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To readers traveling beyond the boundaries
of knowledge



Preface

What is deep learning for those who want to study physics? Is it completely different
from physics? Or is it really similar?

In recent years, machine learning, including deep learning, has begun to be used
in various physics studies. Why is that? Is knowing physics useful in machine
learning? Conversely, is knowing machine learning useful in physics?

This book is devoted to answers of these questions. Starting with basic ideas of
physics, neural networks are derived “naturally.” And you can learn the concepts of
deep learning through the words of physics.

In fact, the foundation of machine learning can be attributed to physical con-
cepts. Hamiltonians that determine physical systems characterize various machine
learning structures. Statistical physics given by Hamiltonians defines machine
learning by neural networks. Furthermore, solving inverse problems in physics
through machine learning and generalization essentially provides progress and even
revolutions in physics. For these reasons, in recent years, interdisciplinary research
in machine learning and physics has been expanding dramatically.

This book is written for anyone who wants to know, learn, and apply the
relationship between deep learning/machine learning and physics.1 All you need to
read this book is just the basic concepts in physics: energy and Hamiltonians.2 The
concepts of statistical mechanics and the bracket notation of quantum mechanics,
which are introduced in columns, are used to explain deep learning frameworks.

This book is divided into two parts. The first part concerns understanding the
machine learning method from the perspective of physics, and the second part

1If the reader has learnt physics and then reads a general machine learning textbook, the reader may
feel uncomfortable with how various concepts are introduced suddenly and empirically without
explanation. This book is motivated by such gaps. On the other hand, code implementation is not
covered in this book, because it is library dependent. The reader can try to implement a machine
with some favorite library.
2It is assumed that readers learned the basics of physics: around second or third grade of
undergraduate courses in physics. We will explain everything based on Hamiltonians, but it is
not necessary to have knowledge on analytical mechanics.

vii



viii Preface

explores the relationship between various problems in physics and the method of
machine learning. That is, the first part is written as a textbook, but the second part
is not a text book, it is a collection of recent advanced topics (and so, the chapters in
the second part can be read almost independently). Please refer to the reader’s guide
at the beginning of each section.

A renowned physicist, Ryoyu Uchiyama, said in the preface to his book, Theory
of Relativity [1], “If you read this book and do not understand it, you should give up
learning the theory of relativity.” On the other hand, the field of “machine learning
× physics,” which is the subject of this book, is not a discipline established over a
long history like the theory of relativity, but a field of research that is still undergoing
great progress. So, rather, our message is this: “If you read this book and do not
understand it, it will be a seed for development in the future.”

One of our favorites is the words by S. Weinberg, a particle physicist [2]:
“My advice is to go for the messes – that’s where the action is.”
It is up to the readers to make their own way. We hope this book helps the readers

learn and study.

Tokyo, Japan Akinori Tanaka
March 2019 Akio Tomiya

Koji Hashimoto

The authors
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Chapter 1
Forewords: Machine Learning
and Physics

Abstract What is the relationship between machine learning and physics? First
let us start by experiencing why machine learning and physics can be related.
There is a concept that bridges between physics and machine learning: that is
information. Physics and information theory have been mutually involved for a
long time. Also, machine learning is based on information theory. Learning is about
passing information and recreating relationships between information, and finding
information spontaneously. Therefore, in machine learning, it is necessary to use
information theory that flexibly deal with the amount of information, and as a
result, machine learning is closely related to the system of information theory. This
chapter explores the relationship between physics, information theory, and machine
learning, the core concepts in this book.

What is the relationship between machine learning and physics? We’ll take a closer
look at that in this book, but first let us start by experiencing why machine learning
and physics can be related. There is a concept that bridges between physics and
machine learning: that is information.

Physics and information theory have been mutually involved for a long time,
and the relationship is still widely and deeply developed. Also, machine learning is
based on information theory. Learning is about passing information and recreating
relationships between information, and finding information spontaneously. There-
fore, in machine learning and deep learning, it is necessary to use information theory
that flexibly deals with the amount of information, and as a result, machine learning
is closely related to the system of information theory.

As the reader can imagine from these things, machine learning and physics
should have some big relationship with “information” as an intermediate medium.
One of the goals of this book is to clarify this firm bridge. Figure 1.1 shows a
conceptual diagram.

This chapter explores the relationship between physics, information theory, and
machine learning, the core concepts in this book. Let us explain how the titles of
this book, “Deep Learning” and “Physics” are related.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. Tanaka et al., Deep Learning and Physics, Mathematical Physics Studies,
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2 1 Forewords: Machine Learning and Physics

Fig. 1.1 Physics, machine learning, and information. Do they form a triangle?

1.1 Introduction to Information Theory

Quantifying information
This chapter explores the relationship between physics and machine learning
using information theory as a bridge. For that, we need to define exactly what
“information” is. What is “information” in the first place? First, read the following
two sentences [3]:

• Humans teach gorillas how to add numbers. (1.1)

• Gorillas teach humans how to add numbers. (1.2)

Which of these two sentences can be said to have more information? (1.1) is
not surprising, if true, because it is possible, regardless of whether the gorilla
understands it or not. You may have actually heard such news. On the other hand,
if (1.2) is true, it is quite surprising. Then one will change one’s mind and remember
that there could be a gorilla which can teach humans. This may be said to be
increasing the amount of information. In other words [4],

Amount of information = Extent of surprise. (1.3)

Let us go ahead with this policy anyway. The greater the surprise, the less likely it
is to happen. In addition, if we try to make “information increase by addition”, with
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P(event) the probability that an event will occur, we have1

Amount of information of event A = − log P(event A). (1.4)

When the probability is low, the amount of information is large.

Average amount of information
Let us further assume that various events A1, A2, . . . , AW occur with probabilities
p1, p2, . . . , pW , respectively. At this time, the amount of information of each event
is − log pi , and its expectation value

Sinformation = −
W∑

i=1

pi log pi. (1.5)

is called information entropy.2 Let us take a concrete example of what information
entropy represents. Suppose there are W boxes, and let pi be the probability that the
ith box contains a treasure. Of course, we want to predict which box contains the
treasure as accurately as possible, but the predictability depends on the value of pi .
For example, if we know that the treasure is always in the first box, it is easy to
predict. The value of the information entropy for this case is zero:

pi =
{

1 (i = 1)

0 (other than that)
Sinformation = 0. (1.6)

On the other hand, if the probability is completely random,

pi = 1

W
Sinformation = log W. (1.7)

For this case, even if we know the probability, it is difficult to predict because we
do not know which box it is in. This time, the information entropy has a large value,
log W . In other words, the more difficult it is to predict, the greater the information
entropy. Therefore, the relation to the commonly referred to “information” is as
follows:

•
{

Little “information” ⇔ difficult to predict ⇔ large information entropy
A lot of “information” ⇔ easy to predict ⇔ small information entropy

(1.8)

1In this book, as in many physics textbooks, the base of the logarithm is taken to be that of the
natural log, e = 2.718 · · · .
2This quantity was first introduced in the context of information in the monumental paper by
C. Shannon on mathematics in communication [5]. He calls this quantity entropy, so physicists can
easily understand this concept.
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The “information” here is the information we already have, and the amount of
information (1.4) is the information obtained from the event.

1.2 Physics and Information Theory

There are many important concepts in physics, but no physicist would oppose
that one of the most important is entropy. Entropy is an essential concept in the
development of thermodynamics, and is expressed as S = kB log W , where W

is the number of microscopic states, in statistical mechanics. The proportionality
coefficient kB is the Boltzmann constant and can be set to 1 if an appropriate
temperature unit is used. The entropy of the system in this case is

S = log W . (1.9)

In physics, the relationship with information theory is revealed through this entropy:
That is because Sinformation of (1.7) is exactly the same formula as (1.9). In this way,
various discussions on physical systems dealing with multiple degrees of freedom,
such as thermodynamics and statistical mechanics, have a companion information-
theoretic interpretation.

By the way, most of the interest in research in modern physics (e.g., particle
physics and condensed matter physics) is in many-body systems. This suggests
that information theory plays an important role at the forefront of modern physics
research. Here are two recent studies.

Black hole information loss problem
Research by J. Bekenstein and S. Hawking [6, 7] shows theoretically that black
holes have entropy and radiate their mass outward as heat. To explain the intrinsic
problem hidden in this radiation property of black holes, the following example is
instructive: Assume that there is a spring, and fix it while stretched. If this is thrown
into a black hole, the black hole will grow larger by the stored energy, and then
emit that energy as heat with the aforementioned thermal radiation. But here is the
problem. Work can be freely extracted from the energy of the spring before it is
thrown, but the second law of thermodynamics limits the energy efficiency that can
be extracted from the thermal radiation. In other words, even if there is only a single
state before the throwing (that is, the entropy is zero), the entropy increases by the
randomness after thermal radiation. An increase in entropy means that information
has been lost (see (1.8)). This is known as the information loss problem and is one
of the most important issues in modern physics for which no definitive solution has
yet been obtained.3

3For this, take a look at the column in Chap. 12.
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Maxwell’s demon
Maxwell’s demon is a virtual devil that appears in a thought experiment and breaks
the second law of thermodynamics, at least superficially; it was introduced by James
Clerk Maxwell. Assume a box contains a gas at temperature T ; a partition plate with
a small hole is inserted in the middle of this box. The hole is small enough to allow
one gas molecule to pass through. There is also a switch next to the hole, which can
be pressed to close or open the hole. According to statistical mechanics, in a gas
with a gas molecular mass m and temperature T , molecules with speed v exist with

probability proportional to e
− mv2

2kBT . This means that gas molecules of various speeds
are flying: there are some fast molecules, and some slow molecules. Assuming that
a small devil is sitting near the hole in the partition plate, the devil lets “only the
fast molecules coming from the right go through the hole to the left, only the slow
molecules from the left go through the hole to the right.” As a result, relatively slow
molecules remain on the right, and fast-moving molecules gather on the left. That is,
if the right temperature is TR and the left temperature is TL, it means that TR < TL.
Using the ideal gas equation of state, pR < pL, so the force F = pL−pR acts in the
direction of the room on the right. If we allow the partition to slide and attach some
string to it, then this F can do some work. There should be something strange in
this story, because it can convert heat to work endlessly, which means that we have
created a perpetual motion machine of the second kind. In recent years, information
theory has been shown to be an effective way to fill this gap [8].

In this way, relations with information theory have been more and more
prominent in various aspects of theoretical physics. Wheeler, famous for his work on
gravity theory, even says “it from bit” (physical existence come from information)
[9]. In recent years, not only information theory based on ordinary probability
theory, but also research in a field called quantum information theory based on
quantum mechanics with interfering probabilities has been actively performed, and
various developments are reported daily. This is not covered in this book, but
interested readers may want to read [10] and other books.

1.3 Machine Learning and Information Theory

One way to mathematically formulate machine learning methods is based on
probability theory. In fact, this book follows that format. One of the nice things about
this method is that we can still use various concepts of information theory, including
entropy. The purpose of machine learning is “to predict the future unknown from
some experience,” and when formulating this mathematically, as in (1.8), it is
necessary to deal with a quantity measuring the degree of difficulty in predicting
things. However, the “predictability” described in (1.8) is based on the assumption
that we know the probability pi of the occurrence of the event. Even in machine
learning, it is assumed that there exists pi behind the phenomenon, while its value
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is not known. The following example illustrates that even in such cases, it is still
very important to consider a concept similar to entropy.

Relative entropy and Sanov’s theorem
Here, let us briefly look at a typical method of machine learning which we study in
this book.4 As before, let us assume that the possible events are A1, A2, . . . , AW ,
and that they occur with probabilities p1, p2, . . . , pW , respectively. If we can
actually know the value of pi , we will be able to predict the future to some extent
with the accuracy at the level of the information entropy. However, in many cases,
pi is not known and instead we only know “information” about how many times Ai

has actually occurred,

•
{

A1 : #1 times, A2 : #2 times, . . . , AW : #W times,
#(=∑W

i=1 #i ) times in total.
(1.10)

Here, # (the number sign) is an appropriate positive integer, indicating the number
of times. Just as physics experiments cannot observe the theoretical equations
themselves, we cannot directly observe pi here. Therefore, consider creating an
expected probability qi that is as close as possible to pi and regard the problem of
determining a “good” qi here as machine learning. How should we determine the
value of qi from the “information” (1.10) alone? One thing we can do is to evaluate

• Probability of obtaining information (1.10) assuming qi is the true probability.

(1.11)

If we can calculate this, we need to determine qi that makes the probability (1.11)
as large as possible (close to 1). This idea is called the maximum likelihood
estimation. First, assume that each Ai occurs with probability qi ,

p(probability of Ai occurring #i times) = q#i
i . (1.12)

Also, in this setup, we assume that the Ais can occur in any order. For example,
[A1, A1, A2] and [A2, A1, A1] are counted as the same, and the number of such
combinations should be accounted for in the probability calculation. This is the
multinomial coefficient

(
#

#1, #2, . . . , #W

)
= #!

#1!#2! · · · #W ! . (1.13)

Then we can write the probability as the product of these,

(1.11) = q
#1
1 q

#2
2 . . . q

#W

W

#!
#1!#2! . . . #W ! . (1.14)

4This argument is written with the help of an introductory lecture note on information theory [11].
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Then, we should look for qi that makes this value as large as possible. In machine
learning, qi is varied to actually increase the amount equivalent to (1.14) as much
as possible.5

By the way, if the number of data is large (# ≈∞), by the law of large numbers,6

we have

#i

#
≈ pi ⇔ #i ≈ # · pi . (1.17)

Here, #i must also be a large value, so according to Stirling’s formula (which is
familiar in physics), we find

#i ! ≈ ##i

i . (1.18)

By substituting (1.17) and (1.18) into (1.14), we can get an interesting quantity:

(1.14) ≈ q
#·p1
1 q

#·p2
2 . . . q

#·pW

W

#!
(# · p1)!(# · p2)! . . . (# · pW)!

≈ q
#·p1
1 q

#·p2
2 . . . q

#·pW

W

##

(# · p1)#·p1(# · p2)#·p2 . . . (# · pW)#·pW

= q
#·p1
1 q

#·p2
2 . . . q

#·pW

W

1

p
#·p1
1 p

#·p2
2 . . . p

#·pW

W

= exp
[
− #

W∑

i=1

pi log
pi

qi

]
. (1.19)

The goal is to make this probability as close to 1 as possible, which means to bring∑W
i=1 pi log pi

qi
close to zero. This quantity is called relative entropy, and is known

to be zero only when pi = qi . Therefore, bringing the original goal (1.11) as close

5This problem can be solved by the Lagrange multiplier method. Define a Lagrangian

L(qi , λ) = log[Eq. (1.14)] + λ

(
1 −

W∑

i=1

qi

)
. (1.15)

If we look for qi , λ which extremize this L, then we find

qi = #i

#
, λ = #. (1.16)

The reader can see that this fits with the intuition from the law of large numbers (1.17).
6The law of large numbers will be explained in Chap. 5.



8 1 Forewords: Machine Learning and Physics

to 1 as possible corresponds to reducing the relative entropy. We mean,

Relative entropy = Amount to measure how close the prediction qi is to the truth pi .

The properties of the relative entropy will be explained later in this book. The
relative entropy is called Kullback-Leibler divergence in information theory, and
is important in machine learning as can be seen here, as well as having many
mathematically interesting properties. The fact that (1.11) is approximately the same
as the Kullback-Leibler divergence is one of the consequences from large deviation
theory called Sanov’s (I. N. Sanov) theorem [12, 13].

1.4 Machine Learning and Physics

So far, we have briefly described the relationship between physics and information
theory, and the relationship between machine learning and information theory. Then,
there may be a connection between machine learning and physics in some sense. The
aforementioned Fig. 1.1 shows the concept: physics and information are connected,
and information and machine learning are connected. Then, how can physics and
machine learning be connected?

A thought experiment
Suppose we have a fairy here. A button and a clock are placed in front of the fairy,
and every minute, the fairy chooses to press the button or not. If the fairy presses
the button, the machine outputs 1. If the fairy does not press the button, the output
is 0. The result of “a special fairy” is the following sequence:

{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, . . . }. (1.20)

The following figure shows the result of this monotonous job for about 4 hours,
displayed in a matrix of 15 × 15:
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We let the fairy to continue its work all night for five days. The result is:

It looks like a person’s face.7 The “special fairy” had the goal of drawing this
picture by pressing/not-pressing buttons. This may seem like a trivial task, but here
we explain a bit more physically that it is not.

First, consider the random arrangement of 0 and 1 as the initial state. With this
we do not lose the generality of the problem. The fairy decides whether to replace
0/1 with 1/0 or leave it as it is at the time (x, y) (coordinates correspond to the time),
by operating the button. The fairy checks the state of the single bit at time (x, y) and
decides whether or not to invert it. Yes, the readers now know that the identity of
this “special fairy” is Maxwell’s demon.8

From this point of view, the act of “drawing a picture” is to draw a meaningful
combination (low entropy) from among the myriad of possibilities (high entropy)
that can exist on the canvas. In other words, it is to make the information increase in
some way. You may have heard news that artificial intelligence has painted pictures.
Without fear of misunderstanding, we can say that it means a successful creation of
a Maxwell’s demon, in the current context.

The story of Maxwell’s demon above was a thought experiment that suggested
that machine learning and physics might be related, but in fact, can the subject of
this book, machine learning and physics, be connected by a thick pipe?

In fact, even in the field of machine learning, there are many problems that often
require “physical sense” and there are many research results inspired by it. For
example, in the early days of deep learning, a model (Boltzmann machine) that used
a stochastic neural network was used, and this model was inspired by statistical

7This is a binary image of the sample data “Lenna image” [14]. It is used as a standard in research
fields such as image compression.
8This analogy is a slightly modified version of the story in [15]. It would be interesting to discuss
the modern physics solution of the Maxwell’s demon problem in the context here, namely, where
does the entropy reduction used to learn some meaningful probability distribution in machine
learning come from?
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mechanics, especially the Ising model that deals with spin degrees of freedom. A
neural network is an artificial network that simulates the connection of neurons in
the brain, and the Hopfield model, which provides a mechanism of storing memory
as a physical system, can be said to be a type of Ising model. Focusing on these
points, in this book we describe various settings of neural networks from statistical
mechanics.

In Boltzmann machine learning and Bayesian statistics, it is necessary to generate
(or sample) (pseudo-)random numbers that follow some complicated probability
distribution. It is a popular method in numerical calculations in condensed matter
physics and elementary particle physics, so there is something in common here.9

Sampling takes too long for complex models, so in recent years the Boltzmann
machine has been replaced by neural networks and is not attracting attention.
However, the academic significance may yet be recealed, so it would be a good
idea not only to follow the latest topics of deep learning, but also to return to the
beginning and rethink the Boltzmann machine.

Today, deep learning is simply a collection of various techniques that have
been found to work “empirically” when applying deep neural networks to various
machine learning schemes. However, the mind that senses any technique to work
“empirically” has something close to the so-called “physical sense”.10 For example,
in recent years, it has been known that a model called ResNet, which includes a
“bypass” in a neural network, has a high capability. ResNet learns the “residual”
of the deep neural network, rather than learning directly the “features” that would
have been acquired by the ordinary deep neural networks. The “features” are the
quantities important for performing the desired task. In the ResNet, the residuals are
accumulated to express the features. This is expressed as a relationship “differential
= residual” and “integral = feature”, and is reminiscent of the equation of motion
and its solution.

In this sense, machine learning and physics seem to have “a certain” relationship.
To actually try the translation, we need to create a corresponding dictionary such as
Table 1.1. Returning to Fig. 1.1, combined with the many fragmentary relationships
listed above, machine learning and deep learning methodologies can be viewed and
constructed from a physical perspective.

