
Multi-GPU Volume Rendering using MapReduce

Jeff A. Stuart
UC Davis

stuart@cs.ucdavis.edu

Cheng-Kai Chen
UC Davis

ckchen@ucdavis.edu

Kwan-Liu Ma
UC Davis

ma@cs.ucdavis.edu

John D. Owens
UC Davis

owens@ece.ucdavis.edu

ABSTRACT
In this paper we present a multi-GPU parallel volume ren-
dering implemention built using the MapReduce program-
ming model. We give implementation details of the library,
including specific optimizations made for our rendering and
compositing design. We analyze the theoretical peak perfor-
mance and bottlenecks for all tasks required and show that
our system significantly reduces computation as a bottleneck
in the ray-casting phase. We demonstrate that our rendering
speeds are adequate for interactive visualization (our system
is capable of rendering a 10243 floating-point sampled vol-
ume in under one second using 8 GPUs), and that our system
is capable of delivering both in-core and out-of-core visual-
izations. We argue that a multi-GPU MapReduce library is
a good fit for parallel volume renderering because it is easy
to program for, scales well, and eliminates the need to focus
on I/O algorithms thus allowing the focus to be on visual-
ization algorithms instead. We show that our system scales
with respect to the size of the volume, and (given enough
work) the number of GPUs.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; I.3.2 [Computer Graphics]: Graphics processors

General Terms
Design

Keywords
GPU, MapReduce, Volume Rendering

1. INTRO
Volume visualization is an important tool used by scien-

tists to better understand complex data sets. These data
sets are becoming ever larger while the visualization tech-
niques tend to stay the same. Large clusters, of machines

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MAPREDUCE 2010 Chicago, Illinois USA
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

sometimes thousands of CPUs, are used to render data.
These clusters have mostly retained their relevance in the
past decade. However, GPU visualization techniques are a
viable alternative because of their performance, as well as
the cost-performance advantage of GPUs over CPUs.

A common problem with many volume renderers is the
level of specificity in their code base. Most renderers are
specific to one application domain. The programmers of
such packages often write special optimizations based on the
types of data to be explored and the desires of the applica-
tion scientists. Because of the very-specific nature of such
renderers, they are not widely used within the scientific com-
munity. Even if they were shared, the code is of little use to
scientists outside of the application domain. GPU render-
ers are especially guilty of this. They offer great computing
power, but often require special optimizations for efficiency.

The GPU is a highly-parallel machine and offers enormous
performance benefits over a CPU for problems that have a
high degree of data-level parallelism. Volume rendering (ray
casting specifically) works well with the GPU because it has
a high degree of parallelism. However, GPU renderers have a
problem with scalability; they tend to be targeted towards
either a single-GPU machine, or a single-node multi-GPU
machine.

There are, of course, exceptions. ParaView [1] and VisIt [3]
are both equipped with capable renderers, provide an exten-
sible API, and are widely distributed within the community.
They lack out-of-the-box GPU support though. A library is
needed that, like these two packages, provides a scalable in-
frastructure, but that also provides an inherent ability to
utilize GPUs. To make the library even more promising, it
is important to use a well known model and an easy-to-use
application-programming interface (API). MapReduce [4],
modified by Google from the original map and fold paradigms
of functional programming, is exactly this. The one thing
that virtually all MapReduce libraries lack though is GPU
support.

Volume rendering has many characteristics that would
adapt well to a GPU-enabled MapReduce library. Volume
rendering requires a large amount of computation, which
is amply supplied by GPUs. MapReduce is good at hid-
ing communication requirements behind such computation,
something that any good volume renderer must do.

In this paper, we present our work on a highly-specialized,
multi-GPU MapReduce library that we use as a substrate
for volume rendering. The library has an asynchronous,
streaming interface that increases efficiency by allowing net-
work communication, CPU/GPU data transfers, disk access,



and GPU kernel execution to all happen concurrently. The
library allows for highly-pluggable code; different volume-
resampling and compositing algorithms can easily be swapped
in and out. The library provides an easy-to-use API that en-
ables the use of the GPU during both the Map and Reduce
phases. As with any other MapReduce library, our library
handles all I/O, thus allowing the user to focus on the com-
putation and not the communication. It is important to
note that the library handles I/O in this manner without a
significant loss of performance over a custom solution. As an
aside, we would like to point out that our library does not
provide three common aspects found in other MapReduce
libraries: fault tolerance (for our experiments and our small
cluster, this was not an issue), advanced scheduling (with
our renderer this was also not an issue), and a distributed
file system.

