved and then determining parame-
ters for scheduling across such loops. Figure 17 shows some
preliminary experiments where the reordering strategy in-
volves a data- and iteration-reordering combination followed
by full sparse tiling which groups iterations across loops in
the benchmarks into tiles. Iterating over the tiles dictates
the new schedule in the executor and should improve tem-
poral locality. Although full sparse tiling does not result in
much improvement when used by itself, it is able to improve
upon the best combination of data and iteration reorder-
ing when composed with those reorderings. Extending the
spatial and temporal locality metrics for scheduling across
loops is an open question.

The metrics and experimental results shown in this paper
have focused on the improved performance of the executor.
The overhead of the inspector, or algorithms that actually
perform the reorderings, must be amortized depending on
how often the executor will be used. In order to guide the
choice of data- and iteration-reordering heuristics, it may be
necessary to generate models or metrics for predicting the
performance of the inspector as well. Determining whether
the inspector will be amortized by the improvements expe-
rienced by the executor might require models and metrics
that take architectural parameters, such as cache size and
TLB size, into account.

BFS on a hypergraph uses both the spatial and temporal
locality hypergraphs. It is therefore a simple extension of
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the algorithm presented in Figure 10 to reorder data and
iterations simultaneously. Indices for the data items and it-
erations are added to their respective permutation arrays as
they are visited. For generality, the temporal locality hy-
pergraph and edgelist can be replaced by primal and dual
hypergraphs, respectively. If the spatial locality hypergraph
(vertices are data, (hyper)edges are iterations) is primal, the
resulting reordering is equivalent to a BFS data reordering
followed by a CPACKIter iteration reordering. If the tempo-
ral locality hypergraph (vertices are iterations, hyperedges
are data) is primal, the resulting reordering is equivalent
to a BFS iteration reordering followed by a CPACK data
reordering. Combining the data- and iteration-reordering
phases should reduce the inspector overhead and may serve
as inspiration for other heuristics that operate on the spatial
and temporal locality hypergraphs simultaneously.

We describe the spatial and temporal hypergraph mod-
els with specific benchmark examples from the domains of
mesh-based and molecular dynamics applications. We eval-
uate the ability of the metrics to select good data-reordering
and iteration-reordering heuristics with benchmarks and
datasets from these domains. However, the models them-
selves are applicable to any loop with irregular accesses.
Whether or not the metrics work in the general case is an
open problem.

7. CONCLUSIONS
Run-time data- and iteration-reordering transformations

can significantly improve the memory system performance
of irregular applications through improved spatial and tem-
poral locality. When the overhead of performing and eval-
uating several reordering heuristics can be amortized over
a large number of executor iterations, metrics are needed
to guide the choice of reordering. The metrics must be in-
expensive to compute and reasonably effective at identify-
ing the superior reordering heuristic. We evaluate the ef-
fectiveness of a previously proposed spatial locality metric
to select among various data-reordering heuristics and find
that the metric is able to select a data-reordering heuristic
that results in performance within 2% of that realized by
the best data-reordering heuristic for experiments run on a
Xeon Pentium 4, Sun-Fire-280R, and PowerPC G5. For one
dataset on the Opteron 242, the performance was within
8%.

For selecting iteration-reordering heuristics, we introduce
the temporal locality hypergraph model and the correspond-
ing temporal locality metric. We evaluate the temporal lo-
cality metric on several iteration-reordering heuristics in-
cluding three new strategies inspired by the temporal hy-
pergraph model. Using the iteration reordering heuristic
with the lowest temporal locality metric value results in
performance that is within 10% of the performance realized
after application of the best iteration-reordering heuristic.
The breadth-first search for iterations (BFSIter) iteration-
reordering heuristic outperforms all existing heuristics on
22 molecular dynamic datasets run with the moldyn bench-
mark. One of the four iteration reordering heuristics based
on the temporal locality hypergraph (CPACKIter, BFSIter,
HPart, CPACKIter-HPart) results in the best performance
for each of the 17 sparse matrix datasets run with the irreg
benchmark.

Finally, we generalize the spatial locality graph model
to a spatial locality hypergraph for applications that it-

erate over triangles and tetrahedra. Experiments with a
mesh-improving application indicate that hypergraph-based
heuristics outperform edge-based heuristics.
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