With this in mind, this book is aimed at:

1. Understanding machine learning methods from a physics perspective

9In fact, it is not unusual that people majoring in computational physics switch to the world of data
science.
10As an example, most quantum field theories have not been mathematically justified, but
are empirically consistent with experimental results. They are formulated by a physical sense.
Calculated results of quantum electrodynamics, which is a branch of the quantum field theories,
contain a number of operations that are not mathematically justified, but they are more than
10 orders of magnitude consistent with experimental measurements. Of course, the performed
operations are consistent in the sense of theoretical physicists, but they have not been justified in a
mathematically rigorous way.
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Table 1.1 Terms and notations used in machine learning related fields and their counterparts in
physics

Machine learning Physics

Expection value Eθ [•] Expection value 〈•〉J
Training parameters W, θ Coupling constant (external field) J

Energy function E Hamiltonian H

2. Finding the link between physics problems and machine learning methods

In this book, the first half is “Introduction to Machine Learning/Deep Learning
from the Perspective of Physics”, and the second half is “Application to Physics”.
Although there are many topics which are not introduced in this book, we have tried
to include references as much as possible, so readers who want to know more about
them should consult the literature or search by keywords.

In addition, the final chapter of this book describes the background of the
writing, the motivation for the research, and a message for those who are studying
machine learning, from three different perspectives of the authors. As the readers
can find there, the authors have different interconnecting opinions, and in what sense
machine learning and physics are still related is a mystery that researchers do not
completely agree with. In other words, this also means “an unexplored land where
something may exist.” With the readers who study machine learning from now, let
us step into this mysterious land, through this book.



Part I
Physical View of Deep Learning

Let us get into Part I of this book, in which we study and understand machine
learning from a physics perspective. In this art, we will use physics language to
see how neural networks “emerge.” In general textbooks, neural networks used
in machine learning and deep learning are introduced as imitating the functions
of brain neural networks and neurons, and various neural network structures have
been improved for the purpose of learning and application. No particular physics
perspective is used there. As a result, many readers may suspect that, even if neural
networks have a physics perspective, they can only be interpreted as retrospective
interpretations of individual concepts. However, in Part I, from a physics point
of view, we will focus on how neural networks and their accompanying concepts
emerge naturally, and mainly look at the “derivation” of neural networks.

Incidentally, although we cannot say for sure, we imagine that the “derivation”
here seems to be something that was actually done implicitly in the minds of
researchers. This is our feeling after having read the papers written at the dawn
of deep learning research when the research subject was shifting from Boltzmann
machines to neural nets.

Of course, not all machine learning concepts are physically derived. We will
explain basic concepts such as what is machine learning, in physics language. If
you have learned a bit of physics, you can naturally feel the answer to the question
of how to perform and optimize the machine learning.

In addition, the concepts described below do not cover all of the concepts in
machine learning in an exhaustive manner, but focus only on the basic concepts
necessary to understand what machine learning is. However, understanding these
in the language of physics will help to physically understand machine learning that
is currently applied in various ways, and will also be useful for research related to
physics and machine learning described in Part II. Now, we shall give each chapter
a brief introduction as a destination sign for readers.

Chapter 2: Introduction to Machine Learning First, we learn the general theory
of machine learning. We shall take a look at examples of what learning is, what
is the meaning of “machines learned,” and what relative entropy is. We will learn
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how to handle data in probability theory, and describe “generalization” and its
importance in learning.

Chapter 3: Basics of Neural Networks Next, in this chapter, we derive neural
networks from the viewpoint of physical models. A neural network is a nonlinear
function that maps an input to an output, and giving the network is equivalent
to giving a function called an error function in the case of supervised learning.
By considering the output as dynamical degrees of freedom and the input as an
external field, various neural networks and their deepened versions are born from
simple Hamiltonians.1 Training (learning) is a procedure for reducing the value
of the error function, and we will learn the specific method of backpropagation
using the bra-ket notation popular in quantum mechanics. And we will look
at how the “universal approximation theorem” works, which is why neural
networks can express connections between various types of data.

Chapter 4: Advanced Neural Networks In this chapter, we explain the structure
of the two types of neural networks that have been the mainstays of deep
learning in recent years, following the words of physics in the previous chapter.
A convolutional neural network has a structure that emphasizes the spatial
proximity in input data. Also, recurrent neural networks have a structure to learn
input data in time series. You will learn how to provide a network structure that
respects the characteristics of data.

Chapter 5: Sampling In the situation where the training is performed, it is assumed
that the input data is given by a probability distribution. It is often necessary to
calculate the expectation value of the function of various input values given by
the probability distribution. In this chapter, we will look at the method and the
necessity of “sampling,” which is the method of performing the calculation of the
expectation value. The frequently used concepts in statistical mechanics, such as
the law of large numbers, the central limit theorem, the Markov chain Monte
Carlo method, the principle of detailed balance, the Metropolis method, and the
heatbath method, are also used in machine learning. Familiarity with common
concepts in physics and machine learning can lead to an understanding of both.

Chapter 6: Unsupervised Deep Learning At the end of Part I we will explain
Boltzmann machines and generative adversarial networks (GANs). Both models
are not the “find an answer” network given in Chap. 3, but rather the network
itself giving the probability distribution of the input. Boltzmann machines
have historically been the cornerstone of neural networks and are given by
the Hamiltonian statistical mechanics of multi-particle spin systems. It is an
important bridge between machine learning and physics. Generative adversarial
networks are also one of the important topics in deep learning in recent years,
and we try to provide an explanation of them from a physical point of view.

1For the basic concepts of physics used in this book, statistical mechanics and quantum mechanics,
see the columns at the end of chapters.
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In Part I, the key point is how to model the mathematics of learning as a physical
model and, as a result, obtain the fact that the neural network is derived physically
and naturally. These will be useful for various occasions: for further learning
about various constructions of machine learning architecture, for understanding new
learning methods that will show up in the future, for applying physics to the research
of machine learning, and for applying machine learning to the study of physics.



Chapter 2
Introduction to Machine Learning

Abstract In this chapter, we learn the general theory of machine learning. We shall
take a look at examples of what learning is, what is the meaning of “machines
learned,” and what relative entropy is. We will learn how to handle data in
probability theory, and describe “generalization” and its importance in learning.

2.1 The Purpose of Machine Learning

Deep learning is a branch of what is called machine learning. The old “definition”
of machine learning by computer scientist Arthur Samuel [16] is “Field of study
that gives computers the ability to learn without being explicitly programmed.” In
more modern terms, “From experience alone, let the machine automatically gain the
ability to extract the structure behind it and apply it to unknown situations.”1

There are various methods depending on how the experience is given to the
machine, so here let us assume a situation in which the experience is already stored
in a database. In this context, there are two types of data to consider:

• Supervised data{(x[i], d[i])}i=1,2,...,#

• Unsupervised data{(x[i], − )}i=1,2,...,#

Here x[i] denotes the i-th data value (generally vector valued), and d[i] denotes
teaching signal. The mark “−” indicates that no teaching signal is given, and in the
case of unsupervised data, only {x[i]} is actually provided. # indicates the number
of data. See, for example, Fig. 2.1.

1Richard Feynman said [17], “We can imagine that this complicated array of moving things which
consists “the world” is something like a great chess game being played by the gods, and we are
observers of the game. We do not know what the rules of the game are; all we are allowed to do
is to watch the playing. Of course, if we watch long enough, we may eventually catch on to a few
of the rules.” It is a good parable that captures the essence of the inverse problem of guessing rules
and structures. The machine learning, compared with this example, would mean that the observer
is a machine instead of a human.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. Tanaka et al., Deep Learning and Physics, Mathematical Physics Studies,
https://doi.org/10.1007/978-981-33-6108-9_2
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Fig. 2.1 Left: Example of supervised data (d[i] = 0 corresponds to red, d[i] = 1 corresponds
to blue). Right: Example of unsupervised data (all data plotted in blue). In each case, x[i] is a
two-dimensional vector that corresponds to a point on the plane

Typical examples of supervised data are MNIST [18] and CIFAR-10 [19], which
are in the format of

{(image data[i], label[i])}i=1,2,...,# (2.1)

For example, in MNIST2 (left pictures of Fig. 2.2), data of a handwritten number
is stored as 28 × 28 pixel image data, which can be regarded as 28 × 28 =
784-dimensional real vector x. The teaching signal indicates which number x
represents: n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, or a 10-dimensional vector d =
(d0, d1, d2, d3, d4, d5, d6, d7, d8, d9), where the component corresponding to the
number n is dn = 1 and the other components are 0.

CIFAR-103 (right pictures of Fig. 2.2) stores colored natural images as image
data of 32 × 32 pixels. Each image is described by the intensity of red, green, and
blue as real values for each pixel, so it can be regarded as a 32 × 32 × 3 = 3072
dimensional vector x. The teaching signal indicates whether the image x represents
{airplane, car, bird, cat, deer, dog, frog, horse, ship, truck}, and is stored in the same
expression as MNIST.

2Modified NIST (MNIST) is based on a database of handwritten character images created by the
National Institute of Standards and Technology (NIST).
3A database created by the Canadian Institute for Advanced Research (CIFAR). “10” in “CIFAR-
10” indicates that there are 10 teacher labels. There is also data with a more detailed label, CIFAR-
100.
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Fig. 2.2 Left: a sample in MNIST [18]. Right: a sample in CIFAR-10 [19]

2.1.1 Mathematical Formulation of Data

Given supervised/unsupervised data, the goal is to design a learning machine that
extracts its features and is able to predict properties of unknown data. To find a way
to construct such a machine, we need to mathematically formulate what we mean
by “predicting properties of unknown data.” For this reason, let us try the following
thought experiment.

Two dice
Suppose we have two dice here.

• Dice A rolls every number 1, · · · , 6 with a probability of 1/6.

• Dice B has only the number 6 with probability 1.

Then we repeat the following steps:

1. Choose A or B with a probability of 1/2, set d = 0 for A, d = 1 for B.

2. Roll the dice and name the pip as x.

3. Record (x, d).

Then we may obtain the following data.
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(x[1] = 6, d[1] = 1) (x[10] = 6, d[10] = 1) (x[19] = 6, d[19] = 1)

(x[2] = 6, d[2] = 1) (x[11] = 3, d[11] = 0) (x[20] = 6, d[20] = 1)

(x[3] = 6, d[3] = 1) (x[12] = 3, d[12] = 0) (x[21] = 6, d[21] = 1)

(x[4] = 6, d[4] = 1) (x[13] = 6, d[13] = 1) (x[22] = 6, d[22] = 1)

(x[5] = 6, d[5] = 0) (x[14] = 4, d[14] = 0) (x[23] = 6, d[23] = 1)

(x[6] = 6, d[6] = 1) (x[15] = 3, d[15] = 0) (x[24] = 5, d[24] = 0)

(x[7] = 6, d[7] = 0) (x[16] = 6, d[16] = 0) (x[25] = 5, d[25] = 0)

(x[8] = 2, d[8] = 0) (x[17] = 1, d[17] = 0) (x[26] = 6, d[26] = 1)

(x[9] = 5, d[9] = 0) (x[18] = 6, d[18] = 1) (x[27] = 4, d[27] = 0)

(2.2)

Now we define a probability with “ˆ” (hat):

P̂ (x, d) = Number of times (x, d) appeared in the data

Total number of data
. (2.3)

An example experiment taking 1000 data calculates the value of P̂ (x, d) as follows:

P̂ (x, d) =

d = 0 d = 1
x = 1 0.086 0.0
x = 2 0.087 0.0
x = 3 0.074 0.0
x = 4 0.089 0.0
x = 5 0.083 0.0
x = 6 0.082 0.499

(2.4)

The more data we have, the closer our table is to

P(x, d) =

d = 0 d = 1
x = 1 1/12 0
x = 2 1/12 0
x = 3 1/12 0
x = 4 1/12 0
x = 5 1/12 0
x = 6 1/12 1/2

, (1/12 = 0.083̇, 1/2 = 0.5). (2.5)

In fact, the definition shows that (2.5) is the realization probability of (x, d). The
data in (2.2) can be regarded as a sampling from P(x, d). Let us write it as follows:

(x[i], d[i]) ∼ P(x, d) . (2.6)
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Data generation probability known only to God
The above (2.2) is an example of the supervised data {(x[i], d[i])}i=1,2,...#, although
small in size. Supervised data such as MNIST and CIFAR-10 are basically obtained
by repeating the following protocols:4

1. Choose a label with some probability and express it as d.

2. Take the image corresponding to d by some method and set it as x.

3. Record (x, d).

Then, it is natural to expect that behind all the data in the world there exists a data
generation probability P(x, d) like (2.5), and that the data itself is the result of
sampling according to the probability

(x[i], d[i]) ∼ P(x, d) . (2.7)

We assume the existence of the data generation probability P(x, d) and
that (2.7) on the data is the starting point for statistical machine learning. It is said
that Einstein wrotes in a letter to Born that “God does not roll the dice,” but machine
learning conversely says “God rolls dice.” Of course, nobody knows the concrete
expression of P(x, d) like (2.5), but it is useful in later discussions to make this
assumption.5

2.2 Machine Learning and Occam’s Razor

We asserted above that “we do not know the concrete expression of P(x, d).”
However, the goal in machine learning is to “approximately” know the concrete
expression of P(x, d), although they appear to contradict each other. Basically, we

4This process corresponds to P (x, d) = P (x|d)P (d), but in reality the following order is easier to
collect data:

1. Take an image x.

2. Judge the label of the image and set it to d.

3. Record (x, d).

This process corresponds to P (x, d) = P (d|x)P (x). The resulting sampling should be the same
from Bayes’ theorem (see the column in this chapter), admitting the existence of data generation
probabilities.
5Needless to say, the probabilities here are all classical, and quantum theory has nothing to do with
it.
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take the following strategy:

I. Define the probability QJ (x, d) depending on the parameter J

II. Adjust J to make QJ (x, d) as close as possible to P(x, d)

Stage II is called training or learning.
Suppose the model QJ (x, d) is defined in some way. In order to bring this closer to
P(x, d) at stage II, we need a function that measures the difference between them.
A suitable one is relative entropy:6

DKL(P ||QJ ) =
∑

x,d

P (x, d) log
P(x, d)

QJ (x, d)
. (2.8)

Many readers may be unfamiliar with the || notation used here. This is just a notation
to emphasize that the arguments P,QJ are asymmetric. The relative entropy is non-
negative, i.e., DKL ≥ 0, where the equality holds if and only if P(x, d) = QJ (x, d)

for any (x, d) (see the column of this chapter). Therefore, if we can adjust (learn)
J and reduce DKL, learning will proceed. Equation (2.8) is called generalization
error.7 Generalization is a technical term used to describe the state in which a
machine can adapt to unknown situations, as described at the beginning of this
chapter.

Importance of the number of data
Actual learning has various difficulties. First of all, it is impossible to calculate the
value or gradient of (2.8) because we never know the specific expression of P(x, d).
In realistic situations, we use the approximate probability P̂ (x, d) derived from the
data (this is called empirical probability) such as (2.4), and consider

DKL(P̂ ||QJ ) (2.9)

which is called empirical error.8 From this, it can be intuitively understood that
reliable learning results cannot be obtained unless the number of data is large
enough. For example, (2.4), the calculation was performed with a set of 1000 data.

6As mentioned in Chap. 1, relative entropy is also called Kullback–Leibler divergence. Although
it measures the “distance,” it does not satisfy the axiom of symmetry for the distance, so it is called
divergence.
7In general, “generalization error” often refers to the expectation value of the error function (which
we will describe later). As shown later, they are essentially the same thing.
8This is the same as using maximum likelihood estimation, just as we used it when we introduced
relative entropy in Chap. 1.
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If we use just 10 data instead, we obtain

P̂ (x, d) =

d = 0 d = 1
x = 1 0.0 0.0
x = 2 0.0 0.0
x = 3 0.1 0.0
x = 4 0.1 0.0
x = 5 0.1 0.0
x = 6 0.2 0.5

(2.10)

One finds that values that should be non-zero are zero, and that it is far from the true
probability (2.5). In this case, the model QJ (x, d) can be modeled only on (2.10),
so the accuracy for an approximation of the true probability (2.2) is worse.

2.2.1 Generalization

We have to keep in mind that the ultimate goal was to make (2.8) as close to zero
as possible, even though what we really can calculate is only (2.9). From that point
of view, solving the problem of making (2.9) vanish may not always be helpful.
To make matters worse, reducing the empirical error (2.9) to an extremely small
value often causes a phenomenon called over-training, in which the value of the
generalization error (2.8) increases even though the value of the empirical error is
small. This is something similar to the following daily experience: even if one gets
a perfect score in a regular test by memorizing every word in one’s textbook, one
has not reached real understanding, so one gets a low score in an achievement test.9

Rather, it is better to consider reducing (2.8) only from the information of (2.9).
If this is achieved, QJ will be sufficient as an approximation of the data generation
probability P , and sampling from QJ will have the generalization ability, the ability
to “predict about unknown data.”

Difficulty of generalization
In fact, by using the above definitions, one can show the inequality [21]:10

(Generalization error) ≤ (Experience error)+ O
(√ log(#/dVC)

#/dVC

)
. (2.11)

9If the reader knows experimental physics, recall overfitting. See also [20].
10As described in the footnote below, this holds when the story is limited to binary classification.
In addition, it is an inequality that can be used when both the generalization error and the empirical
error have been normalized to take a value of [0, 1] by some method [21].
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Here dV C is a numerical value of the expressive power (or complexity) of the
model QJ called the VC dimension (Vapnik-Chervonenkis dimension). Roughly
speaking, dV C corresponds to the number of parameters J included in the model.11

Let us consider the difficulty of generalization using this expression.

First, adjust the parameter J to reduce the empirical error, since it is the first
thing that can be done. It is better to increase the expressive power of the model,
because otherwise it cannot handle various data. As a result, in principle, empirical
errors could be very small by complicating the model.

On the other hand, the value of dVC jumps up in a complex model that makes the
empirical error extremely small. For simplicity, let us say this has become infinite.
Then, under the fixed number of data #, the value of the second term in (2.11)
diverges as

lim
#/dVC→+0

log(#/dVC)

#/dVC

→∞ . (2.14)

Then (2.11) is a meaningless inequality

(Generalization error) ≤ (Experience error)+∞. (2.15)

No matter how much the empirical error is reduced in this state, it is not guaranteed
that the generalization error is reduced.12 Therefore, generalization of learning
cannot be guaranteed without using an appropriate model according to the scale
of the data. When creating a phenomenological model of physics, models that are
too complicated to describe phenomena are not preferable. This argument is called
Occam’s razor. The inequality (2.11) mathematically expresses the principle of
Occam’s razor.13

11The exact definition of the VC dimension is as follows. We define the model QJ as

QJ (x, d) = QJ (d|x)P (x) , (2.12)

as we will do later. Also, using function fJ with parameter J and the Dirac delta function δ, we
write

QJ (d|x) = δ(fJ (x)− d). (2.13)

Suppose further that we are working on the problem of binary classification with d = 0, 1. It means
that fJ (x) is working to assign the input x to either 0 or 1. By the way, if there are # data, there are
2# possible ways of assigning 0/1. If we can vary J fully, then [fJ (x[1]), fJ (x[2]), . . . , fj (x[#])]
can realize all possible 0/1 distributions, and this model has the ability to completely fit the data
(the capacity is saturated compared to the number of data #). The VC dimension refers to the
maximum value of # where such a situation is realized.
12Over-training is a situation that falls into this state.
13A well-known index based on a similar idea is Akaike’s Information Criteria (AIC) [22]:

AIC = −2 log L+ 2k , (2.16)
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The mystery of generalization in deep learning
On the other hand, as explained below, models in deep learning become more and
more complex with the number of layers. For example, the famous ResNet [24]
has hundreds of layers, which gives an incredibly huge dVC .14 Therefore, from the
inequality of (2.11), it cannot be guaranteed that the generalization performance
is improved by the above logic. Nevertheless, ResNet appears to have gained
strong generalization performance. This appears to contradict with the above logic,
but it does not, because although the evaluation using (2.11) cannot guarantee
generalization performance, more detailed inequalities may exist:

(Generalization error)
?≤ (Experience error)+ ODL︸ ︷︷ ︸

something like this inside (2.11)?