Our library handles data in a streaming manner; instead
of storing intermediate key-value pairs and final reduced val-
ues to disk, the library streams these values to the appro-
priate processes. This overcomes a bottleneck present in
many other MapReduce libraries and allows the library to
scale well, both with higher data-processing demands and as
the number of GPUs increases (especially with more than
one GPU per compute node). And even though our library
has no explicit disk access, it still allows for out-of-core
algorithms (including rendering), something current GPU
MapReduce libraries do not allow.

To analyze our library, we tested runtimes for volumes
of various sizes under many different configurations. Our
results show that we can significantly reduce computation
as a bottleneck for volume rendering, even with only a small
number of GPUs, and by doing so we can more clearly see
where disk accesses, CPU/GPU data transfers, and network
I/O become bottlenecks in the multi-GPU volume-rendering
process with current system architectures.

The rest of this paper proceeds as follows. Section 2
presents a background on volume rendering and MapRe-
duce. We discuss our implementation of our multi-GPU
MapReduce-based volume renderer in section 3. We then
present a methodology for evaluating our volume renderer
in section 4 and present out results in section 5. Section 6
presents a discussion on our results and their implications,
and we draw conclusions about multi-GPU volume render-
ing in section 7.

2. BACKGROUND

2.1 Volume Rendering
Volume rendering is a technique widely used to visualize

volumetric data sets in various fields of study. There has
been a large amount of research devoted to the area. Ray
casting is the most popular method for volume rendering
due to its effectiveness in generating high quality images
where internal structures of complicated data can be dis-
played. The standard ray casting techniques were proposed
by Levoy [14] for structured data sets with regular grids.
The fundamental idea of ray casting is that, for each screen
pixel on the plane, a single ray is traversed from the eye
into the volume. During ray casting, a transfer function that
maps a scalar value to optical properties, including color and
opacity, is applied at each sample point. These colors and
opacities are then accumulated along a ray to composite a
final color on the screen.

Ray-casting volume rendering using CPUs is computa-
tionally expensive since it requires the interpolation and
shading calculations for every sample point along the ray
in the data. Interactive volume ray casting was previously
restricted to high-end workstations until GPUs became fast
enough to perform such computations. GPU implemen-
tations of ray-casting rendering approaches have received
much attention since they enable interactive visualization
of volumetric data. Krüger and Westermann [12] proposed
hardware-accelerated ray-casting rendering techniques for
structured volumetric data. By utilizing programmable graph-
ics hardware including vertex and fragment shaders, and
storing volume data in 3D textures, these renderers achieve
an appropriate rendering quality at interactive rates. We
followed ideas similar to those presented in these papers to
implement our GPU-based ray-casting renderer. Weiler et
at. [18] introduced a GPU-enhanced ray-casting renderer for
unstructured tetrahedral meshes. Based on Garrity’s algo-
rithm, they used 2D textures to encode mesh vertices, cor-
responding scalar values, and connectivity information, to
be able to march through the tetrahedral mesh during ren-
dering. Kahler et al. [11], Vollrath et al. [27], and Gosink
et al. [7] all demonstrated different techniques for rendering
adaptive mesh refinement datasets.

CPU-cluster based volume-rendering methods provide fea-
sible solutions to large data visualization by distributing
both data and rendering calculations to multiple compute
nodes. In this way, high-quality interactive rendering of
large scale data can be achieved. Ma et al. [17] presented a
parallel adaptive rendering algorithm for visualizing massive
data. Their goal was to come up with a scalable, high-fidelity
visualization solution that allowed scientists to explore many
domains of their data. Wang, Gao, and their colleagues [6,
28] proposed a parallel multiresolution volume rendering
framework for large-scale data. Yu et al. [29] proposed a par-
allel visualization pipeline for studying terascale datasets.
Their solution is based on a parallel adaptive-rendering al-
gorithm coupled with a new parallel-I/O strategy which ef-
fectively reduces interframe delay by dedicating some pro-
cessors to I/O and preprocessing tasks. Hsieh et al. [10] de-
veloped a set of interactive 3D-visualization and exploration
algorithms based on distributed computing, level-of-detail
mesh construction, and view-dependent refinement. Their
work significantly improved rendering capacity and facili-
tated the exploration large-scale data analysis. Strengert
et al. [26] presented parallel ray-casting volume-rendering
methods on a cluster of commodity, GPU-equipped ma-
chines. Their work combined hardware-accelerated ray cast-
ing with traditional parallel volume-rendering techniques and
I/O strategies.

2.2 MapReduce
MapReduce is a programming model that began as two

separate higher-order functions in functional-programming
languages, map and reduce (also known as fold). Google ex-
tended the model for large-scale data processing and Google
popularized MapReduce with industry and academia. Since
that time, developers and researchers have created many
MapReduce packages. Two popular packages are Phoenix [25],
a C++ implementation from Stanford, and Hadoop MapRe-
duce [13], a Java implementation from the Apache founda-
tion.

i-MapReduce [5] (previously referred to as CGL MapRe-



duce) is another MapReduce package, and potentially the
first to use data streams instead of hard disk access. In-
stead of sending intermediate data values and reduction re-
sults to disk, they are streamed directly to new mapper and
reducer nodes for further processing. This allows for an
efficient, iterative MapReduce algorithm with many consec-
utive MapReduce processes.

Recent efforts have gone towards porting MapReduce to
commodity parallel- processing resources such as GPUs and
IBM’s Cell. Catanzaro et al. created a MapReduce library
for GPUs [2], though the primary focus of his work was
performing many small-scale MapReduce tasks. The main
contribution of their work was finding an efficient way to
sort small mapping outputs on the GPU. Mars [9] was the
first large-scale, GPU- based MapReduce system. It works
with a single GPU on a single node, but only on in-core
datasets. CellMR [24] is a single-node implementation of
MapReduce on the Cell Engine that alleviates the in-core
dilemma of Mars. CellMR accomplishes this by streaming
map data on to the compute devices in small pieces and
performing partial reductions on resident data. The problem
with CellMR is that it relies on these partial reductions to
eliminate as much I/O as possible. Given the formulation
of our volume renderer, we would rarely see any benefits.

3. IMPLEMENTATION
Parallel volume rendering, particularly ray casting against

bricked input with partial-ray compositing, has unique and
well-defined computation and memory-, disk-, and network-
access characteristics. We argue that these characteristics
make volume rendering well suited for parallel rendering on
a cluster of GPUs.

The two primary steps in parallel volume rendering are
partial ray casting against bricks of the volume, and com-
positing a sets of previously unsorted ray fragments into
final pixels. Both of these tasks are embarrassingly parallel;
however, communication is required to progress from one to
the other.

Using a cluster of GPUs to execute each of these steps re-
sults in a performance increase, even though the cost of com-
munication increases slightly. Loading even a small brick
from disk can take a substantial amount of time; loading
a 643 block from disk takes approximately 20 ms on our
cluster. Transfering that brick to the GPU takes less than
0.2 ms (less than 1% overhead) and we achieve a very sig-
nificant decrease in ray-casting time. This is because the
VRAM of modern GPUs is more than 10X faster than that
of modern CPU DRAM, and the GPU has eight texture-
fetch units and eight texture-filtering units. Transmitting
final ray fragments from the GPU to the CPU also requires
very little time (empirically found to be less than 2 ms).

For a given image of X pixels with Y nodes and B bricks,
the lower bound on generated ray fragments is O(X) and a
loose upper bound is O(BX). Of course, the actual num-
ber is affected by the volume itself (ray fragments with no
contributions are discarded) and the view (the more view-
dependent overlap between bricks, the more potential for a
higher number of ray fragments). Given the worst-case sce-
nario, each of the Y nodes must make Y −1 communication
requests of size sizeof (Ray Fragment) × O(BX

Y
). A GPU-to-

CPU transfer of the finished ray fragments must first com-
plete before network I/O can commence. Just as was the
case with loading the volume data, the network transmission

time is several orders of magnitude higher than the GPU-to-
CPU transfer time of those ray fragments. And of course,
just as a CPU-based volume renderer can overlap sending of
ray fragments with computing more ray fragments, so can a
GPU-based renderer.