≤ (Experience error)+ O
(√ log(#/dVC)

#/dVC

)
. (2.17)

There is a movement to solve the mystery of the generalization performance of deep
learning from such more detailed inequality evaluation (for example, [27] etc.), but
there is no definitive result at the time of writing (as of January 2019).

2.3 Stochastic Gradient Descent Method

One of the easiest ways to implement learning is to use the gradient of the error
parameter J (the second term of the following equation) and update the parameters
as

Jt+1 = Jt − ε∇J DKL(P ||QJ ) , (2.18)

Where L is the maximum likelihood and k is the number of model parameters. Also, the AIC and
the amount of χ2 that determine the accuracy of fitting have a relationship [23].
14For example, according to the theorem 20.6 of [25], if the number of learning parameters of
a neural network having a simple step function as an activation function (described in the next
section) is NJ , the VC dimension of the neural network is the order of NJ log NJ . ResNet is not
such a neural network, but let us estimate its VC dimension with this formula for reference. For
example, according to Table 6 of [24], a ResNet with 110 layers (=1700 parameters) has an average
error rate of 6.61% for the classification of CIFAR-10 (60,000 data), while the VC dimension is
12,645.25 according to the above formula, and the second term of (2.11) is 0.57. Since the errors
are scaled to [0,1] in the inequalities, the error rate can be read as at most about 10%, and the
above-mentioned error rate of 6.61% overwhelms this. A classification error of ImageNet [26]
(with approximately 107 data) is written in table 4 of the same paper, and this has a top-5 error
rate of 4.49% in 152 layers, while the same simple calculation gives about 9%, so the reality is
still better than the upper limit of the inequality. The inequality (2.11) is a formula for binary
classification, but CIFAR-10 has 10 classes and ImageNet has 1000 classes, so we should consider
the estimation here as a reference only.
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after setting an appropriate initial value Jt=0. This is called the gradient descent
method.15 Here ε is a small positive real number. Then, for a change of J as δJ =
Jt+1 − Jt , the change of DKL is

δDKL(P ||QJ ) ≈ δJ · ∇J DKL(P ||QJ ) = −ε|∇J DKL(P ||QJ )|2 , (2.19)

and we can see that DKL decreases.16 However, as we have emphasized many times,
calculating the gradient requires knowing the true data distribution P , so this is an
armchair theory. The problem is, how we can get closer to (2.18)?

Stochastic gradient descent method
So how can we make quantities that give a good approximation of (2.18)? First, let
us calculate the slope of the error,

∇J DKL(P ||QJ ) = ∇J

∑

x,d

P (x, d) log
P(x, d)

QJ (x, d)

=
∑

x,d

P (x, d)
(
∇J log

P(x, d)

QJ (x, d)

)
. (2.20)

Thus, the gradient of the error is the expectation value of ∇J log P(x,d)
QJ (x,d)

. So, we
consider approximating the expectation value with the sample average from P ,

(x[i], d[i]) ∼ P(x, d), i = 1, 2, . . . , #, (2.21)

ĝ =
#∑

i=1

1

#

(
∇J log

P(x[i], d[i])
QJ (x[i], d[i])

)
. (2.22)

This quantity will certainly reduce to (2.20) once the expectation value is taken for
each sample. Also, due to the law of large numbers, a large # should be a good
approximation of (2.20). We call the gradient descent method using the sample
approximation the stochastic gradient descent (SGD) method [28]:

1. Initialize Jt=0 properly

2. Repeat the following (repetition variable is t):

Sample # data (see (2.21))

15In fact, the first derivative ∇J DKL(P ||QJ ) is not enough to minimize the error. A Hessian
corresponding to the second derivative is what we should look at, but it is not practical because of
the computational complexity.
16If the value of ε is too large, the approximation “≈” in the expression (2.19) will be poor, and
the actual parameter update will behave unintentionally. This is related to the gradient explosion
problem described in Chap. 4.
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Calculate ĝ according to the formula (2.22)

Jt+1 = Jt − εĝ. (2.23)

Note that in order to justify this approximation using the law of large numbers, all
sampling in (2.21) must be taken independently, so it must be performed separately
at each step t of the parameter update. Such a learning method that always uses new
data at each t is called online learning.

When data is limited
When a prepared database is used, the above is not possible. In that case, a method
called batch learning is used. We want to consider a stochastic gradient descent
method that also minimizes the bias, and in deep learning, the following method
called mini-batch learning is often used:

(Data{(x[i], d[i])}i=1,2,...# shall be given in advance)

1. Initialize J properly.

2. Repeat the following:

Divide data intoM partial data randomly.

Repeat the following from m = 1 to m = M:

Replace data in (2.22) with the mth partial data and calculate ĝ.

J ← J − εĝ. (2.24)

Note that at the beginning of the loop in step 2, there is a process for randomly
splitting the data. This method is mostly used when applying the gradient descent
method in supervised learning. Unlike the original gradient descent method (2.23),
even if the loop of step 2 is repeated, each ĝ is not independent of the others,
thus there is no guarantee that the approximation accuracy of the gradient of the
generalization error will be better. Normally, it is necessary to prepare validation
data separately and monitor (observe) the empirical error at the same time, so as to
avoid over-training.

The case of deep learning
In most cases, the training is done according to the method (2.24). Here are some
points to emphasize. First, the gradient ĝ is the gradient of the error function
which will be introduced later, and when a neural network is used, the differential
calculation can be algorithmized: it is called back-propagation, and provides a fast
algorithm which will be explained later. Also, be aware that not only the simple
stochastic gradient descent method but also various evolved forms of the gradient
descent method are often used. References that summarize various gradient methods
include [28]. In addition, original papers (listed in [28]) can be read for free.
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Column: Probability Theory and Information Theory

As explained in this book, probability theory and information theory are indispens-
able for developing the theory of machine learning. This column explains some
important concepts.

Joint and Conditional Probabilities

Machine learning methods often consider the probability of the input value x and
the teaching signal d. The joint probability represents the appearance probability
of these two variables. Let us write it as

P(x, d) . (2.25)

Of course, we have

1 =
∑

x

∑

d

P(x, d) . (2.26)

Here,
∑

is a sum when x, d are discrete valued, and is replaced by an integral when
they are continuous variables.

There should be some situations when we do not want to look at the value of x
but want to consider the probability of d. It can be expressed as

P(d) =
∑

x

P(x, d). (2.27)

The summation operation is called marginalizing, and the probability P(d) is called
marginal probability.

In some cases, d may already be given. This situation is represented by

P(x|d): probability of x when d is given. (2.28)

This is called conditional probability. In this case, d is regarded as a fixed quantity,

1 =
∑

x

P(x|d) . (2.29)

So, in fact, we find

P(x|d) = P(x, d)

P (d)
= P(x, d)∑

X P(X, d)
. (2.30)



Joint and Conditional Probabilities 29

The numerator uses the original joint probability, but this equality can be considered
as a renormalization of it due to the fixing of d. If you are familiar with statistical
mechanics of spins under an external magnetic field, this concept can be understood
by considering the spin degrees of freedom as x and the external magnetic field as
d. By the way, even if the roles of x and d are exchanged, the same holds for the
same reason:

P(d|x) = P(x, d)

P (x)
= P(x, d)∑

D P(x, D)
. (2.31)

Note that the numerator on the right-hand side is common between (2.30) and (2.31),

P(x|d)P (d) = P(d|x)P (x) = P(x, d) . (2.32)

This is called Bayes’ theorem and is often used in this book.

Monty Hall problem and conditional probability
Here is a notorious problem of probability theory. Suppose only one of three boxes
has a prize. Let the contents of each box be x1, x2, x3. Possible combinations are

(x1 = ◦, x2 = ×, x3 = ×),

(x1 = ×, x2 = ◦, x3 = ×),

(x1 = ×, x2 = ×, x3 = ◦).
(2.33)

So it is a good idea to take the probability of 1/3 for each.

P(x1, x2, x3) = 1

3
. (2.34)

Then you pick any box. At this stage, all boxes are equal, so suppose you pick x1.
The probability of finding the prize is 1/3, the probability of not finding it is 2/3:

P(x1 = ◦) = 1

3
, P (x1 = ×) = 2

3
. (2.35)

This is just a marginal probability because you have summed the probability other
than x1.

Now, suppose you can’t open the x1 box. Instead, there is a moderator, who
knows the contents of every box. The moderator opens one of the boxes x2, x3 and
shows to you that there is nothing inside. Then, all that remain are x1, which you
chose, and one of x2, x3, which the moderator did not open. Should you stay at x1
or choose the box that the moderator did not open? This is the Monty Hall problem.
Let us solve this problem taking into account conditional probabilities. First,

P(x2 or x3 = |x1 = ◦) = 0. (2.36)
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It is evident in this setting that only one box has the prize. On the other hand,

P(x2 or x3 = |x1 = ×)

= P
(
(x2, x3) = (◦,×)

∣∣∣x1 = ×
)

︸ ︷︷ ︸
P

(
(x1,x2,x3)=(×,◦,×)

)
P(x1=×)

+P
(
(x2, x3) = (×, ◦)

∣∣∣x1 = ×
)

︸ ︷︷ ︸
P

(
(x1,x2 ,x3)=(×,×,◦)

)
P(x1=×)

= 1/3

2/3
+ 1/3

2/3
= 1

2
+ 1

2
= 1 . (2.37)

And in this case, it is guaranteed that you get the prize, which is consistent with our
intuition. Then, the probability of winning the prize by changing the box selection
is

P(With the change = ◦)
= P(x2 or x3 = ◦|x1 = ◦)︸ ︷︷ ︸

0

P(x1 = ◦)︸ ︷︷ ︸
1/3

+P(x2 or x3 = ◦|x1 = ×)︸ ︷︷ ︸
1

P(x1 = ×)︸ ︷︷ ︸
2/3

= 2

3
. (2.38)

The probability of finding the prize is higher than P(x1 = ◦) = 1/3 when not
changing, so the answer to this problem is “you should change.” More simply,
combining

P(Without the change = ◦) = P(x1 = ◦) = 1

3
, (2.39)

and

P(With the change = ◦)+ P(Without the change = ◦) = 1 , (2.40)

you find

P(With the change = ◦) = 2

3
. (2.41)

This is a simple problem, but at first glance, the probability of winning is 1/3 and it
does not change whatever the moderator does, so it seems that the result is the same
whether or not you change the box. Certainly, the moderator does not interfere with
the original probability 1/3, but when information is added, we should consider the
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conditional probability instead of the original probability.17 This is a good problem
in the sense that it teaches us.

Relative Entropy

We introduced relative entropy DKL in this chapter. This quantity is one of the
most important functions in the field of machine learning. Here, we will show the
properties quoted in this chapter: for a probability distribution p(x), q(x), we have
DKL(p||q) ≥ 0, and only when DKL(p||q) = 0 the probability distributions match,
p(x) = q(x). In addition, as an exercise, we will explain a calculation example
using the Gaussian distribution and some unexpected geometric structure behind it.

Definition and properties� �

For probability distributions p(x) and q(x), we define

DKL(p||q) :=
∫

dx p(x) log
p(x)

q(x)
(2.42)

and call it relative entropy. The relative entropy satisfies

DKL(p||q) ≥ 0, DKL(p||q) = 0 ⇔ ∀x, p(x) = q(x). (2.43)

� �

There are several ways to check the above properties, and in this column we prove
them in the following way. First, write the relative entropy as

DKL(p||q) =
∫

dx
[
p(x) log

p(x)

q(x)
+ q(x)− p(x)

]
. (2.44)

Here we used
∫

dx q(x) = ∫ dx p(x) = 1. We simply added unity and subtracted
unity. And we can transform it as

(2.44) =
∫

dx p(x)
[( q(x)

p(x)
− 1
)
− log

q(x)

p(x)

]
. (2.45)

Using (see Fig. 2.3)

(X − 1) ≥ log X , (2.46)

17For example, even if you have a favorite restaurant in your neighborhood, if you hear rumors that
the food at another restaurant is really delicious, then you will be tempted to go there. Considering
the conditional probability is something close to this simple feeling.
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Fig. 2.3 Green: (X − 1), Blue: graph of log X

the integrand of (2.45) is always equal to or larger than zero. Since the integrand is
always equal to or larger than zero, we can show

DKL(p||q) ≥ 0. (2.47)

Next, the equality is satisfied when the equality of (2.46) is established (X = 1).
This means that for any x we need to have

q(x)

p(x)
= 1, (2.48)

which shows (2.43).

Example: Gaussian distribution
To get a sense of the relative entropy, let us calculate the relative entropy for the
Gaussian distribution:

1√
2πσ

e
− 1

2σ2 (x−μ)2
. (2.49)
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So here we consider

p(x) = 1√
2πσp

e
− 1

2σ2
p

(x−μp)2

, (2.50)

q(x) = 1√
2πσq

e
− 1

2σ2
q

(x−μq)2

. (2.51)

Then by definition

DKL(p||q) =
∫ ∞

−∞
dx p(x)

(
log

σq

σp
− 1

2σ 2
p

(x − μp)2 + 1

2σ 2
q

(x − μq)2
)

= log
σq

σp

− 1

2σ 2
p

(σp)2 + 1

2σ 2
q

∫ ∞

−∞
dx p(x) (x − μq)2

︸ ︷︷ ︸
(μp−μq)2+2(μp−μq )(x−μp)+(x−μp)2

= log
σq

σp

− 1

2σ 2
p

(σp)2 + 1

2σ 2
q

(
(μp − μq)

2 + 0 + σ 2
p

)

= 1

2

(
− log

σ 2
p

σ 2
q

+
(

σ 2
p

σ 2
q

− 1

)
+ 1

σ 2
q

(μp − μq)2

)
(2.52)

At the second equality we made a Taylor expansion. You can again show that this
value is positive, using (2.46).

Gaussian distribution and AdS spacetime
The definition of relative entropy seems to represent the “distance” between prob-
ability distributions. If there is a distance, each probability distribution corresponds
to a point, and when it is collected, it becomes a “space.”18 In fact, in the Gaussian
distribution example above, the mean μ takes a value between (−∞,+∞) and σ

takes a value between (0,∞) so the whole Gaussian distributions can form a “space”
(−∞,+∞)×(0,+∞). Let us find the “infinitesimal distance” in this case from the
relative entropy. We consider a point

σp = σ , μp = μ , (2.53)

and a point close to it

σq = σ + dσ , μq = μ+ dμ . (2.54)

18In the research field called information geometry, this viewpoint is used.
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We calculate the relative entropy up to the second order in dσ, dμ as

DKL(p||q) = 1

2

(
− log

σ 2

(σ + dσ)2 +
(

σ 2

(σ + dσ)2 − 1

)
+ 1

(σ + dσ)2 (μ− μ− dμ)2
)

= 1

2

(
log (1 + dσ

σ
)2 +

(
1

(1+ dσ
σ

)2
− 1

)
+ 1

σ 2(1 + dσ
σ

)2
dμ2

)

≈ 1

2

(
2
dσ

σ
− dσ 2

σ 2 +
(

1− 2
dσ

σ
+ 3

dσ 2

σ 2 − 1
)
+ dμ2

σ 2

)

= 1

2

(
2
dσ 2

σ 2 + dμ2

σ 2

)
= dσ 2 + dμ̃2

σ 2 . (2.55)

(In the last expression, we defined μ̃ = μ/
√

2.) This is the metric of a hyperboloid,
and a part of the metric of the anti-de Sitter spacetime (AdS spacetime). In recent
years, the anti-de Sitter spacetime has played an important role in phenomena called
AdS/CFT correspondence19 in string theory. It is interesting that Gaussian space
also has such a “hidden” anti-de Sitter spacetime. Anti-de-Sitter spacetime has the
property that the metric diverges at its infinite boundary (the distance is stretched
infinitely). In the current context it corresponds to σ ≈ 0. σ is the variance of the
Gaussian distribution, so the origin of this anomalous behavior is clear: the limit is
no longer a function in the usual sense, since the limit of bringing the variance of
the Gaussian distribution to zero corresponds to the Dirac delta function. Chapter 12
introduces research relating AdS/CFT correspondence to machine learning.

19CFT (conformal field theory) is a special class of quantum field theory.



Chapter 3
Basics of Neural Networks

Abstract In this chapter, we derive neural networks from the viewpoint of physical
models. A neural network is a nonlinear function that maps an input to an output,
and giving the network is equivalent to giving a function called an error function
in the case of supervised learning. By considering the output as dynamical degrees
of freedom and the input as an external field, various neural networks and their
deepened versions are born from simple Hamiltonians. Training (learning) is a
procedure for reducing the value of the error function, and we will learn the
specific method of backpropagation using the bra-ket notation popular in quantum
mechanics. And we will look at how the “universal approximation theorem” works,
which is why neural networks can express connections between various types of
data.

Now, let us move on to the explanation of supervised learning using neural networks.
Unlike many deep learning textbooks, this chapter describes machine learning in
terms of classical statistical physics.1

3.1 Error Function from Statistical Mechanics

Error function is the log term of the error described by Kullback Leibler divergence
which we introduced in (2.8) and (2.9) in the previous chapter. The general
direction of explanation in many textbooks is to discuss the generalization error
and empirical error after defining the error function, but in this book, we will
explain that starting from (2.8) and (2.9), by considering the problem settings of
supervised learning as an appropriate statistical mechanical system, an appropriate
error function can be derived for each problem. In the process, we will see that
the structure of nonlinear functions such as sigmoid functions used in deep learning

1For conventional explanations, we recommend Ref. [20]. Reading them together with this book
may complement understanding.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. Tanaka et al., Deep Learning and Physics, Mathematical Physics Studies,
https://doi.org/10.1007/978-981-33-6108-9_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6108-9_3&domain=pdf
https://doi.org/10.1007/978-981-33-6108-9_3


36 3 Basics of Neural Networks

x

y

Jx

Jy

d

Fig. 3.1 Left: Example of supervised data (d[i] = 0 corresponds to red, d[i] = 1 corresponds to
blue). Right: Diagram of the model Hamiltonian (3.6)

appear naturally. Furthermore, the origin of the rectified linear unit (ReLU) function
often used in deep learning will be explained from the standpoint of statistical
mechanics, providing a foothold for deepening.

3.1.1 From Hamiltonian to Neural Network

Binary classification
Let us look at the example of the supervised data given earlier. In Fig. 3.1, it appears
that d = 0 or d = 1 depends on whether the value of x of x = (x, y) exceeds 0.5 or
not. In other words, x and d seem to be correlated.

We shall consider expressing such a correlation with a physical system. Any
physical system is defined by a Hamiltonian, and the Hamiltonian is written as
a function of dynamical degrees of freedom.2 When there are several dynamical
degrees of freedom Ai(t)(i = 1, 2, · · · ) in the physical system, Hamiltonian
H is given by a function of those. (Precisely, Ai(t) is a function, so H is a
function of a function, that is, a functional). For example, if A1(t) represents the
spatial coordinate x(t) of a particle and A2(t) represents its momentum p(t), the
Hamiltonian of the harmonic oscillator is

H = 1

2
p(t)2 + 1

2
x(t)2 . (3.1)

2If the readers are new to analytical mechanics, there is no problem in translating mechanical
degrees of freedom into coordinates (or momentum) and Hamiltonians into energy.
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Here, the mass of the particle and the frequency are set as unity for simplicity. If
there are two particles, it is natural to have the Hamiltonian expressed as the sum of
each,

H = 1

2
p1(t)

2 + 1

2
x1(t)

2 + 1

2
p2(t)

2 + 1

2
x2(t)

2 . (3.2)

However, in this case, the two particles are not correlated. Each behaves as a free
particle; the energy, or Hamiltonian, is simply the sum of their energies. Two
particles are correlated, for example, when a force acts between the first particle
and the second particle. If the magnitude of this force is proportional to the distance
between the two particles, the Hamiltonian has an additional term,

	H = c (x1(t)− x2(t))
2 . (3.3)

Expanding the parentheses, we find it contains cx1(t)x2(t) expressed as the product
of the dynamical degrees of freedom of the two particles. This represents the
correlation between the two. To summarize, correlation is generally indicated
by a term composed of multiplication of dynamical degrees of freedom in the
Hamiltonian. The strength of the correlation is represented by the product term
coefficient c. This coefficient is called a coupling constant.

Now, given a physical system, how can its statistical-mechanical behavior be
written in general? When a physical system is in contact with a thermal bath with
temperature T , the physical system receives energy from the thermal bath, and
its energy distribution takes the form of the Boltzmann distribution (canonical
distribution). The probability P of realizing a state with energy E is given by

P = 1

Z
exp

[
− E

kBT

]
. (3.4)

Here kB is the Boltzmann constant and Z is the partition function,

Z =
∑

all states

exp

[
− H

kBT

]
. (3.5)

This is to normalize the probability P so that the total probability is 1. For simple
examples, see the end-of-chapter columns in this chapter and in Chap. 5.

After the introduction of the statistical mechanics description of physical sys-
tems, let us return to Fig. 3.1, which is an example of supervised data. Since x and d

seem to be correlated, first, as a physical system, we consider statistical mechanics
with x as the external field and d as the dynamical degree of freedom. For the sake
of simplicity, we decided to include only the first-order term in d , and write the
simplest Hamiltonian as

HJ,x(d) = −(xJx + yJy + J ) d . (3.6)
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Here Jx, Jy , and J are coupling constants. Let us make a model QJ (x, d) using this
“physical system.” First, from (3.6), it is natural to make a Boltzmann distribution
about d ,3

QJ (d|x) = e−HJ,x(d)

Z
= e(xJx+yJy+J )d

∑1
d̃=0

e(xμJμ+J )d̃
= e(xJx+yJy+J )d

1 + e(xμJμ+J )
. (3.7)

Here, we introduce a function called the sigmoid function,4

σ(X) = 1

e−X + 1
. (3.8)

Then we find

QJ (d = 1|x) = σ(xJx + yJy + J ), (3.9)

QJ (d = 0|x) = 1 − σ(xJx + yJy + J ). (3.10)

This expression is for a given x, but if we suppose the existence of data generation
probability P(x, d), the x should be generated according to

P(x) = P(x, d = 0)+ P(x, d = 1) , (3.11)

so we use this to define

QJ (x, d) = QJ (d|x)P (x) . (3.12)

Now that we have a model, let us consider actually adjusting (learning) the
coupling constants Jx, Jy , and J to mimic the true distribution P(x, d). The relative
entropy (2.8) is calculated from settings such as (3.12),

DKL(P ||QJ ) =
∑

x,d

P (x, d) log
P(d|x)

QJ (d|x)

= −
∑

x,d

P (x, d) log QJ (d|x)+ (J -independent part). (3.13)

3In the Boltzmann distribution, the factor of H/(kBT ), which is the Hamiltonian divided by the
temperature, is in the exponent. We redefine J to J kBT to absorb the temperature part, so that the
temperature does not appear in the exponent.
4The reason that the sigmoid function is similar to the Fermi distribution function can be
understood from the fact that d takes on a binary value in the current system. d = 0 corresponds to
the state where the fermion site is not occupied (vacancy state), and d = 1 corresponds to the state
where fermion excitation exists.
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When we use the gradient method, we only need to pay attention to the first term,5

and make it as small as possible. Finally, if this is approximated by data (empirical
probability P̂ ), using (3.9), (3.10), etc., we find:

First term of (3.13)

≈ −
∑

i:Data

1

#
log QJ (d[i] | x[i])

= 1

#

∑

i:Data

(
−
[
d[i] log

{
σ(x[i]Jx + y[i]Jy + J )

}

+ (1 − d[i]) log
{

1 − σ(x[i]Jx + y[i]Jy + J )
}])

. (3.14)

Here # means the number of data. After all, reducing this value by adjusting J is
called “learning.”

By the way, what is the expectation value of the output when Jx, Jy, J and input
data x[i] are fixed? A calculation gives

〈d〉J,x[i] =
∑

d=0,1

d ·QJ (d|x[i]) = QJ (d = 1|x[i]) = σ(x[i]Jx + y[i]Jy + J ) .

(3.15)

This is considered the “output value” of the machine. Then, using the following
function called cross entropy,

L(X, d) = −
[
d log X + (1 − d) log(1 −X)

]
, (3.16)

the minimization of (3.13) is to minimize the following error function between the
teaching signal d[i] and the output value of the machine 〈d〉J,x[i] for the input data
x[i],

L(〈d〉J,x[i], d[i]) (3.17)

by adjusting Jx, Jy, J using the gradient method, etc., for each item of data
(x[i], d[i]). Since deep learning uses the stochastic gradient descent method, it is
necessary to calculate the gradient of this error function with respect to Jx, Jy ,
and J . In this example, the gradient calculation is easy because it is a “one-layer”

5By the way, −∑P (x, d) log P (d|x) which is equivalent to the “J -independent part” in (3.13) is
called conditional entropy. Due to the positive definite nature of the relative entropy, the first term
of (3.13) should be greater than this conditional entropy. If (3.14), which approximates the first
term, is smaller than this bound, it is clearly a sign of over-training. Since it is difficult to actually
evaluate that term, we ignore the term in the following.
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d1

d4

d3

d2x

y

J

Fig. 3.2 Left : Data with (1, 0, 0, 0), blue; (0, 1, 0, 0), red; (0, 0, 1, 0), green; (0, 0, 0, 1), black.
Right : Schematic diagram of the Hamiltonian (3.18)

system, but the deep neural network which will be introduced later has a slightly
more complicated structure, so if there is no good gradient calculation method,
calculation time will be consumed . Fortunately, there is an effective way to calculate
gradients derived from the network structure. This will be explained later.

Multiclass classification
Suppose that the teaching signal is d = (d1, d2, d3, d4) with

∑4
I=1 dI = 1, and let

d1 be blue, d2 be red, d3 be green, d4 be black as shown in Fig. 3.2. Since d has
increased to 4 components, the model Hamiltonian is modified to

HJ,x(d) = −
4∑

I=1

(xJxI + yJyI + JI )d
I . (3.18)

Since it is troublesome to write the sum symbol explicitly, we shall use a matrix
notation: J = (JxI , JyI ) (4×2 matrix), J = (J1, J2, J3, J4) (4-dimensional vector),
x = (x, y) (2-dimensional vector). Then,

HJ,x(d) = −d · (Jx + J) . (3.19)

The Boltzmann weight with this Hamiltonian is

QJ (d|x) = e−HJ,x(d)

Z
= ed·(Jx+J)

e(Jx+J)1 + e(Jx+J)2 + e(Jx+J)3 + e(Jx+J)4
. (3.20)
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Here, let us introduce the following function called the softmax function, which is
an extension of the sigmoid function,

σI (X) = eXI

∑
J eXJ

. (3.21)

Using this softmax function, we can write the Boltzmann weight as

QJ (dI = 1|x) = σI (Jx + J) . (3.22)

As in the case with a single teaching signal, we define the model as

QJ (x, d) = QJ (dI |x)P (x). (3.23)

Then we are to consider the minimization of the relative entropy

DKL(P ||QJ ) = −
∑

x,d

P(x, d) log QJ (d|x)+ (J -independent part) (3.24)

and in particular,

First term in (3.24) ≈ −
∑

i:data

1

#
log QJ (d[i] | x[i])

= −1

#

∑

i:data

4∑

I=1

dI [i] logσI (Jx[i] + J) . (3.25)

As before, we look at the expectation value of the I component of d,

〈dI 〉J,x[i] =
∑

d

dI ·QJ (d | x[i])

= QJ (dI = 1| x[i]) = σI (Jx[i] + J) . (3.26)

So we introduce the cross entropy6

L(X, d) = −
4∑

I=1

dI log XI , (3.27)

6It is essentially the same as (3.16). To make them exactly the same, set d = (d, 1 − d) in (3.16).
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Fig. 3.3 The data with d being a real number

then after all, the minimization of (3.25) is a search for a matrix J and a vector J that
reduce an error function

L(〈d〉J,x[i], d[i]) (3.28)

for each of the data.

Regression (Part 1)
In some cases, d may be a real number d ∈ [−∞,∞], as shown in Fig. 3.3. For that
case, if we take the same approach as above, we may define the Hamiltonian for real
degrees of freedom,

HJ,x(d) = 1

2

(
d − (Jx + J )

)2
. (3.29)

Then we find a Gaussian distribution,

QJ (d|x) = e
− 1

2

(
d−(Jx+J )

)2

Z
= e

− 1
2

(
d−(Jx+J )

)2

√
2π

. (3.30)

The expectation value of d is the mean under the Gaussian distribution, so

〈d〉J,x[i] = Jx[i] + J . (3.31)
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And the error function is simply a logarithm of this, and turns out to be the mean
square error,

L(〈d〉J,x[i], d[i]) = 1

2

(
d[i] − 〈d〉J,x[i]

)2
. (3.32)

This is nothing but the linear regression.

Regression (Part 2)
For d ∈ [0,∞), a slightly more interesting effective modeling is known. Consider
auxiliary Nbits degrees of freedom{h(u)

bit }u=1,2,...,Nbits called rectified linear units
(ReLU) [29] and prepare the following two Hamiltonians:

HJ,x({h(u)
bit }) = −

Nbits∑

u=1

(Jx + J + 0.5 − u)h
(u)
bit , (3.33)

Hh(d) = 1

2
(d − h)2 . (3.34)

Here, (3.33) is the sum of (3.6) for all Nbits while shifting7 J . And (3.34) is the
Hamiltonian that gives the mean square error. We equate

h =
Nbits∑

u=1

h
(u)
bit , (3.35)

while h is treated as an external field in (3.34). Then, from each Boltzmann
distribution we find

QJ ({h(u)
bit }|x) =

Nbits∏

u=1

{
σ(Jx + J + 0.5 − u) (h

(u)
bit = 1)

1 − σ(Jx + J + 0.5 − u) (h
(u)
bit = 0)

}
, (3.36)

Q(d|h) = e− 1
2 (d−h)2

√
2π

. (3.37)

From these two, we define the conditional probability

QJ (d|x) =
∑

{h(u)
bit }

Q
(
d

∣∣∣h =
Nbits∑

u=1

h
(u)
bit

)
QJ ({h(u)

bit }|x) . (3.38)

7In this way, increasing the number of degrees of freedom while sharing the parameters
corresponds to the handling of the ensemble of hbit and improves the accuracy in a statistical
sense. This is thought to lead to the improvement of performance [30]. In our case, J is shifted by
0.5, which simplifies 〈h〉 as shown in the main text, thus the computational cost is lower than that
of the ordinary ensemble.
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Then we find

−
∑

x,d

P (x, d) log QJ (d|x)

≈ −
∑

i:Data

1

The number of data
log QJ (d[i]|x[i])

= −1

The number of data

∑

i:Data

log
[ ∑

{h(u)
bit }

Q
(
d[i]

∣∣∣h =
Nbits∑

u=1

h
(u)
bit

)
QJ ({h(u)

bit }|x[i])
]

(3.39)

Just as the probability mean for x, d is replaced with the data (sample from P ) mean,
let also the probability mean for {h(u)

bit } in the log be replaced with the average under

QJ ({h(u)
bit }|x[i]). As a test, we calculate the average of h under QJ ({h(u)

bit }|x[i]), then
we find

〈h〉J,x[i] =
∑

{h(u)
bit }

(Nbits∑

u=1

h
(u)
bit

)
QJ ({h(u)

bit }|x[i]) =
Nbits∑

u=1

σ(Jx + J + 0.5 − u) .

(3.40)

Defining z = Jx+ J and plotting this with z as the horizontal axis, we find the blue
line in Fig. 3.4.

x

y

..
.

{h
(u)
bit }

x

y
h≈

h ∈ R>0

Fig. 3.4 Top: Example of Nbits = 10. The limit Nbits → ∞ looks similar to max(z, 0). Bottom:
Schematic diagram of the ReLU
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As can be seen from the figure, the expectation value of h gradually approaches
max(Jx+ J, 0) as the number of bits increases. Let us call it σReLU(z) = max(z, 0),
and if we adopt the approximation, we find:

〈h〉J,x[i] ≈ σReLU(Jx[i] + J ) , (3.41)

∑

{h(u)
bit }

Q
(
d[i]

∣∣∣h =
Nbits∑

u=1

h
(u)
bit

)
QJ ({h(u)

bit }|x[i]) ≈ Q
(
d[i]

∣∣∣h = 〈h〉J,x[i]
)

. (3.42)

Furthermore, the error function is

− log Q
(
d[i]

∣∣∣h = 〈h〉J,x[i]
)
≈ 1

2

(
d[i] − σReLU(Jx[i] + J )

)2
. (3.43)

Multi-component teaching signal
In addition to the multi-component labels as shown in Fig. 3.2, we can set dI ∈
{0, 1} or dI ∈ R. In that case, we need to consider the output of applying σ or
σReLU to each component.

3.1.2 Deep Neural Network

Extending the two-Hamiltonian approach, like the ReLU above, naturally leads
to the idea of a deep model. A deep neural network is a neural network that
has multiple intermediate layers between inputs and outputs, as shown in Fig. 3.5.

Fig. 3.5 Deep neural network. The output value obtained by applying the nonlinear function σ•
of each layer corresponds to an expectation value from a statistical mechanics standpoint
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(N − 1) extra degrees of freedom are prepared, and considering the corresponding
N Hamiltonians

H 1
J1,x(h1) , (3.44)

H 2
J2,h1

(h2) , (3.45)

. . . (3.46)

HN
JN,hN−1

(d) , (3.47)

the model is

QJ (d|x) =
∑

h1,h2,...,hN−1

QJN (d|hN−1) . . .QJ2(h2|h1)QJ1(h1|x) . (3.48)

And we adopt the approximation that replaces the sum with the average,

QJ (d|x) ≈ QJN (d|〈hN−1〉) , 〈hN−1〉 = σN−1(JN−1〈hN−2〉 + JN−1) ,

(3.49)

〈hN−2〉 = σN−2(JN−2〈hN−3〉 + JN−2) ,

(3.50)

. . .

〈h1〉 = σ1(J1x + J1) . (3.51)

Here σ• is a function determined from the corresponding Hamiltonian (such as σ or
σReLU above), called the activation function.

You can see that the structure repeats the following:

1. Linear transformation by J, J

2. Nonlinear transformation by activation function

Each element of the repeating structure is called a layer.
Furthermore, for given data (x, d), the approximate value of the relative entropy

is written as

− log QJN (d|〈hN−1〉) = L(d, 〈hN 〉), 〈hN 〉 = σN(JN 〈hN 〉 + JN) . (3.52)

Omitting the part in J for brevity, this means calculating the difference between d
and

〈hN 〉 = σN

(
JNσN−1

(
. . . J2σ1(J1x) . . .

))
. (3.53)
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In the usual context of deep learning, the parameters are often written as

J = W, (3.54)

J = b, (3.55)

and referred to as weight W and bias b.
The neural network has been “derived.” In the next section, we will look at how

learning can proceed.

3.2 Derivation of Backpropagation Method Using Bracket
Notation

We shall derive the famous backpropagation method of the neural network [31].
The backpropagation method is just a combination of the differential method of
composite functions and a little bit of linear algebra. Here we derive it by using the
quantum mechanics notation representing ket |•〉 as an element in a vector space
and bra 〈•| as its dual. We define

〈hl〉 :=

⎛

⎜⎜⎝

〈h1
l 〉

〈h2
l 〉

. . .

〈hnl

l 〉

⎞

⎟⎟⎠ = |hl〉 , (3.56)

and the basis vector8

|m〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← mth. (3.57)

For the sake of simplicity, we ignore the J part for now; then the equation

〈hl〉 = σl(Jl〈hl−1〉) (Apply activation function to each component) (3.58)

8Here, every |hl 〉 is expanded by the basis |m〉, meaning that the dimensions of all vectors are the
same. However, if the range in the sum symbol of (3.59) is not abbreviated, this notation can be
applied in different dimensions.
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can be written as

|hl〉 =
∑

m

|m〉σl(〈m|Jl |hl−1〉) . (3.59)

Furthermore, the “variation” of (3.59) with respect to the parameter J is calculated
as

δ|hl〉 =
∑

m

|m〉σ ′l (〈m|Jl |hl−1〉)〈m|
︸ ︷︷ ︸

We name this part Gl

(
δJl |hl−1〉 + Jlδ|hl−1〉

)

= Gl

(
δJl |hl−1〉 + Jlδ|hl−1〉

)
. (3.60)

Also, using the notation

d = |d〉 , (3.61)

with the activation function of the final layer as σN (〈m|z〉) = − log σm(z), the
softmax cross entropy that appears in the error function is

E = 〈d|hN 〉 . (3.62)

If we want to consider the mean square error, σN can be anything, and we can write

E = 1

2
(|d〉 − |hN 〉)2 = 1

2
〈hN − d|hN − d〉 . (3.63)

In any case, the variation on the output of the final layer is written with the bra
vector,

δE

δ|hN 〉 =
{ 〈d|
〈hN − d| =: 〈δ0|. (3.64)

We have named this 〈δ0|. If we take the variation of the error function for all Jl
instead of the final layer output, δE can be transformed as follows by using (3.60)
repeatedly:

δE = δE

δ|hN 〉δ|hN 〉 = 〈δ0| δ|hN 〉︸ ︷︷ ︸
Transform this with (3.60)

= 〈δ0|GN︸ ︷︷ ︸
Define this =:〈δ1|

(
δJN |hN−1〉 + JNδ|hN−1〉

)
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= 〈δ1|δJN |hN−1〉 + 〈δ1|JN δ|hN−1〉︸ ︷︷ ︸
Transform this with (3.60)

= 〈δ1|δJN |hN−1〉 + 〈δ1|JNGN−1︸ ︷︷ ︸
Define this =:〈δ2|

(
δJN−1|hN−2〉 + JN−1δ|hN−2〉

)

= · · ·
= 〈δ1|δJN |hN−1〉 + 〈δ2|δJN−1|hN−2〉 + · · · + 〈δN |δJ1|h0〉 . (3.65)

Here the last |h0〉 = ∑
m |m〉〈m|x〉 =

∑
m |m〉xm is a ket representation of x.

Therefore, if we want to reduce the value of the error function, we just take

δJl = −ε|δN−l+1〉〈hl−1| . (3.66)

This is because with this we find

δE = −ε
(∣∣|δ1〉

∣∣2∣∣|hN−1〉
∣∣2 + ∣∣|δ2〉

∣∣2∣∣|hN−2〉
∣∣2 + . . .