Thus, with a marginal increase or even a possible decrease
of disk, network, and memory access through all stages of
the volume-rendering pipeline, we believe that a distributed
multi-GPU scheme is well-suited to the parallel volume- ren-
dering workflow. We proceed to describe our implemen-
tations of a parallel volume renderer and the multi-GPU
MapReduce library that serves as its substrate.

3.1 MapReduce Implementation
Our implementation of MapReduce was written in C++

and CUDA [22, 21, 15] to take advantage of NVIDIA GPUs.
The implementation was written to be easy-to-use and ex-
tensible; all user-required tasks are represented via objects
with virtual functions used as callbacks.

There are four main stages to the MapReduce workflow:
Map, Partition, Sort, and Reduce (we specifically omitted
partial reduce/combine because it didn’t increase perfor-
mance for our volume renderer). Each of these stages are
available for user customization by inheriting and extending
from virtual classes. Figure 1 shows a visual diagram of our
system.

BrickBrickBrick
BrickBrickBrick

BrickBrickBrick

Mapper Mapper Mapper

Partition Partition Partition

Sort Sort Sort

Reduce Reduce Reduce

Fragments Fragments Fragments

…

…

…

…

…

Figure 1: The MapReduce workflow: Bricks are in-
dividually streamed to the GPU Mapper. The out-
put from each kernel execution is a set of ray frag-
ments that are sent to the Partition phase. As rays
are partitioned, they are sent to the appropriate pro-
cess for the Sort phase, and then finally are sent to
a Reducer.

3.1.1 Restrictions
In an effort to make the library as efficient as possible, we

made a number of optimizations and design decisions that
are specific to volume rendering, but would not necessarily
work well for every MapReduce task.



• Any single map (ray casting) task must be able to fit
in the main memory of the GPU. Large volumes must
be bricked and mapped in stages.

• Keys are always four-byte integers. If a key X exists,
then all keys 0 ≤ X have a high probability of existing.
This allows for easy partitioning and efficient binning.

• Emitted values are homogeneous in size and computed
in GPU local memory. This allows for optimizations
when copying key-value pairs to global GPU memory
(to then be copied to the CPU).

• Every GPU thread must emit a key-value pair. If the
thread computes a useless key-value pair, the kernel
emits a later-discared place holder.

• Partitioning is done in a per-pixel round-robin fashion.
This is, empirically, the highest-performing method. A
modulo is sufficient to determine the reducer to which
a key-value pair must be sent.

• Any single reduce (compositing of a single pixel) task
must have the ability to completely reside in the main
memory of the GPU. Many reductions can be sched-
uled per kernel to achieve high throughput.

3.1.2 Stages and Objects of our MapReduce Work
Flow

The volume data is bricked into small pieces, with each
piece represented as a Chunk, and distributed to a Map-
per that executes a ray-casting kernel for each Chunk. A
Partition is performed on all key-value pairs to find their
respective Reducer process. Once enough pairs have been
generated by a Mapper, they are sent asynchronously to the
Reducer. Once all Mappers have finished and all data has
been routed to the proper Reducer, a Sort is performed to
compact all like keys and arrange their respective values to-
gether. Finally, each Reducer iterates through the data.

Chunk.
A Chunk represents a collection of work to be mapped, in

our case, it is a brick of a volume. As GPUs are highly data-
parallel machines, they are more performant when large
amounts of data need to be processed. Each Chunk re-
quests a certain amount of GPU memory to hold its vol-
ume data. For efficiency reasons, the library allocates this
memory. The volume data is then copied to the GPU im-
mediately before kernel execution. Our wish was to do this
asynchronously, but in order to use a CUDA 3-D texture, we
were forced to use synchronous memory copies. We chose
not to put any GPU-memory [de]allocation functions in the
staging functions because these functions are implicitly syn-
chronous and have a high overhead.

Mapper.
The Mapper is the first worker unit of our MapReduce li-

brary. Mappers execute a ray-casting kernel on each Chunk.
Each Mapper has an initialization function that allocates
static data on the GPU (e.g. view matrix). This function
can allocate GPU memory and need not worry about asyn-
chronous activity since it is called at the very beginning of
the MapReduce process. Once a chunk is ready, the library
calls the execution function of the Mapper, this triggers the
ray-casting kernel.

Partition.
The Partition task is implicit in the library and leverages

some pre-existing knowledge about the problem domain. We
use the pixel index of the ray (y(pixel) ∗ width(finalImage)
+ x(pixel)) as the key, and distribute the keys in a per-
pixel round-robin fashion because it is empirically the most
performant method of distribution

Sort.
Sort also is implicit in the library. We use a specialized

counting sort on the CPU or GPU (depending on the amount
of data) that runs in θ(n) since the library knows the mini-
mum and maximum keys for each node, as well as the max-
imum number of keys for each node.

Reducer.
The Reducer tasks can execute on either the CPU or the

GPU. We found empirically that while the GPU would
be very good at compositing (compositing is a very data-
parallel task), it is actually quicker to do the compositing
on the CPU. This is because of the required sort of the ray
fragments of each pixel. And while the image stitching is not
included in our results or timings (it is a separate phase from
Map, Sort, Partition, and Reduce), it must happen in paral-
lel, and thus would require more data be copied up from the
GPU. We believe that with sufficiently many ray fragments
(from hundreds or thousands of GPUs), GPU compositing
may be more efficient.

3.2 Volume Renderer Implementation
We implemented our ray caster in CUDA. The volume

data is stored in a 3D texture with floating-point samples
to enable the hardware texture caches and filtering units,
thus leading to a substantial increase in volume-sampling
throughput. We execute our kernel with a 2D grid of 2D
blocks. Each block is 16×16, and the grid is made to match
the size of the sub-image (with a potentially small amount
of padding) onto which the current chunk projects. In the
kernel, we use a similar implementation to that proposed
by Hadwiger et al. [8]. All rays are intersected against a
bounding box and any non-intersecting rays are immedi-
ately discarded. We use non-adaptive trilinear sampling;
rays are advanced through the chunk at fixed increments
until they exit. We use early ray termination, and we use
front-to-back compositing with a texture-based 1D transfer
function to obtain the final color and opacity of each ray
fragment. We use the same type of front-to-back composit-
ing during the reduce phase. All ray fragments for a given
pixel are ascending-depth sorted, composited, and blended
against the background color.

4. METHODOLOGY

4.1 Cluster Configuration
To test our library and volume renderer, we used the Ac-

celerator Cluster (AC) at the NCSA, and tested with up to
32 GPUs. Each node has quad-core CPU, 8 GB SDRAM,
and a Tesla C1090 with four logical GPUs each. The AC
is connected via QDR Infiniband. Each node is running
the Linux 2.6 kernel with the CUDA 3.0 toolkit and the
NVIDIA 195.

4.2 Benchmarks



When trying to analyze the performance of our library
and renderer, we consider three figures of merit: voxels per
second (VPS), runtime, and parallel efficiency.

Voxels per second is an important figure to consider be-
cause volumes grow larger cubicly while the renderings grow
quadratically. Showing the capability of a renderer in terms
of VPS illustrates the performance of the software, and also
the PCI-e bus and memory system of the GPU.

Runtime is just as important as VPS. Scientists care
about the frame rate of their visualization. This has an
inverse correlation to the runtime. The slower the runtime,
the more GPUs required to an interactive-rate visualization.

Finally, parallel efficiency is important because it shows
the true scalability of the system, both in terms of data size
and in terms of number of GPUs. Being able to double the
number of GPUs and achieve almost twice the performance
is a desirable goal. Our main goal is runtimes of interactive
rates and a system that scales well to many GPUs as the
size of the data grows.

5. RESULTS
We tested three datasets, Skull, Supernova, and Plume

(Figure 2). We have the first two datasets in resolutions of
1283, 2563, 5123, and 10243. The Plume dataset is stored
at a resolution of 512 × 512 × 2048. All volumes use four-
byte floating- point samples and for the purposes of timing,
were rendered with an image size of 5122 (trends in speedup
and runtime were similar with different image sizes, this was
an arbitrarily chosen representative). Our timings do not in-
clude the time taken to brick the volumes, nor the time taken
to stitch the composited pixels. Neither of these tasks use
our library, and both can be implemented in many different
ways. Instead, our results focus on our library.