∣∣|δN 〉
∣∣2∣∣|h0〉

∣∣2
)

, (3.67)

and the change of E becomes a small negative number. We can repeat this with
various pairs (x, d). By the way, the right-hand side of (3.66) is minus ε times
the differentiation of the error function E, so this is a stochastic gradient descent
method described in the previous chapter. Bra vector 〈δl | artificially introduced in
the derivation of (3.65) satisfies the recurrence formula

〈δl | = 〈δl−1|JN−l+2GN−l+1 , (3.68)

with JN+1 = 1, which is an expression “similar” to (3.59). The backpropagation
algorithm is an algorithm that calculates the differential value of E for all Jl by
combining (3.59), (3.66) and (3.68). It is

1. Repeat (3.59) with an initial value |h0〉 = |x[i]〉, and calculate |hl〉.
2. Repeat (3.68) with an initial value 〈δ0| = 〈d[i]|, and calculate 〈δl |.
3. ∇JlE = |δN−l+1〉〈hl−1|. (3.69)

The name “backpropagation” means that the propagation direction of 〈δ| by (3.68)
is opposite to the direction of (3.59). This fact is written in our bracket notation as

|h〉 : ket : Forward propagation, (3.70)

〈δ| : bra : Backpropagation. (3.71)

The correspondence is visually clear.
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3.3 Universal Approximation Theorem of Neural Network

Why can a neural network express the connection (correlation) between data? The
answer, in a certain limit, is the universal approximation theorem of neural
networks [32]. Similar theorems have been proved by many people, and here we
will explain a simple proof by M. Nielsen [33].9

Universal approximation theorem of one-dimensional neural network
Let us take the simplest model first. Consider a neural network with a single hidden
layer, that gives a one-dimensional real number when given a one-dimensional
variable x. It looks like this:

f (x) = J(2) · σstep(J(1)x + b(1))+ b(2) . (3.72)

σstep(x) is step function which serves as an activation function,

σstep(x) =
{

0 (x < 0) ,

1 (x ≥ 0) .
(3.73)

When the activation function is a sigmoid function, it can be obtained at some limit
of it.10 When the argument is multi-component, we define that the operation is on
each component. J(i) is the weight , and b(i) is the bias.

J(l) = (j
(l)
1 , j

(l)
2 , j

(l)
3 , · · · , j (l)

nunit
)� , (3.74)

b(l) = (b
(l)
1 , b

(l)
2 , b

(l)
3 , · · · , b(l)

nunit
)� . (3.75)

Here j
(l)
i and b(l) are real numbers. l is the serial number of the layer, l = 1, 2. nunit

is the number of units in each layer, which will be given later.

What happens at the first and second layers
First, let us see what happens at the first and second layers with nunit = 1. In this
case, the following is input to the third layer:

g1(x) = σstep(j
(1)
1 x + b

(1)
1 ) . (3.76)

If we vary j
(1)
1 and b

(1)
1 , we find that the step function moves left or right. Then

multiply this by the coefficient j
(2)
1 ,

g2(x) = j
(2)
1 σstep(j

(1)
1 x + b

(1)
1 ) . (3.77)

9Visit his website for an intuitive understanding of the proof.
10The situation is the same as the physics calculations at zero temperature at which the Fermi
distribution function becomes a step function.
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Then we can freely change the height (even in the negative direction). Adding a
bias term b

(2)
1 for the second layer can also change the minimum value of the step

function.

Then, let nunit = 2. We can draw a rectangle function of any shape using J(l) and
b(l) as parameters. Now we are ready for the proof. Consider nunit = 2k (k > 1).
Then we can draw a graph with many rectangle functions superimposed.

Given a continuous objective function t (x), the neural network f (x) considered
above can approximate it by increasing nunit and adjusting the parameters. One
can get as close as one likes.11 Therefore, a one-dimensional neural network can
represent any continuous function.

Universal approximation theorem of neural networks
The facts mentioned above can be extended to higher dimensions. That is, a
continuous mapping from x to f(x) can be expressed using a neural network. This
fact is called the universal approximation theorem of neural networks.

At the same time, note that this theorem refers to an unrealistic situation. First, the
activation function is a step function. In the learning based on the backpropagation
method, the activation function is required to be differentiable, so the step function
cannot meet the purpose. Second, we need an infinite number of intermediate units.
As a quantitative problem, it does not describe how the neural network improves
its approximation to the target function at what speed and with what accuracy.
Another caveat is that this theorem only says that a neural network can give an
approximation of the desired function. Nevertheless, this theorem, to some extent,
intuitively explains a fragment of why neural networks are powerful.

Why deep layers?
So far, we have seen a neural network with a single hidden layer. Even if the number
of hidden layers is one, if the number of units is infinite, any function can be
approximated. Then, why is deep learning effective?

The following facts are known [34]:

1. More units in the middle layer ⇒ Expressivity increases in power
2. Deeper neural network ⇒ Expressivity increases exponentially

In this section, we will consider why deepening is useful, using a toy model.

Toy model of deep learning
Let us introduce a simple toy model that can show that the number of hidden layers
affects the expressivity of the neural network. A neural network with one hidden
layer is

f1h-NN(x) = jL · σact(j0x + b0)+ bL , (3.78)

11The part corresponds to the dense nature in Cybenko’s proof.
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with dim[b0] = Nunit. Here assume that the activation function is not an even
function. A neural network with two hidden layers is

f2h-NN(x) = jL · σact(Jσact(j0x + b0)+ b1)+ bL . (3.79)

Let us compare these and look at the meaning of deepening.

The case with a linear activation function
As a preparation, let us consider the case where the activation function is linear,
especially an identity map. That is,

σact(x) = x . (3.80)

In this case, for a single hidden layer, we find a linear map,

f1h-NN(x) = jL · (j0x + b0)+ bL (3.81)

= (jL · j0)x + (jL · b0 + bL) . (3.82)

Furthermore, even with two layers, we find

f2h-NN(x) = jL · (J1(j0x + b0)+ b1)+ bL (3.83)

= (jL · J1j0)x + (jL · J1b0 + jL · b1 + bL) . (3.84)

In other words, if we make the activation function an identity map, we will always
get only a linear map.

The case with a nonlinear activation function
Next, consider the case where the activation function is nonlinear. In particular, we
want to consider the power as the complexity of a function that can be expressed by
a neural network, so we take

σact(x) = x3 . (3.85)

For the sake of simplicity, assume that the neural network has a single hidden layer
with two units, j0 = (j0

1 , j0
2 )�, jL = (jL

1 , jL
2 )�. Then we find

f1h-NN(x) = jL · σact((j
0
1 x, j0

2 x)� + (b0
1, b0

2)
�)+ bL (3.86)

= jL · σact((j
0
1 x + b0

1, j0
2 x + b0

2)
�)+ bL (3.87)

= jL((j0
1 x + b0

1)
3, (j0

2 x + b0
2)

3)� + bL (3.88)

= jL
1 (j0

1 x + b0
1)

3 + jL
2 (j0

2 x + b0
2)

3 + bL . (3.89)
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So, this neural network can express up to a cubic function, with seven parameters.
In the case of a general number of units, fitting is performed by a cubic function
using 3Nunit + 1 parameters.

Conversely, considering the case where the number of units is 1 but with two
hidden layers, we find a ninth-order function,

f2h-NN(x) = jL · σact(Jσact(j0x + b0)+ b1)+ bL (3.90)

= jL(j (j0x + b0)
3 + b1)

3 + bL . (3.91)

The number of parameters is 6. In general, when the order of the activation function
is n and the number of hidden layers is h, the maximum order of the expressed
function is x(h+1)n. We can see that all orders appear when the activation function
is an odd function.

According to this model, the complexity of the functions that can be expressed
does not change even if the number of units in the middle layer is increased with
just three layers. On the other hand, if we increase the number of layers with an
activation function with n > 1, the complexity of the function causes a combinato-
rial explosion. In other words, more complex functions can be represented by neural
networks.

Finally, it should be emphasized that the discussion here is only with a model for
intuitive understanding. In particular, in the case of the activation function ReLU,
which is very often used, the argument here does not hold because of its linearity.
Nevertheless, since ReLU is also subject to the universal approximation [35] in fact,
it can be said that deep learning can be used with confidence by trusting the universal
approximation.

Column: Statistical Mechanics and Quantum Mechanics

Canonical Distribution in Statistical Mechanics

The statistical mechanics used in this book is called canonical distribution for
a given temperature. The physical situation is as follows. Suppose we have some
physical degrees of freedom, such as a spin or a particle position. Denote it as d .
Since this is a physical degree of freedom, it should have energy which depends on
its value. Let it be H(d). When this system is immersed in an environment with a
temperature of T (called a heat-bath), the probability of achieving d with the energy
H(d) is known to be

P(d) = e
−H(d)

kBT

Z
. (3.92)
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Here, kB is an important constant called the Boltzmann constant, and Z is called
the partition function, defined as

Z =
∑

d

e
−H(d)

kBT . (3.93)

In the main text, we put kBT = 1.

Simple example: law of equipartition of energy
As an example, consider d as the position x and momentum p of a particle in a box
of length L, with the standard kinetic energy function as its energy. The expectation
value of energy is

〈E〉 =
∫ L

0
dx

∫ +∞

−∞
dp

p2

2m

e
− p2

2mkBT

Z
. (3.94)

Here

Z =
∫ L

0
dx

∫ +∞

−∞
dp e−

p2

2mkT = L(2πmkBT )1/2 . (3.95)

The calculation of 〈E〉 looks a bit difficult, but using β = 1
kBT

we find

Z = L
(2πm

β

)1/2
, (3.96)

〈E〉 = − ∂

∂β
log Z = 1

2

1

β
= 1

2
kBT . (3.97)

In other words, when the system temperature T is high (i.e. when the system is
hot), the expectation value of energy is high, and when the temperature is low,
the expectation value of energy is low. This is consistent with our intuition. In
addition, if we consider the case of three spatial dimensions, we can obtain the
famous formula 3

2kBT as the expectation value of energy.

Bracket Notation in Quantum Mechanics

In the derivation of the backpropagation method, bracket notation has been
introduced as a simple method. This is nothing more than just writing a vector as a
ket,

v = |v〉 . (3.98)
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There are some notational conveniences. For example, the inner bracket is written
conventionally as

w · v = 〈w|v〉, (3.99)

which means that the inner product is regarded as the “product of the matrices,”

w · v = (w1, w2, · · ·
)
⎛

⎜⎝
v1

v2
...

⎞

⎟⎠ . (3.100)

Also in the main text we have had

|v〉〈w| (3.101)

and also this can be regarded as a “matrix,” made by a matrix product,

|v〉〈w| =
⎛

⎜⎝
v1

v2
...

⎞

⎟⎠
(
w1, w2, · · ·

) =
⎛

⎝
v1w1 v1w2 · · ·
v2w1 v2w2 · · ·
. . .

⎞

⎠ . (3.102)



Chapter 4
Advanced Neural Networks

Abstract In this chapter, we explain the structure of the two types of neural
networks that have been the mainstays of deep learning in recent years, following
the words of physics in the previous chapter. A convolutional neural network has a
structure that emphasizes the spatial proximity in input data. Also, recurrent neural
networks have a structure to learn input data in time series. You will learn how to
provide a network structure that respects the characteristics of data.

In Chap. 3, using physics language, we have described the introduction of the most
basic neural network (forward propagation neural network) and the associated error
function and the gradient calculation of the empirical error (error backpropagation
method). This chapter is for the following two representative examples of a recent
deep learning architecture:

• Convolutional neural network
• Recurrent neural network

and we will explain the structure of these and related topics.

4.1 Convolutional Neural Network

4.1.1 Convolution

Consider a two-dimensional image. For a grayscale image, the input value is xij as
the ij th pixel value, and for a color image, it is xc

ij as the ij th pixel value, with c for
the cth color channel. So we naturally consider the tensor structure. As an example,
let us consider dIJ as

• Probability that a cat is shown around i ≈ I, j ≈ J . (4.1)
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Fig. 4.1 Schematic diagram
of the coupling constant of
the Hamiltonian (4.2). Color
in lines corresponds to each
IJ

xij
dIJ

JIJ,ij

Fig. 4.2 Schematic diagram
of the coupling constant (4.4).
Color in lines corresponds to
each IJ

xij
dIJ

JIJ,ij

In this case, the simplest Hamiltonian is

HJ,x({dIJ }) = −
∑

IJ

(∑

ij

dIJ JIJ,ij xij + dIJ JIJ

)
. (4.2)

As shown in Fig. 4.1. However, for discussing (4.1), it would be useless to
consider all ij and all interactions. Furthermore, when considering (4.1), it is better
to define how far away from ij we have to take into account. Therefore we want to
take

JIJ,ij =

⎧
⎪⎨

⎪⎩

non-zero

(
i = s1I + α, α ∈ [−W1/2,W1/2]
j = s2J + β, β ∈ [−W2/2,W2/2]

)

zero others.

(4.3)

Here, s1, s2 are natural numbers called strides, which are the parameters for how
many pixels to skip each time to grasp the feature. W1,W2 are natural numbers
called filter sizes, and are parameters for how large the area is to capture the feature.
This is realized by restricting the coupling constant to (see Fig. 4.2)

JIJ,ij =
∑

αβ

JIJ,αβδi,s1I+αδj,s2J+β . (4.4)
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Fig. 4.3 Schematic diagram
of the coupling constant (4.5).
The variables here are only
the degrees of freedom Jαβ

xij
dIJ

JIJ,ij

Also, if the feature of the image we want to capture is “cat-like,” that feature
should not depend on the pixel coordinates I, J of the image. This is because
sometimes a cat appears in the upper right corner of the photo, and sometimes in the
middle. Then, it is natural for the purpose of (4.1) not to include the IJ dependence
in the coupling constant. This reduces the coupling constant to the form

JIJ,ij =
∑

αβ

Jαβδi,s1I+αδj,s2J+β . (4.5)

See Fig. 4.3. Then, it leads to a Hamiltonian,

H conv
J,x ({dIJ }) = −

∑

IJ

dIJ

(∑

αβ

Jαβxs1I+α,s2J+β + J
)
. (4.6)

Calculating the Boltzmann weights with this Hamiltonian, we find

QJ ({dIJ = 1}|x) = σ
(∑

αβ

Jαβxs1I+α,s2J+β + J
)
. (4.7)

The operation

xij →
∑

αβ

Jαβxs1I+α,s2J+β (4.8)

is called a convolution,1 and a neural network that includes a convolution operation
is called a convolutional neural network. It was first introduced in [36].2 As

1This convolution is essentially the same as that used in mathematical physics, although the signs
may be different.
2It was written in [36] that the author got the idea of the convolutional neural network from the
paper by Hubel and Wiesel [37] which pointed out that there are two types of cells in the visual
cortex, and from the paper by Fukushima and Miyake which implemented those to a neural network
[38].
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one of the origins of the recent deep learning boom, it is often cited that a
convolutional neural network (AlexNet [39]3) in an image recognition competition
using ImageNet [26] achieved a truly “mind-boggling” performance in 2012. Since
then, convolutional neural networks in image recognition have become as much the
norm as “sushi is tuna.”4

4.1.2 Transposed Convolution

By the way, if we consider the convolution as the “interaction” between the image
xij and the feature dIJ as described above, it is unnatural to pay attention to only
the convolution operation (that produces something equivalent to dIJ from the input
xij ). Namely, it is natural to consider an operation whose input is the feature dIJ and
output is the image xij . This is considered to be just an operation by a transposed
matrix, if we look at the Hamiltonian (4.6) as a quadratic form of x and d by
appropriately changing the indices. This transposed convolution

dIJ →
∑

IJ

dIJ JIJ,ij (4.9)

would be used, for example, when we want to generate a cat-like image at ij by
an input of “cat-likeness.” See Fig. 4.4. Readers may have heard of the news that
a picture drawn by an artificial intelligence was sold at an auction at a high price.
This transposed convolution is a technique often used to implement neural networks
related to such image generation.5 As an example, Fig. 4.5 shows the result of a
neural network called DCGAN (deep convolutional generative adversarial network)
[42], about an unsupervised learning of handwritten characters.6 The neural network
is given only the input image of MNIST, and by learning its features (stopping,
hitting and flipping, etc.) well, it generates an image that mimics MNIST. We can
see how successful it is.

Checkerboard artifact
Transpose convolution is considered to be a natural method of generating high-
dimensional features from low-dimensional features as an inverse operation of

3Alex is the name of the first author of this paper.
4Speaking of tuna in the past, “pickling” was used to prevent rot, so it was common to eat lean
meat, and the toro part seemed to be worthless. However, thanks to the development of refrigeration
technology, fresh tuna can be delivered to areas far away from the sea, which has led to the spread of
toro. Similarly, if new technologies develop in machine learning, a “next-generation” architecture,
possibly beyond convolutional neural networks, may emerge. In fact, in recent years a new neural
network called Capsule Network [40] has attracted attention.
5For readers who want to learn more, we suggest referring to [41], for example.
6We will explain this method in detail, in Sect. 6.3.
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xij
dIJ

convolution

transposed convolution

Fig. 4.4 Relation between the convolution and the transposed convolution

Fig. 4.5 Handwritten characters generated by a DCGAN. Left: Checkerboard pattern is noticeable
at the beginning of learning. Right: Later in learning, it reached a level at which the pattern is not
noticeable

convolution. However, due to the nature of the definition, a unique pattern called
checkerboard artifact is often generated (see Figs. 4.5 left and 4.6).

In a deep neural network, if the training up to the input layer dIJ has not
progressed—for example, if dIJ becomes almost uniform—then the transposed
convolution will simply be just shifting and adding the filters in the calculation,
resulting in the checkerboard artifact. If the training of the input layer dIJ progresses
well, the last dIJ will not be uniform and the checkerboard pattern will not be
visible.
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Transposed
convolution

Fig. 4.6 An intuitive description that can create checkerboard artifacts

4.2 Recurrent Neural Network and Backpropagation

So far, we have considered the following one-way propagation:

|h〉 = T|x〉 :=
∑

m

|m〉σl(〈m|J|x〉) . (4.10)

Then how can we treat, for example, time-series data

|x(t)〉, t = 1, 2, 3, . . . , T , (4.11)

within neural network models? Putting this one by one into the neural network is
one way. However, as an example of (4.11), what if we have the following?

|x(t = 1)〉 = |I〉,
|x(t = 2)〉 = |have〉,
|x(t = 3)〉 = |a〉,
|x(t = 4)〉 = |pen〉,
|x(t = 5)〉 = |.〉. (4.12)
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|h(t)

. . . |h(t − 1) ⊕
Jh⊕Jx

σ• |h(t) . . .

|x(t)
Fig. 4.7 Schematic diagram of a simple recurrent neural network

A model described so far that does not include the information of the time stamp
before and after a certain item of data cannot capture the context. So as a simple
extension let us consider

|h(t)〉 =
∑

m

|m〉σ•
(
〈m|Jx |x(t)〉 + 〈m|Jh|h(t − 1)〉

)
. (4.13)

This is the simplest form of what is called a recurrent neural network. See Fig. 4.7.
Here, |h(t)〉 is the output value at each time t and the second input at the next time
t+1. The first input is |x(t+1)〉. If we consider robot arm to carry luggage, |x(t)〉 is
the image data coming in from the robot’s field of view at each time, and |h(t)〉 is the
movement of the arm at that time. In response to the arm movement, for example, if
the arm is accelerated too much at time t , it is necessary to apply a brake at the next
time step so that luggage will not be thrown. In this way, the recursive structure is
included in order to deal with the case where we need to know what the previous
behavior was in order to operate at the current time.

By the way, by adjusting Jh, Jx, σ• well, even such a simple recurrent neural
network can have arbitrary computational power. It is known that [43]. This is
regarded as a kind of universal approximation theorem of neural networks, but in
other words, it means that “recurrent neural networks can be used as a programming
language,” and that “it has the same capabilities as computers.” Such a property is
called Turing-complete or computationally universal. If a “general-purpose AI” is
constructed (although it would be in the distant future as we write in 2019 January),
it should have the ability to implement (acquire) any logical operation (language
function) from data (experience) by itself. The computational completeness of
recurrent neural networks reminds us somewhat of its possibility.
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Backpropagation of error
Let us take a look at backpropagation of error in a recurrent neural network. We
use the following recursive expression repeatedly:

δ|h(t)〉

=
∑

m

|m〉σ ′•
(
〈m|Jx |x(t)〉 + 〈m|Jh|h(t − 1)〉

)
〈m|

︸ ︷︷ ︸
We name it =:G(t)

⎛

⎝
δJx |x(t)〉

+δJh|h(t − 1)〉
+Jhδ|h(t − 1)〉

⎞

⎠

= G(t)δJx |x(t)〉 + G(t)δJh|h(t − 1)〉 + G(t)Jhδ|h(t − 1)〉 . (4.14)

Error function L is typically

L = 〈d(1)|h(1)〉 + 〈d(2)|h(2)〉 + . . . , (4.15)

and it is just a summation of individual terms. So it would be sufficient to consider
the tth term:

δ〈d(t)|h(t)〉 = 〈d(t)|δ|h(t)〉
= 〈d(t)|G(t)︸ ︷︷ ︸

=:〈δt (t)|

(
δJx |x(t)〉 + δJh|h(t − 1)〉 + Jhδ|h(t − 1)〉

)

= 〈δt (t)|δJx |x(t)〉 + 〈δt (t)|δJh|h(t − 1)〉
+ 〈δt (t)|JhG(t − 1)︸ ︷︷ ︸

=:〈δt (t−1)|

(
δJx |x(t − 1)〉 + δJh|h(t − 2)〉 + Jhδ|h(t − 2)〉

)

= . . .

= 〈δt (t)|δJx |x(t)〉 + 〈δt (t)|δJh|h(t − 1)〉
+ 〈δt (t − 1)|δJx |x(t − 1)〉 + 〈δt (t − 1)|δJh|h(t − 2)〉
. . .

+ 〈δt (1)|δJx |x(1)〉 + 〈δt (1)|δJh|h(0)〉. (4.16)

Here, using

δJ =
∑

m,n

|m〉〈n|δJmn , (4.17)
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we find

δ〈d(t)|h(t)〉 =
∑

τ≤t

(
〈δt (τ)|δJx |x(τ)〉 + 〈δt (τ)|δJh|h(τ − 1)〉

)

=
∑

τ≤t

∑

m,n

(
〈δt (τ)|m〉〈n|x(τ)〉δJmn

x + 〈δt (τ)|m〉〈n|h(τ − 1)〉δJmn
h

)

=
∑

m,n

(∑

τ≤t

〈δt (τ)|m〉〈n|x(τ)〉δJmn
x +

∑

τ≤t

〈δt (τ)|m〉〈n|h(τ − 1)〉δJmn
h

)
.

(4.18)

Therefore,

δL =
∑

t

δ〈d(t)|h(t)〉

=
∑

m,n

(∑

t

∑

τ≤t

〈δt (τ)|m〉〈n|x(τ)〉δJmn
x +

∑

t

∑

τ≤t

〈δt (τ)|m〉〈n|h(τ − 1)〉δJmn
h

)
,

(4.19)

and then, the update rule is

δJmn
x = −ε

∑

t

∑

τ≤t

〈δt (τ)|m〉〈n|x(τ)〉, δJmn
h = −ε

∑

t

∑

τ≤t

〈δt (τ)|m〉〈n|h(τ − 1)〉 .

(4.20)

Also,

〈δt (τ − 1)| = 〈δt (τ )|JhG(τ − 1), 〈δt (t)| = 〈d(t)|G(t) (4.21)

is the formula for backpropagation in the present case.

Exploding gradient/vanishing gradient
Using the method explained above, we can train a recurrent neural network with
data, but is that enough? For example, can we train the network using language
data to make a good sentence? The answer is no. For example, it cannot handle
parenthesis structure well. That is, loss of memory occurs. In the following, we
explain why this happens in terms of the backpropagation equation.

Since we adjust the parameter J according to (4.20), let us start from those
equations. 〈δt (τ )| commonly appears in both update expressions. Considering the
τ = 0 state, from the backpropagation formula (4.21) we find

〈δt (1)| = 〈δt (2)|JhG(1) = 〈δt (3)|JhG(2)JhG(1) = . . .

= 〈d(t)|G(t)JhG(t − 1) . . . JhG(2)JhG(1). (4.22)
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Note that exactly the same Jh acts t − 1 times from the right. Since t is the length of
a sentence, it can be very long. Then

|Jh| > 1: 〈δt (1)| is too large, (4.23)

|Jh| < 1: 〈δt (1)| is too small. (4.24)

So both cases hinder learning. For example, if it is too large, it conflicts with the
“small” updates, which is an implicit assumption that the update expression in (4.20)
is valid. If it is too small, it means that τ = 0 has no effect in the update formula,
which means that the memory is forgotten. These are called exploding gradient
and vanishing gradient, respectively. This was pointed out in Hochreiter’s doctoral
dissertation [44].7

4.3 LSTM

As explained above, with a simple recurrent neural network, the gradient explo-
sion/vanishing cannot be improved by using the structure, deepening, convolution,
etc. A new idea is needed to solve this problem. This section describes LSTM (long
short-term memory) [46] which is commonly used currently.8

Memory vector
The core idea of LSTM is to set up a vector that controls the memory inside the
recurrent neural network. It acts as a RAM (random access memory, temporary
storage area). Let us call the memory vector at time t as

|c(t)〉 (4.25)

Fig. 4.8 shows the overall diagram of the LSTM.
Here gf , gi , and go are called

gf : Forget gate

gi : Input gate

go: Output gate

and we consider them as the sigmoid function for each component,

gf = gi = go = σ . (4.26)

7This is written in German; for English literature see [45].
8An explanation without the bracket notation is found in [47] on which we largely rely.
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|h(t)

. . . |c(t − 1) + |c(t) . . .

gf gi tanh

tanh

. . . |h(t − 1) ⊕

J
f
x⊕J

f
h J

i
x⊕J

i
h

Jx⊕Jh

J
o
x⊕J

o
h

go |h(t) . . .

|x(t)

Fig. 4.8 Schematic diagram of LSTM. ⊕ represents the direct sum of two vectors in the input
layer and + represents the vector addition in the |c(t)〉 layer, and � represents the multiplication
for each component of the vector (and resultantly, the output vector has the same dimension)

The relations depicted in the diagram are summarized as follows:

|h(t)〉 =
∑

m

|m〉〈m|go〉〈m|tanh(c(t))〉 , (4.27)

|c(t)〉 =
∑

m

|m〉〈m|c(t − 1)〉〈m|gf 〉

+
∑

m

|m〉 tanh
(
〈m|(Jx |x(t)〉 + Jh|h(t − 1)〉)

)
〈m|gi〉 , (4.28)

|gf 〉 =
∑

m

|m〉gf

(
〈m|(Jfx |x(t)〉 + J

f

h |h(t − 1)〉)
)

, (4.29)

|gi〉 =
∑

m

|m〉gi

(
〈m|(Jix |x(t)〉 + J

i
h|h(t − 1)〉)

)
, (4.30)

|go〉 =
∑

m

|m〉go

(
〈m|(Jox |x(t)〉 + J

o
h|h(t − 1)〉)

)
. (4.31)

Let us see how the error backpropagates:

δ|h(t)〉 =
∑

m

|m〉
[
〈m| δ|go〉︸ ︷︷ ︸

(A)

〈m|tanh(c(t))〉 + 〈m|go〉〈m| δ|tanh(c(t))〉︸ ︷︷ ︸
(B)

]
(4.32)
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First, the first half (A) is transformed as follows:

(A) = δ|go〉 = δ
∑

m

|m〉go

(
〈m|(Jox |x(t)〉 + J

o
h|h(t − 1)〉)

)

=
∑

m

|m〉g′o(•)
[
〈m|δ|(Jox |x(t)〉 + J

o
h|h(t − 1)〉)

]

=
∑

m

|m〉g′o(•)
[
〈m|(δJox |x(t)〉 + δJoh|h(t − 1)〉)+ J

o
hδ|h(t − 1)〉

]
. (4.33)

The third item is a form in which the parameter J
o
h acts on δ|h〉 one time step

before, so if we go back more and more time, we have a lot of J
o
h, causing the

exploding/vanishing gradient problem. Next, the second half (B) is written as

(B) = δ
∑

m

|m〉 tanh(〈m|c(t)〉)

=
∑

m

|m〉 tanh′(•)
[
〈m| δ|c(t)〉︸ ︷︷ ︸

(C)

]
, (4.34)

so the magnitude of the gradient is left to the behavior of (C).

(C) = δ
∑

m

|m〉〈m|c(t − 1)〉〈m|gf 〉

+ δ
∑

m

|m〉 tanh
(
〈m|(Jx |x(t)〉 + Jh|h(t − 1)〉)

)
〈m|gi〉

=
∑

m

|m〉
[
〈m|δ|c(t − 1)〉〈m|gf 〉 + 〈m|c(t − 1)〉〈m| δ|gf 〉︸ ︷︷ ︸

(D)

]

+
∑

m

|m〉
[

tanh′(•)
(
〈m|(δJx |x(t)〉 + δJh|h(t − 1)〉 + Jhδ|h(t − 1)〉)

)
〈m|gi〉

+ tanh(•)〈m| δ|gi〉︸︷︷︸
(F )

]
. (4.35)

Since (D) and (F) are basically the same as go, Jf and J
i act many times, possibly

resulting in the exploding/vanishing gradient problem. However, in the first term
of (4.35), |c(t − 1)〉 does not have J. This part is the backpropagation to the
memory vector one time step ago, and plays the role of “keeping the memory as
much as possible”—since the learning parameter J is not acting, in principle, it can
propagate as long as it can. This is actually clear from the definition: |x(t)〉, |h(t)〉
is always input to the activation function, whereas |c(t)〉 is just multiplied by some
constant by gf . This is the most important part of the LSTM, the point where the
exploding/vanishing gradient problem is less likely to occur.
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Note that since the weight from the forget gate and the input from the input gate
are placed at every τ , the information recorded once is not completely retained. In
the memory vector, the “forget” and “remember” operations controlled only by J are
given in advance in an explicit form. For example, let us take the following memory
vector:

|c〉 =

⎛

⎜⎜⎜⎝

c1

c2
...

c♠

⎞

⎟⎟⎟⎠ (4.36)

and assume that c1 = (the component that governs a subject). If the input is I
enjoy machine learning., and a successfully trained LSTM is a machine
that “predicts the next word,” when the first word I comes in, the memory should
be able to work as

|c〉 =

⎛

⎜⎜⎜⎝

1
0
...

0

⎞

⎟⎟⎟⎠ (4.37)

and recognize the situation as “we are dealing with the subject part no”.9 At this
stage, it may be followed by and you ..., so it is not possible to cancel the
“subject” state. When the second word enjoy is input, since this is a verb, the
subject will no longer follow in English grammar. In this case, the output of the
forget gate is

|gf 〉 =

⎛

⎜⎜⎜⎝

0
1
...

1

⎞

⎟⎟⎟⎠ , (4.38)

and when |c〉 is multiplied as � with this, it is an operation to make c1 = (the
component that controls the subject) zero. Further, if the second component of the
memory vector = (the component that controls the verb), the input gate when the
second word enjoy is input is, for example,

9Keep in mind that this is just for illustration. In actual situations everything is dealt with in real
numbers, and there are many kinds of different subjects. Here, consider the setting for convenience
of explanation.
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|gi〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

. (4.39)

As above result, the memory shifts from the “subject” state to the “verb” state,10

|c(Next time step)〉 = |c〉 � |gf 〉 + |gi〉

=

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠
�

⎛
⎜⎜⎜⎜⎜⎝

0
1
1
...

1

⎞
⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

0
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

. (4.40)

Attention mechanism
The operation to rate the importance of the feature vector according to the input,
like the forget gate, is called as attention mechanism. It is known that the accuracy
can be dramatically increased in natural language translation if an external attention
mechanism is added to the LSTM [48]. Furthermore, there is a paper [49] which
claims that the recurrent structure of a neural network is not even necessary, but only
an attention mechanism is necessary, and in fact, it has shown high performance in
natural language processing (NLP). The attention mechanism has also been shown
to dramatically increase the accuracy of image processing [50, 51], and has been
playing a key role in modern deep learning. Interested readers are encouraged to
read, for example, [52] and its references.

Column: Edge of Chaos and Emergence of Computability

In electronic devices such as personal computers and smartphones which are
indispensable for life in today’s world, “why” can we do what we want? Behind this
question, there exists a profound world that goes beyond the mere “useful tools” and
is as good as any law of physics.

10Originally, tanh acts on the input vector as in (4.28), but it is omitted here for simplicity of the
explanation.
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Sorting Algorithm

First, let us consider sorting the following sequence in ascending order:

[3, 1, 2]. (4.41)

Of course, the answer is [1,2,3], but if the sequence were much longer, like [38, 90,
25, 74, 87, 26, 53, 86, 14, 89, . . . ], it would be difficult to immediately answer. When
we have to do this kind of work, one of the smartest ways is to write a program that
does the sorting. In other words:

[3, 1, 2] → (Some “mechanical” procedure) → [1, 2, 3]. (4.42)

The key term is “mechanical,” in that there should be no human thinking during
the procedure.11 One way to implement this procedure is to pick up the input data
two by two in order of precedence in the sequence, and swap if the right number is
smaller, otherwise keep it as is:

[3, 1︸︷︷︸
1,3

, 2] → [1, 3, 2︸︷︷︸
2,3

] → [1, 2, 3]. (4.43)

It may not be complete just in a single trial. In another example, we find

[3, 2︸︷︷︸
2,3

, 1] → [2, 3, 1︸︷︷︸
1,3

] → [2, 1, 3], (4.44)

which is incomplete, and in such a case, the same process is performed again from
the left:

(4.44) = [2, 1︸︷︷︸
1,2

, 3] → [1, 2, 3︸︷︷︸
2,3

] → [1, 2, 3]. (4.45)

Even if we do not want to judge whether or not “it has completed,” the procedure
should complete the sorting by repeating the same operation at least a number of
times that is same as the number of elements of the sequence.

11A human is allowed to turn the gear by hand to put some energy to the machine.
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Implementation Using Recurrent Neural Network

In the main text, we described that a recurrent neural network is Turing-complete.
This means that if we adjust the training parameters of the network well, we can
achieve something like (4.42). The paper [43] describes how to determine the weight
by hand to achieve the desired processing, while a recent deep learning model (using
a neural Turing machine (NTM) [53]) makes it possible to decide this automatically
by learning. In other words, the network is becoming able to implement the process
described above from the data itself.12 The following shows the actual output of the
trained network when an input that is not in the training data is input. Although it did
not get it completely right because the training was not very good, it is still amazing
to see the output coming out in the correct order at the correct length (though the
values are slightly different).

[1, 1, 1, 2, 12] →
{

Correct answer [1, 1, 1, 2, 12]
NT M [1, 1, 1, 1, 12]

[13, 3, 1, 2, 5, 9, 9] →
{

Correct answer [1, 2, 3, 5, 9, 9, 13]
NT M [0, 3, 3, 3, 9, 13, 13]

[8, 10, 8, 3, 14, 4, 15, 5] →
{

Correct answer [3, 4, 5, 8, 8, 10, 14, 15]
NT M [0, 4, 6, 10, 10, 14, 14, 14]

[5, 2, 8, 12, 0] →
{

Correct answer [0, 2, 5, 8, 12]
NT M [2, 6, 6, 8, 12]

[5, 7, 12, 10, 2] →
{

Correct answer [2, 5, 7, 10, 12]
NT M [2, 6, 6, 8, 12]

KdV Equation and Box-Ball System

Let us introduce another story, a physical system called a box-ball system. The box-
ball system is obtained by a specific discretization of the KdV equation13 which is
obtained from the fluid Navier-Stokes equation when the waves are

• shallow waves, and
• propagating in only one direction.

12The data is the supervised training data before and after the sorting. Here, about 800 data with a
sequence length of up to 4 are randomly generated in binary notation, and an LSTM is used as a
controller model.
13The name comes from Korteweg and de Vries.
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Originally the system has spatially 1 dimension + time evolution, and now both are
discretized. We draw the discretized space as

· · · ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ · · · (4.46)

In addition, ◦ corresponds to the state where the wave is not standing, and •
corresponds to the state where the wave is standing. The unit time evolution of
the box-ball system is

1. Select the leftmost •
2. Make it ◦ (and collect • )

3. Move to the right by one unit

4.

{
If the state is ◦ , put � there and return to 1
If the state is • or �, return to 3

5. Replace all � with • (4.47)

The result of applying this unit time evolution to an initial configuration is as
follows:

• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
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The readers may find that the time evolution similar to the scattering of solitons14

of the KdV equations is obtained. By the way, if we count the number of •
separated by ◦ from the left, this is [3, 2, 1] → [1, 2, 3], which is the same as
the sorting algorithm! Just in case, if we put in another initial state corresponding to
[3, 4, 2, 1, 2, 3], then [1, 2, 2, 3, 3, 4] is obtained:15

• • • ◦ ◦ ◦ • • • • ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • • ◦ ◦ • • • ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ • • • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • • • • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • • ◦ • • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ • • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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Namely, the physical phenomena described by the KdV equation seem to have
included the sorting algorithm. This discrete-time evolution model of discrete states
in a discrete space such as this box-ball system is called a cellular automaton.

Critical State and Turing Completeness of One-Dimensional
Cellular Automata

Stephen Wolfram, famous for the mathematical software Mathematica, was orig-
inally a physicist working on elementary particle theories. He is also famous
for classification of the one-dimensional (elementary) cellular automaton [54].
According to the classification, the dynamics of cellular automata are either:

I. Static (any initial state immediately stops and stabilizes)

II. Periodic (any initial state immediately stops or periodically moves and stabilizes)

III. Chaotic (the state does not stabilize even after sufficient time)

IV. Other than the above (the “edge” of stability and chaos)

14Solutions of differential equations with a localized energy density are called solitons (in physics).
15Note that if the solitons are not well-separated, calculation errors due to some phase shift will
occur.
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Fig. 4.9 Left: Rule 90, Right: Rule 110

For example, in the world of his “Rule 90,” if only one point is set to •, an evolution
diagram like Fig. 4.9 (left) can be obtained. This is a fractal figure called the famous
Sierpiński triangle, and belongs to class III. On the other hand, “Rule 110” belongs
to class IV, and it evolves over time as shown in Fig. 4.9 (right). We can see that
various triangles of various sizes are generated, and in fact, it has been proved that
this world is Turing-complete [55]. In other words, in this one-dimensional world,
computers can be made. The more detailed explanation by the author of [55] is
available in [56]. Christopher Langton, who is famous for cellular automata called
Langton’s ants, further argues that class IV time evolution corresponds to Turing-
completeness due to its similarity to phase transition phenomena in condensed
matter systems [57]. By the way, in the world we live in there are computers and
they can perform calculation. Does that have anything to do with the physical laws
of the universe? Research may advance, and we may come to answer such a question
in the future.