Figure 3 shows the breakdown of runtimes by Map, Par-
tition, Sort, and Reduce, for a 1283, 2563, 5123, and 10243

volume. Figure 4 shows the FPS and VPS rates of our ren-
derer. 1

6. DISCUSSION
All of the design decisions that went into the library and

the renderer were made with two things in mind: perfor-
mance and efficiency. We strived to use existing practices
from the research community. At times though, there was
no clear solution provided in the literature. In this case we
used empirical evidence to guide our decisions.

For volume sampling, we had three viable choices: ray
casting, splatting, and slicing. We chose ray casting over
splatting and slicing because of the nature of the GPU.
With ray casting, each GPU thread was able to work in-
dependently of all others, and produced a uniform number
of outputs, allowing the output values to be written to GPU
main memory in an efficient manner.

The choice for compositing was also not initially obvious.
We had two options, either direct-send compositing [20] with
a checkerboard, tiled, or striped distribution, or swap com-

1Comparing different volume renderers is difficult because
of differences in hardware (e.g. CPUs, GPUs, interconnect,
etc.) and the rendering algorithm. However, as a point
of reference, Moreland et al. [19] show that Paraview can
render 346M VPS using 512 processes on 256 nodes. Using
16 GPUs on 4 nodes, we achieve more than double this rate.

positing [16, 30]. We chose direct-send compositing because
it allows an overlap of communication and computation, and
also because it fits within the MapReduce model. With our
renderer, it is quite common to have each GPU render sev-
eral chunks.

By building our renderer and MapReduce library in this
way, we created something that works well for configurations
where the number of bricks is close (roughly within a factor
of four) to the number of GPUs. The renderer is capable
of efficiently handling arbitrarily-sized input. We can run
the renderer in either an in-core or out-of-core manner and
reduce bottlenecks as much as possible in both cases. If
enough GPUs are available to fit the bricked volume entirely
in core, the speed benefits are obvious. But if not, the speed
of the rendering is still quite good, and better than out-of-
core CPU renderers.

6.1 Advantages
We would again like to mention an important benefit of

using MapReduce: it allows for a highly modular design.
It is straightforward to change either the volume-sampling
technique or the compositing technique, without changing
both. For example, swap compositing can be implemented
by changing the partitioning on each node. Every node
would consume all generated ray fragments to create its par-
tial image. The reduction phase would then be changed to
perform swap compositing. If the user wished to use splat-
ting or slicing instead of ray casting, the map phase is all
that would need to be changed.

One notion to be taken from the results is that our ray
casting method is perhaps too easy for the GPU. The trans-
fer time of a brick to the GPU and the generated ray frag-
ments from the GPU take almost as much time as ray cast-
ing against the brick. And in fact, as the number of GPUs
grows large, the communication time for fragments is the
dominant part of the algorithm. For a small volume with
only a few bricks, the time for these three combined can be
far less than the time required for direct-send compositing.
Thus, small inputs do not scale very well in terms of the
number of nodes. Of course this is not actually a problem;
why would one wish to use more resources than necessary
to complete a task? Our system reacts extremely well when
the rendering is performed with just enough (or less than
enough) GPUs to hold the volume.

6.2 Limitations
Another problem encountered is thrashing. Sometimes a

volume is so big that it simply cannot fit in system memory,
let alone GPU VRAM. When this is the case, the data must
reside in virtual memory or it must be streamed in from disk
or from a network resource. For non-in-situ visualization,
the data most likely will be stored on disk (either in virtual
memory or in the file system). Relying on virtual memory
severely impacts the performance of any application, and
our renderer is no exception. However, we feel that this is
not a shortcoming of the library and is more a problem that
all applications that rely on hard disks must overcome (our
library is hard-disk agnostic).

6.3 Analysis of Bottlenecks
We argue that based on the bottlenecks presented in 6.2,

the combination of our library and renderer are as efficient
as possible; meaning that the computation from ray casting



Figure 2: The Skull, Supernova, and Plume datasets.
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Figure 3: The relative cost of compute-to-communication can be seen from these graphs. The total time
taken to ray cast (a portion of the Map phases) scales linearly with the number of GPUs. The not-quite
linear decrease, or in some cases increase, as the number of GPUs increase is due to the extra communication
required. As more GPUs are added, more ray fragments generated, and thus more time is required for reduce
and more time is required for communication. With volumes of this size, the best runtime configuration is
8 GPUs, primarily because it strikes a good balance between splitting work and minimizing communication.
With less than 8 GPUs, there is too much work, with more than 8 GPUs, there is too much communication.
The 10243 volume shows a certain trend: the additional communication with 32 GPUs over 16 GPUs is
outweighed by the saving in compute time. With sufficiently large volumes, we believe that performance
increases should be seen beyond eight GPUs.
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Figure 4: FPS and VPS for various volume sizes.

is no longer a limiting factor in rendering [23]. We do this by
showing the ”speed-of-light”and the realistic peak speeds for
the tasks in the renderer, then showing that we come very
close to achieving those.

Reading bricks from disk can take several orders of mag-
nitude more time than the entire MapReduce process. Thus
we exclude disk access time from our “speed-of- light” calcu-
lations and instead assume that all data is initially resident
within CPU system memory. A runtime analysis of the map
phase shows that a 10243 volume split into two bricks across
8 GPUs requires 515 ms of communication and 503 ms of
computation. If we increase this to 16 GPUs, the commu-
nication time raises to over 1 second and the computation
decreases to 97 ms. We believe this shows that fitting par-
allel volume rendering into a multi-GPU MapReduce model
severely reduces computation as a bottleneck in volume ren-
dering. More GPUs equates to more rendering power, but
to fully utilize the power of additional GPUs, it is necessary
to have a volume large enough to keep each GPU busy.

7. CONCLUSION
The multi-GPU MapReduce programming model is a vi-

able and high-performance option for volume rendering be-
cause it is simple to use, highly pluggable, and allows mod-
ular development of parallel volume renderers. Our spe-
cific implementation of multi-GPU MapReduce offers scal-
able performance. A single GPU efficiently renders small
volumes in core, and only a minimal number of GPUs is
required to efficiently render a volume out of core.

Because we can fit parallel volume rendering into the MapRe-
duce model, we are able to optimize required communica-
tion. This allows our library to scale well with data-set size.
It also allows more nodes to be used for larger data sets
without sacrificing efficiency.

We propose a number of possibilities to achieve better
scaling. Some possibilities are research challenges that must
be overcome, and some are engineering efforts. To over-
come the bottleneck of disk access when only rendering one
frame per volume, we believe in-situ visualization is the best
choice. This allows the simulation nodes to efficiently split
the volume and transfer it over a high-speed interconnect.

With these in mind, we propose several avenues for future
work. The first and most obvious is extending our MapRe-
duce implementation by making it more robust, more plug-

gable, and thus more efficient for any kind of MapReduce
task. We feel this would be the largest possible contribu-
tion to the community as it would allow commodity GPUs
to be added cheaply to large clusters, and hopefully yield a
substantial performance gain for many tasks.

We want to explore a few possbilities in volume rendering.
One in particular is investigating the speed tradeoffs of using
asynchronous memory transfers combined with manually fil-
tering the volume samples in shared memory, as opposed to
using the synchronous memory transfer functions and hard-
ware filtering units. We also wish to see the results from
partitioning the work with respect to the volume instead of
the image. This would allow us to load pieces of the volume
into the shared memory of each GPU multiprocessor.

We conclude with two more rendering extensions we feel
would be worthwhile; a ray-fragment sort on the GPU, and
exploring the benefits of direct access for the GPU to system
memory (0-copy memory). If the GPUs used for MapReduce
are also tied to a display, it may be more efficient to have
the final pixels on the GPU as to allow the final pixels to
be rendered immediately after compositing is finished. As
for 0-copy memory, there is potential for significant overlap
of communication with computation because ray fragments
could be consumed immediately upon production. There
would be no need for transfers between the CPU and GPU.
This remains a research topic though because 0-copy mem-
ory is orders of magnitude slower than GPU VRAM.
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