Chapter 5
Sampling

Abstract In the situation where the training is performed, it is assumed that the
input data is given by a probability distribution. It is often necessary to calculate the
expectation value of the function of various input values given by the probability
distribution. In this chapter, we will look at the method and the necessity of
“sampling,” which is the method of performing the calculation of the expectation
value. The frequently used concepts in statistical mechanics, such as the law of
large numbers, the central limit theorem, the Markov chain Monte Carlo method,
the principle of detailed balance, the Metropolis method, and the heat bath method,
are also used in machine learning. Familiarity with common concepts in physics and
machine learning can lead to an understanding of both.

As we explained in Chap. 2, in this book we define machine learning as:

1. Assuming that there exists a probability distribution P(x, d) that generates data

2. Adjust parameter J of probability distribution QJ (x, d) to approach P(x, d)

In order to introduce neural networks in Chaps. 3 and 4, we applied our knowledge
of statistical mechanics to this point of view. The output of the deep neural network
can be considered as the expectation value of d for the conditional probability
distribution QJ (d|x) given the input x. However, one may often want to perform
a sampling according to QJ (d|x) as the probability of occurrence for d , instead of
taking the expectation value. For example, let us consider

QJ (d|x) = Probability of classifying what is in the input image x as d.

Suppose

x = Photo of grandfather laughing with his dog ,
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then we may find

QJ (grandfather|x) = 1

2
, QJ (dog|x) = 1

2
.

Of course, this is fine, but if we sell this machine to our customers, one of them
would complain as,1

Should x be classified as a grandfather or a dog?!

In such a case, one irresponsible solution is to use a coin toss:

d = grandfather, if the coin shows the front
d = dog, if the coin shows the back

(5.1)

In this way we can respond to that complaint. Of course, based on (5.1), if the
same image is used to ask the question many times, it will be judged sometimes as
“grandfather” and sometimes as “dog.” It will be no problem because showing the
image to humans will result in the same.

The same problem occurs when actually creating the training data {(x[i], d[i])}i,
even before using the model QJ which was trained. That is, when many objects
a, b are shown in a single data item x[i], the problem is whether the correct answer
should be d[i] = a, or d[i] = b. Again, this depends on the judgment of the person
creating the data, and that information is included in the data generation probability
P(x, d).

Although we have been silent until now about this issue, from the above
considerations, we can see that it is necessary to consider what it means to actually
sample when there is a probability distribution P . So, in this chapter, we explain the
basics about and around the sampling, by focusing on important items related to:

• sampling of training data (data collection)
• sampling from trained machines (data imitation)

5.1 Central Limit Theorem and Its Role in Machine
Learning

Let us recall the example given in Chap. 1 for the introduction to machine learning.
We have possible events A1, A2, . . . , AW , and the probability of occurrence is
p1, p2, . . . , pW , but we do not know the specific value of the probability pi . Instead,

1This is, of course, a joke to illustrate the need for sampling.
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we only know how many times each event occurred,

•
{

A1 : #1 times, A2 : #2 times, . . . , AW : #W times,
# =∑W

i=1 #i times in total.
(5.2)

In Chap. 1, we used, without any proof, the fact that the maximum likelihood
estimation converges to the desired probability pi with in the limit of the number of
data # →∞,

#i

#
→ pi, (5.3)

which seems intuitively correct. However, when asked why it is fine to use (5.3),
how can we answer it properly?

Law of large numbers
Here, consider the following:

X(i)
n =

{
1 if event Ai occurs in the nth trial,
0 if event Ai does not occur in the nth trial.

(5.4)

Then, we can write

#i

#
= 1

#

#∑

n=1

X(i)
n . (5.5)

Let us consider the “expectation value” of this ratio, which is

〈#i

#

〉

p
=
〈1
#

#∑

n=1

X(i)
n

〉

p

= 1

#

#∑

n=1

〈
X(i)

n

〉

p

= 1

#

#∑

n=1

(
pi · 1︸︷︷︸

X
(i)
n

+(1 − pi) · 0︸︷︷︸
X

(i)
n

)

= 1

#

#∑

n=1

pi = pi , (5.6)

and is equal to the probability of occurrence of event Ai . This is quite reminiscent
of (5.3), but not exactly equal to (5.3) itself. So, let us investigate the “difference”



80 5 Sampling

between the actual #i

# and its expectation value
〈

#i

#

〉

p
. Note that the actually observed

#i

# fluctuates, hence it does not make much sense just taking the difference. One way

to remedy this situation is to consider the probability of having
〈

#i

#

〉

p
− ε ≤ #i

# ≤
〈

#i

#

〉

p
+ ε for a proper real positive constant ε. If we can show

P
(∣∣∣

#i

#
−
〈#i

#

〉

p

∣∣∣ < ε
)
≥ 1 − ♠

#Positive number
, (5.7)

then for any ε, with a sufficiently large # (the number of data), this probability
approaches unity, which proves (5.3). This is not a ε-δ definition of limit, but “ε-#”
definition of limit. To show this, first consider the expectation value of the square of
the difference:

〈∣∣∣
#i

#
−
〈#i

#

〉

p

∣∣∣
2〉

p
=

∑

All possible

P
(#i

#

)∣∣∣
#i

#
−
〈#i

#

〉

p

∣∣∣
2

≥
∑

∣∣∣ #i
# −
〈

#i
#

〉

p

∣∣∣≥ε

P
(#i

#

)∣∣∣
#i

#
−
〈#i

#

〉

p

∣∣∣
2

≥ ε2
∑

∣∣∣ #i
# −
〈

#i
#

〉

p

∣∣∣≥ε

P
(#i

#

)

= ε2P
(∣∣∣

#i

#
−
〈#i

#

〉

p

∣∣∣ ≥ ε
)

. (5.8)

The first “≥” came from restricting the range of the sum, and for the second “≥”,

we used the condition of the restricted sum
∣∣∣ #i

# −
〈

#i

#

〉

p

∣∣∣ ≥ ε. The last “=” is the

definition itself for P
(∣∣∣ #i

# −
〈

#i

#

〉

p

∣∣∣ ≥ ε
)

. In the calculation result here, compared

with the desired probability is P
(∣∣∣ #i

# −
〈

#i

#

〉

p

∣∣∣ < ε
)

, the inequality in parentheses

is reversed. However, the sum of them should be unity, so we find

P
(∣∣∣

#i

#
−
〈#i

#

〉

p

∣∣∣ < ε
)
= 1 − P

(∣∣∣
#i

#
−
〈#i

#

〉

p

∣∣∣ ≥ ε
)

≥ 1 − 1

ε2

〈∣∣∣
#i

#
−
〈#i

#

〉

p

∣∣∣
2〉

p
. (5.9)
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Next, we get the following2 expression of the second term on the right-hand side:

〈∣∣∣
#i

#
−
〈#i

#

〉

p

∣∣∣
2〉

p
=
〈(#i

#

)2 − 2
(#i

#

)〈#i

#

〉

p
+
〈#i

#

〉2
p

〉

p

=
〈(#i

#

)2〉

p
− 2
〈(#i

#

)〉

p

〈#i

#

〉

p
+
〈#i

#

〉2
p

=
〈(#i

#

)2〉

p
−
〈#i

#

〉2
p

= 1

#

(
pi(1 − pi)

)
, (5.11)

summarizing all, we find

P
(∣∣∣

#i

#
− pi

∣∣∣ < ε
)
≥ 1 − pi(1 − pi)

ε2#
. (5.12)

This is what we wanted to show.

Law of large numbers (general case)
So far, we have considered how close the empirical probability is to the true
probability pi . In general, it is known3 that for an “observable” X, the average of #
trials

X# = 1

#

#∑

n=1

Xn (5.13)

is subject to the following condition:

P
(
|X# − μ| < ε

)
≥ 1 − σ 2

ε2#
, (5.14)

2The calculations of the first term can be done in the same way as (5.6):

〈(#i

#

)2〉

p
=
〈(1

#

#∑

n=1

X(i)
n

)2〉

p
=
〈 1

#2

#∑

n=1,m=1

X(i)
n X(i)

m

〉

p

= 1

#2

#∑

n=1,m=1

〈
X(i)

n X(i)
m

〉

p
= 1

#2

#∑

n=1,m=1

{
pi (m = n)

p2
i (m �= n)

= 1

#2

(
#pi + #(# − 1)p2

i

)
= 1

#

(
pi(1 − pi )

)
+ p2

i . (5.10)

The point is that there is a case division in the calculation.
3The derivation in the general case is left to the reader.
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with

μ = 〈X〉, σ 2 = 〈(X − μ)2〉 . (5.15)

In other words, we can use a sampling average X# instead of the expectation value
μ = 〈X〉, if the number of samples # is enough large. So, to say it without worrying
about being misunderstood, there is no need to calculate the expectation value when
a large number of samples is possible. In fact, it is customary to calculate the
average value of observables by sampling instead of the exact expectation value
in the statistical mechanics of multi-degree-of-freedom systems in particle physics
and condensed matter physics. When the probability that X# converges to a certain
value μ at # → ∞ as in (5.14) is unity, we say that X# converges in probability to
μ.

Central limit theorem
Now let us bring back the customer in the previous example:

I know that (5.14) holds, but what’s the value of X# after all?

Such an opinion would be natural in a sense. Equation (5.14) states that the sampling
average approaches the expectation value (that is a convergence in probability), but
does not tell how it approaches to the value. The central limit theorem actually tells
that to us:

P(X#) → N
(
μ,

σ 2

#

)
, (5.16)

where N(μ, σ 2) is a Gaussian distribution with mean μ and variance σ 2. In other
words, when the number of samples # is large, the sample average X# follows
a Gaussian distribution whose mean is the desired expectation value and whose
variance is the variance of the original observation divided by the number of samples
#. This is called convergence in distribution.4 To be more specific,5

X# is approximately 70% likely in the interval
[
μ− σ√

#
, μ+ σ√

#

]
. (5.17)

4It is also called convergence in law.
5This period is called 1σ . In particle physics, an observation with confidence of about 3σ =
99.73% is called “evidence” and an observation with confidence of about 5σ = 99.99994% is
called “discovery” [58].
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This can be derived by Fourier transforming the probability distribution,6

∫
dX#eitX#

P(X#) = 〈eitX#〉X#

= eitμ〈
#∏

n=1

eit 1
# (Xn−μ)〉X#

= eitμ
#∏

n=1

〈(
1 + it

1

#
(Xn − μ)− t2

2#2
(Xn − μ)2 + . . .

)〉

Xn

= eitμ
#∏

n=1

(
1 + 1

#

(−t2

2#
σ 2 + . . .

)

︸ ︷︷ ︸
♠

)
= eitμ

(
1 + ♠

#

)#

→ eitμ+♠ . (5.18)

Then the inverse transformation (which should return to the original probability
distribution for X#) of this is

1

2π

∫
dt e−itX#

eitμ+♠

= 1

2π

∫
dt e−itX#

eitμ− t2
2# σ 2+...

= 1

2π

∫
dt exp

(
− it (X# − μ)− t2

2#
σ 2 + . . .

)

= 1

2π

∫
dt exp

(
− σ 2

2#
(t + i#

X# − μ

σ 2 )2 − #

2σ 2 (X# − μ)2 + . . .
)

≈
√

#

2πσ 2
exp

(
− #

2σ 2
(X# − μ)2

)
. (5.19)

This is indeed a Gaussian distribution with mean μ and variance σ 2

# , N
(
μ, σ 2

#

)
.

Note that according to [59], the same conclusion can be drawn using the idea of
a “renormalization group” in physics. We recommend interested readers to take a
look at it.

6In statistics, it is called a characteristic function.
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Meaning of central limit theorem in machine learning
Let us go back to the first example of the law of large numbers. When the true
probability is not given while only (5.2) is given, the most likely estimation qi of
the true probability is

qi = #i

#
(5.20)

(see footnote 5 in Chap. 1). According to the central limit theorem, this “best”
estimation qi is subject to

With approximately 70% possibility, pi −
√

pi(1 − pi)

#
< qi < pi +

√
pi(1 − pi)

#
.

(5.21)

When regarding (5.20) as the result of machine learning, (5.21) is considered to
represent the generalization performance of this “machine.” In order to have the
generalization, that is, to make qi very close to pi , it is better to take a larger sample
number #. This is reminiscent of the generalized performance inequality (2.11)
using the VC dimensions described in Chap. 2. Actually, the

√
# in the denominator

of the second term on the right-hand side of the inequality (2.11) of generalization
performance is the same as (5.21), and it suggests that the part comes from
the central limit theorem. Thus, the central limit theorem is closely related to
generalization performance.

5.2 Various Sampling Methods

Next, let us look at models. In this book, the model of supervised machine learning
is a conditional probability with parameters,

QJ (d|x) . (5.22)

When we actually “operate” this model, we want to label some input according to
its probability. Here, there exists a gap between knowing the value of the probability
and sampling according to that probability. For example, if the reader wants to create
a machine that outputs one of 1, 2, 3, 4, 5, 6 with a probability of 1/6, then what
does she/he do? The easiest solution is to make a dice, and for the sampling, just roll
the dice. However, in the model (5.22), the probability of d varies for each input x.
It is ridiculous to keep making dice of various shapes each time.

To make matters worse, there are machine learning models that make it more
difficult to calculate the value of the probability in the first place, as described in the
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next chapter. Even in such a situation, there are cases in which sampling is possible.7

As long as sampling is possible, the expectation value can be calculated by a method
that replaces the expectation value with the sample average value, based on the law
of large numbers (5.14) and the central limit theorem (5.16).

Thus, sampling techniques are an important concept to understand in machine
learning methods. In the following, assuming that random numbers (sampling
from a uniform probability) are given,8 we explain some methods for performing
sampling from more complex probabilities.

5.2.1 Inverse Transform Sampling

Assuming that it is possible to sample z which follows a uniform distribution, how
can we sample x following a probability distribution P(x)? First, the probability of
finding x is

P(x)dx . (5.23)

Suppose that this is written as a total derivative of certain function F(x) as follows:

dF(x) = P(x)dx. (5.24)

Since the probability of finding z following a uniform distribution is proportional to
dz, (5.24) means that, with regarding F(x) = z and using the inverse function F−1

of F ,

x := F−1(z) , (5.25)

7Although not described in this book, the calculation of a probability distribution called a posterior
distribution in Bayesian estimation corresponds to this case.
8As a matter of fact, it is impossible to make a true random number with a classical calculator.
A definition of random numbers can be given by Kolmogorov complexity, so it is not possible to
provide a random sequence of infinite length. In many cases in physics, a reproducible sequence
of random numbers is required for practical use, and so, pseudo-random numbers, which are
sequences of finite period numbers that can be reproduced and are statistically unbiased, are used.
Von Neumann said: “Any one who considers arithmetical methods of producing random digits is, of
course, in a state of sin.” But it is used in modern times with a lot of ingenuity. It is also known that a
statistically biased pseudo-random number generation method can lead to incorrect calculations of
the transition temperature of the simulated Ising model [60]. Not only that it should be statistically
unbiased, but also a long periodicity where the same sequence does not appear is also required
for large-scale simulations. More recently, the one published by Makoto Matsumoto and Takuji
Nishimura, called Mersenne Twister, has been used worldwide [61]. It has advantages such as long
periods, uniform distribution, and fast generation. Other pseudo-random number generators, such
as XorShift and MIXMAX, have also been proposed [62]. We suggest that readers refer to other
references for more information [63].
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where x is a sampling from the desired probability distribution P(x). This is called
the inverse transform sampling. To actually execute the inverse transform method,
it is necessary that F and F−1 can be calculated analytically.

Box–Muller method
As a specific example of the inverse transform method, let us consider how we can
achieve a sampling of (x, y) from a two-dimensional Gaussian distribution

P(x, y) = 1

2π
e−

1
2 (x2+y2) . (5.26)

It is recommended to remember the derivation of the Gaussian integral with the
polar coordinates. First, consider the two-dimensional polar coordinates

x = r cos θ , y = r sin θ . (5.27)

Then, with λ = r2

2 , the probability density is

P(x, y)dxdy = dθ

2π
· e−λdλ . (5.28)

Hence, θ is found to follow a uniform distribution of [0, 2π]. On the other hand,
λ now follows a probability distribution called the exponential distribution on
the [0,∞] interval. Since it is assumed that a uniform distribution is possible, if
sampling from λ is possible, then set r = √

2λ, and apply (5.27), then (x, y) is
sampled. The inverse transform method can be used to sample λ. In fact, since

e−λdλ = d(−e−λ) , (5.29)

we find F(λ) = −e−λ. The inverse function is obtained by solving z = F(λ) =
−e−λ for λ, as

λ = − log(−z) = F−1(z) . (5.30)

So this value should be λ. This is called the Box–Muller method [64]. In this way,
from the uniform distribution sampling, by using the inverse transform method, the
sampling is possible in the case when we can find F(x) satisfying (5.24), namely
in the case of a probability density function whose indefinite integral can be exactly
written down.
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5.2.2 Rejection Sampling

Unfortunately, the indefinite integral of the probability density function P(x) is
not always known. Even in unknown case, we can use the rejection sampling
method. In the rejection sampling, we assume that a sampling from some probability
distribution Q(x) is possible. For example, we may use Q(x) for that we can use
the inverse transform method. Another assumption to use this method is

There exists some number M(>0), and for any x,MQ(x) ≥ P(x). (5.31)

As long as this is satisfied, the sampling from P(x) is possible, as follows:

1. xcandidate is sampled according to Q(x).
2. If P(xcandidate)

MQ(xcandidate)
is larger than a random number 0 < r < 1, the sample xcandidate

is adopted. This is called accepted. If the above condition is not met, we discard
xcandidate. This is called rejected.9

To understand why this method works, we use Bayes’ theorem (see the column in
Chap. 2) to find the x probability distribution for the acceptance,

P(x|accepted) = P(accepted|x)Q(x)

P (accepted)
. (5.32)

This is because

P(accepted|x) = P(x)

MQ(x)
(5.33)

and we substitute

P(accepted) =
∫

P(accepted|x)Q(x)dx = 1

M
(5.34)

into (5.32) to find

P(x|accepted) = P(x) . (5.35)

Collecting only the accepted xcandidate results in a sampling from the probability
distribution that we want. With this method, now we can sample from a fairly large
class of probability distributions.

9Note that this operation is different from the rejection by the Metropolis method that will be
explained later.
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Weakness of the rejection sampling
Equation (5.31) is required for rejection sampling to work. Also, even if (5.31)
is satisfied, if the value of M is very large, the possibility of rejection increases,
and sampling cannot be performed. Furthermore, in the rejection sampling, the
calculated xcandidate may be simply discarded, so if it takes time for one sampling
from Q(x), it is not very efficient to collect samples. In order for the rejection
sampling to be practical, we need to find a good Q(x) for the desired P(x).

For example, consider x = si as a spin configuration, and let P(x) = P(si) be
the Ising model10 in statistical mechanics. The Ising model is a classical model of
a magnet, in which each point labeled i on the lattice has a variable (spin) that can
take the value of 1 or−1. In the case of a two-dimensional Ising model whose lattice
size is Lx × Ly , the label i runs from 1 to 2LxLy . Specifically, for example, even
with Lx = Ly = 10, we have 210×10 ≈ 1.27 × 1030, and so we have to consider
the probability distribution in a huge region. Also, the higher the dimensions, the
more the label i can run, in the exponential form.11 This phenomenon is called the
curse of dimensionality. In such a case, it is very difficult to come up with a good
proposal distribution Q(si ).

5.2.3 Markov Chain

A useful sampling technique even in such cases is to use Markov chains. In this
subsection, we will explain the basics of Markov chain using concrete examples
[65]. In particular, we will introduce the Markov chain with two examples, the
Gothenburg weather model and the Los Angeles weather model. These examples
here do not have the curse of dimensionality as described above, but do not lose the
essence of the argument.

Markov chain
From now on, we will introduce the Markov chain through concrete examples. In
particular, let us focus on the day’s weather at a certain location, and for simplicity,
assume that the weather is only rainy or sunny. The weather here is what is called a
“state.” According to the literature, we take s1 = rainy, s2 = sunny. In addition, let
us introduce a vector P that represents the probability distribution for the two states.
If the probability of rainy weather is Prainy and the probability of sunny weather is
Psunny, we align them as

P =
(

Prainy

Psunny

)
. (5.36)

10Readers unfamiliar with the Ising model should refer to the column.
11If L is the length of one side of the d-dimensional square lattice, the range of i is 2Ld

. For
example, if one side of the 3-dimensional cube has 10 lattice points, the range of i is 2103 ≈
1.07 × 10301.
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This is a probability distribution, so note the relation
∑

i Pi = 1.

The weather at a certain location changes daily, as s1 → s2 → s1 → s1 → · · · .
Consider a simple model to predict tomorrow’s weather. For example, if we make
the assumption that the day after a sunny day will be more sunny and the day after
a rainy day will be more rainy, this is a model called a Gothenburg weather model.
This is a Markov chain, as described below.

Markov chains are defined by transitions between states. However, we consider
only those whose state transitions are only dependent on the current state and not
on the past history. The above weather model is a Markov chain, assuming that the
next day’s weather depends only on the previous day’s weather.

At this time, we can introduce what is called a transition matrix that gives
the “probability distribution of the next day’s weather” from the “probability
distribution of the previous day”:

TG =
(

0.75 0.25
0.25 0.75

)
. (5.37)

Here, the probability that the next day is the same weather is 75%, and the
probability that the next day is different weather is 25%.12

Next, let us see how to use the transition matrix. Give an initial state, we will
explain how it transforms, using an example. We start with the rainy state as an
initial state:

P0 =
(

1
0

)
. (5.38)

Then the next day’s weather probability distribution P1 can be calculated using the
transition matrix as follows:

P1 = TGP0 =
(

0.75
0.25

)
. (5.39)

In other words, the probability distribution of the next day’s weather shows that the
probability of rainy is 75% and the probability of sunny is 25%. Considering the
next day’s weather probability distribution P2,

P2 = T
2
GP0 =

(
0.625
0.375

)
. (5.40)

12In order to satisfy the probability normalization, summation for column must be 1.
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It can be expected that the probability of having a sunny day is about 40%. If the
probability distribution after n days is Pn,

Pn = lim
n→∞P0 =

(
1+2−n

2
1−2−n

2

)
, (5.41)

and in the limit n →∞,

P∞ =
( 1

2
1
2

)
. (5.42)

We conclude that we do not know if the weather is rainy or sunny in the distant
future.

By the way, the maximum eigenvalue of the transition matrix TG is 1, and the
eigenvector corresponding to the maximum eigenvalue is

vG =
( 1

2
1
2

)
, (5.43)

which is identical with P∞.13 It is not coincidence that P∞ matches vG, and it is
actually a special case of a theorem called the Perron–Frobenius theorem.

Let us explain the consequences of the Perron–Frobenius theorem for a matrix A

whose element is non-negative.14

Perron-Frobenius theorem:
Let A be a matrix whose elements are positive real numbers, and irreducible15

and suppose the eigenvalues are non-negative. Also assume that for a positive
integer n, each component of An is greater than zero.16 Then A has a positive
eigenvalue α (Perron-Frobenius root) that satisfies:

1. For eigenvalues λ other than the eigenvalue α for A, |λ| < α.
2. α is not degenerate, and all components of its eigenvector are positive.

13The other eigenvector v′G is

v′G ∝
(

1
−1

)
, (5.44)

which does not satisfy the positive semidefiniteness of the probability.
14Note the difference between the matrix A being positive definite and each element being positive.
A matrix A is positive definite if its eigenvalues are all positive when diagonalized, and is defined
as a property that is invariant under similarity transformation. On the other hand, the property that
each element is positive is not invariant under the similarity transformation.
15This means that the matrix is not block-diagonal.
16This is the assumption of aperiodicity in Markov chains.
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In the previous example, the probability distribution of n → ∞ and the
eigenvector of TG matched because of the first property. When multiplying TG
many times, the non-degenerate eigenvector belonging to the largest eigenvalue is
extracted.17 The components of the eigenvector are positive and can be interpreted
as a probability distribution, all of which are guaranteed by the Perron-Frobenius
theorem.

Next, consider a model called the Los Angeles weather model. This is an
asymmetrical model, according to the idea that there will be many sunny days. The
transition matrix is given as:

TLA =
(

0.5 0.1
0.5 0.9

)
. (5.45)

Let the initial state be P0 = s1 again and consider the next day’s weather probability
distribution:

P1 = TLAP0 =
(

0.5
0.5

)
. (5.46)

There is a probability distribution of a rainy day 50% and a sunny day 50%. For the
next day,

P2 = T
2
LAP0 =

(
0.3
0.7

)
. (5.47)

and it shows that the probability of a sunny day is high. Since each element of TLA
is positive, the Perron-Frobenius theorem can be applied. Therefore, the eigenvector
of TLA is calculated, and the probability distribution at n → ∞ is calculated. The
eigenvector vLA belonging to the largest eigenvalue is

vLA =
(

1/6
5/6

)
≈
(

0.17
0.83

)
. (5.48)

That is,

P∞ ≈
(

0.17
0.83

)
. (5.49)

Therefore, the probability of being sunny in the distant future is about 83%.

17For those who are good at numerical calculations, remember the power method used for
eigenvalue calculations.
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5.2.4 Master Equation and the Principle of Detailed Balance

In this subsection, we derive the principle of detailed balance, a sufficient
condition for a Markov chain to converge to a probability distribution. The previous
subsection introduced a Markov chain for two states, and this subsection deals with
N states. (States labeled by continuous variables are not described here.) For later
purposes, we change the label of the number of steps from n to t .

Given a state, the probability of giving it should be defined, so we define the
probability as a function of the state:

[Probability that state si is realized at step t of Markov chain] ≡ P(si ; t).
(5.50)

Since we are at least in one of the states at each step t , we require the following:

1 =
∑

i

P (si; t). (5.51)

Let P(sj |si ) be the transition probability from state si to sj .18 Let us require
that all probabilities at the step t and the next step t + 	t satisfy the following
conservation law of probability. Recalling the conservation law of energy and that
of charge in fluid mechanics and electromagnetism in a unit spatial volume, since
the change of si = the amount flowing out of −si + the amount coming in si , the
conservation law should be

P(si ; t +	t)− P(si ; t)
	t

= −
∑

j �=i

P (si ; t)P (sj |si )+
∑

j �=i

P (sj ; t)P (si |sj ).

(5.52)

By slightly modifying this, we get the probability of realizing the state si at the step
t +	t ,

P(si ; t +	t) = P(si; t)−
∑

j �=i

P (si ; t)P (sj |si)	t +
∑

j �=i

P (sj ; t)P (si |sj )	t.

(5.53)

The second term on the right-hand side is the probability of exiting the state si , and
the third is the probability of becoming the state si .

Next, we introduce a probability vector for the N states,

P(t) =

⎛
⎜⎜⎜⎝

P(s1; t)
P (s2; t)

...

P (sN ; t)

⎞
⎟⎟⎟⎠ . (5.54)

18This is a conditional probability, but in this context it is called a transition probability.
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Using the probability vector P(t), the change in the distribution (5.53) is written as

P(t +	t) = TP(t) . (5.55)

Here the transition matrix T is

T =
⎛

⎜⎝
a11 · · · a1N

...
. . .

...

aN1 · · · aNN

⎞

⎟⎠ , (5.56)

in which the relation to the transition probability P(sj |si) is made as

aij = P(si |sj )	t i �= j , (5.57)

aii = 1 −
∑

j �=i

P (sj |si)	t . (5.58)

In the following, we will take 	t = 1.
Supposing that P(0) is a certain probability vector, we assume

T
nP(0) → Peq , (5.59)

in the limit of n →∞.19 In other words, we assume that there exists a convergence
destination for the probability vector and that it is reached. In this context, the
probability distribution Peq that appears in this limit is called the equilibrium
distribution. If the equilibrium distribution Peq appears in the above limit, then it
satisfies

TPeq = Peq . (5.60)

This is written with the matrix elements as

∑

j

aijPeq(sj ) = Peq(si ) , (5.61)

Further dividing the sum on the left-hand side into j and i, it becomes

∑

j �=i

aij Peq(sj )+ aiiPeq(si ) = Peq(si ) . (5.62)

19In general cases, in order for a Markov chain T whose elements are all non-negative to uniquely
converge, all transitions must satisfy the following two conditions [66]:

1. Irreducible (ergodic). That is, T is not a block diagonal.
2. Non-periodicity. That is, there is no state that always appears at a constant period.
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And substituting the definition of aij , we obtain

∑

j �=i

P (si |sj )Peq(sj )+ (1 −
∑

j �=i

P (sj |si))Peq(si ) = Peq(si) . (5.63)

Then the equation that gives the convergence condition is found as

∑

j �=i

(
P(si |sj )Peq(sj )− P(sj |si )Peq(si )

)
= 0 . (5.64)

This is called the master equation.
One of the solutions of this master equation is the principle of detailed balance,

as described below:

P(si |sj )Peq(sj ) = P(sj |si )Peq(si ). (5.65)

Note that this is a sufficient condition for the convergence of Markov chains.
The principle of detailed balance gives a sufficient condition for the convergence

of Markov chains, and there is a freedom in choosing the transition probability
P(si |sj ) that appears there. In the following, we first explain the Markov chain
Monte Carlo method, which is one of the applications, and in the next section we
will introduce a typical choice of P(si |sj ).

Here, let us mention the difference between the weather problem mentioned in
the previous section and the Markov chain Monte Carlo method. In the weather
model, given the transition matrix T, the convergence destination Peq was deter-
mined later. On the other hand, when using the Markov chain Monte Carlo method,
Peq is known, and T is designed accordingly. The guideline for the design is the
principle of the detailed balance.

5.2.5 Expectation Value Calculation Using Markov chains,
and Importance Sampling

From the above discussion, it was found that the equilibrium distribution Peq can be
obtained by using a Markov chain satisfying appropriate conditions. In the actual
calculations, it is not possible to take the exact limit n →∞, so the calculation will
be performed in the following procedures.

First, we consider the probability distribution after starting from an appropriate
state and making enough transitions. In other words, for k � 1, we consider

Peq ≈ T
kP0 = P(k)

eq,app . (5.66)
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Then, from convergence and k � 1, we expect that P(k)
eq,app is sufficiently close to

Peq.20 In other words, the state obtained at this point is considered as a sampling
from the equilibrium states. In practice, it is difficult to judge, but if one calculates
the expectation value at each step and observes that it starts to fluctuate around a
certain central value, it is considered that the equilibrium has been reached after
that.

A state that is updated only once from a state that seems to have reached
equilibrium is almost the same as the original state, so cannot be considered as an
independent sample. Therefore, we keep updating and suppose we reach k′ � k.21

The state at that time can be regarded as an independent sample from the previous
sample. We repeat this procedure.

Taking an average over the resulting set of the states means that, due to the law
of large numbers, we can calculate the average for states of high probabilities in the
equilibrium distribution. In other words, we can do the following:

∑

i

Peq(si )O(si) ≈ 1

Nsmp

MC∑

k

O(sk) . (5.67)

Here, k represents the steps of a long separated Markov chain (MC) as described
above. And Nsmp indicates how many states were used. Including the error of the
deviation from the equilibrium distribution, we have

∑

i

Peq(si )O(si) = 1

NMC

MC∑

k

O(sk)+O

(
1√
NMC

)
(5.68)

It is essentially important that this error does not depend on the range of i on the
left-hand side. Namely, no matter how large the dimensionality of state space is, if
the states can be updated using Markov chains and many states can be obtained,
the expectation value can be precisely evaluated. This method, used to randomly
assemble the states that are likely to be realized with high probability using Markov
chains, is called the Markov chain Monte Carlo (MCMC) method.

Finally, we make a comment on the origin of the condition k � 1. As we have
seen, the convergence destination is unique due to the Perron-Frobenius theorem for
the transition matrix T. And the convergence destination is the eigenvector itself for
the maximum eigenvalue 1. The other way of saying it is that the eigenvector can
be obtained from an appropriate initial vector by multiple matrix products,22 and its
convergence is determined by the second largest eigenvalue of T.23

20The first k which satisfies Peq ≈ T
kP0 is called burn-in time or thermalization time.

21The autocorrelation time is a measure to give a suitable |k′ − k|. See [67, 68] for details.
22This is so-called power method.
23Detailed discussions are found in [69].
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In the next section, we introduce concrete Markov chain Monte Carlo algorithms.

5.3 Sampling Method with the Detailed Balance

In this section, as sampling methods that satisfy the detailed balance, we introduce
the (narrowly defined) Metropolis method (algorithm) [70] and the heatbath method
(algorithm) [71] (which is the Gibbs sampler in the machine learning context [72]).
The method introduced here is generally called the Metropolis-Hastings algorithm
[73]. Since these are derived from the principle of detailed balance described in the
previous section, they converge to the target probability distribution.24

5.3.1 Metropolis Method

Here, we introduce the Metropolis method in a narrow sense, as a concrete method
for how to take the transition probability P(si |sj ). As a feature of the Metropolis
method, there is no need to explicitly calculate the probability distribution, and it is
sufficient if there is only a Hamiltonian (energy function) in physics.

To make the discussion concrete, consider the equilibrium distribution Peq(sj ) as
follows:

Peq(si ) = 1

Zβ

e−βH [si ] . (5.69)

Here, si is a state, and H [si] is the Hamiltonian of the system.
Now, prepare two states si and sj such that H [si] < H [sj ]. The state si has lower

energy than the state sj , so it is plausible that si is realized with high probability.
From this consideration, let us take the transition probabilities as follows:

P(si |sj ) = 1 . (5.70)

Then, the transition probability of the opposite direction P(sj |si ) is determined from
the principle of detailed balance,

e−βH [sj ] = P(sj |si)e−βH [si ] . (5.71)

Namely, we get

P(sj |si ) = e−β(H [sj ]−H [si ]) . (5.72)

24We will not introduce global updates such as cluster algorithms, exchange Monte Carlo, or
Hamiltonian (or hybrid) Monte Carlo (HMC) used in the context of Bayesian statistics. Interested
readers should also learn about these.
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Note that the transition probability depends only on the difference of the energy.
In other words, if we change the state by some appropriate method and look at the
change in energy, we will know the transition probability. Since it is not necessary to
find the entire transition matrix (or the partition function), it is a versatile algorithm
that can be applied regardless of the number of states, if we do not question if it is
an optimal one.

The steps to execute the Metropolis method are summarized as follows:

1. First, prepare an appropriate state s0. Hereinafter, repeat i = 0, 1, 2, 3 · · · .
2. Calculate Hamiltonian (= H [si]) at si .
3. Change the state si to scandidate by some means.
4. Calculate Hamiltonian = H [scandidate] of scandidate after the change.
5. If H [scandidate] is smaller than H [si], proceed as si+1 = scandidate. This is called

accepted.
Otherwise, if e−β(H [si+1]−H [si ]) is smaller than the random number 0 < r < 1,
accept scandidate . If all the above conditions are not met, si+1 = si . (This is called
rejected.)

The last part (step 5) is also called the Metropolis test. β is the inverse temperature
in statistical mechanics, but in general calculations, βH may be redefined as H and
renormalized.

At this stage, how to update the state has not yet been specified, and it depends
on the system. As an example of the update, in the case of the Ising model, one can
try reversing the spin of one site.25

5.3.2 Heatbath Method

In physics, what is called the heatbath method can also be derived from the
principle of fine balance. In the field of machine learning, it is also called the Gibbs
sampler. The heatbath method focuses on a single degree of freedom in the system,
divides the whole system into the single degree of freedom and the other degrees
(heatbath), and uses only the probability of existence of the single degree of freedom
in contact with the heatbath (irrespective of that extracted single degree of freedom),
and determines the next state of that degree of freedom.

Let us assume that the transition probability from state si to state sj is
proportional to the existence probability of the state sj . That is, we take it as
P(sj |si ) ∝ Peq(sj ). Including the normalization factor, we have

P(sj |si ) = Peq(sj )∑
k Peq(sk)

. (5.73)

25The HMC (Hamiltonian/Hybrid Monte Carlo) method can be regarded as one example of the
Metropolis method, although we will not introduce it in this book.
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The denominator would be an integral if the state were continuous. Since this form
is the principle of detailed balance itself, it is always possible to update the states
while satisfying the principle of detailed balance. The heatbath method also has the
feature that, by definition, updating is not dependent on the current state. On the
other hand, it is necessary to calculate the transition probabilities to all states, or in
a physics terminology the local partition function (local free energy). In the case of
a physical system, this is feasible if the Hamiltonian is written as a local sum as will
be described below. In this case, the nearest neighbors connected to the degree of
freedom (a single spin in the Ising model) of interest are regarded as a heat bath,
which is the origin of the term.

As a specific example, we explain the heatbath method for the Ising model. The
Hamiltonian of the Ising model is, on site i,

Hi = −Si

∑

j∈〈i,j〉
Sj + (terms not related to i). (5.74)

If we take the sum over all i, it gives the Hamiltonian of the whole system. Here,
Si is the Ising spin, and 〈i, j 〉 means the set of the points of the nearest neighbor of
i. In the case of the Ising model, we can write the Hamiltonian for each site in this
way, and also write down the local Boltzmann weight exp(−βHi) accompanying it.
The value that the spin Si at the site i can take in the next step can be determined
as follows. From the definition of the transition probability for one spin at site i, we
find, for any state ∗,

Pi(+|∗) = exp[−βRi]
exp[−βRi] + exp[βRi] (the spin becomes + 1 at the next step),

(5.75)

Pi(−|∗) = exp[βRi]
exp[−βRi] + exp[βRi] (the spin becomes − 1 at the next step).

(5.76)

Here, the energy contribution from the nearest neighbor is Ri = −∑j∈<i,j> Sj . A
closer look, Pi(+|∗) = 1 − Pi(−|∗), can further simplify the expression.

To summarize the above steps, we define

ω(i) = exp[−βRi]
exp[−βRi] + exp[βRi] , (5.77)

then we use the uniform random number ξ ∈ [0, 1) to perform the update by the
rule

Snext
i =

{
1 (ξ < ω(i)),

−1 other than that.
(5.78)
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This is the heatbath method for the Ising model. We see that the spins other than the
spin of our focus are considered as a heatbath and fixed. Also, thanks to focusing on
one site, we have only two states, and the denominator of the transition probability
can be calculated. We perform this for each point and update the whole.26 However,
because of this framework, it is not always possible to use the heatbath method for
general models.

Column: From Ising Model to Hopfield Model

Let us take a look at the Ising model, an important model that connects machine
learning and physics, and related models.27 The Ising model is a model that explains
a magnet from a microscopic point of view, with a variable (spin) that can take ±1
on each lattice site. We call this a configuration and write s = {sn}n, where n is the
coordinate specifying the lattice site. The Hamiltonian H [s] of the Ising model is
a function of the configuration of spins. Using Hamiltonian of this Ising model, the
partition function Zβ is written as follows:

Zβ =
∑

{s}
e−βH [s], (5.79)

where β = 1/(kBT ) is the inverse temperature. The distribution function is a
function with respect to temperature. The sum for this {s} is the sum for all possible
spin configurations. Distribution functions are formally written in the form of sums,
but the sums are generally not calculable. Currently, the summation can be done
only in 1D and 2D Ising models [74, 75]. This is a common problem not only in the
Ising model, but also in many systems dealt with by statistical mechanics.

Let us consider a 1D Ising model to get an insight here. The one-dimensional
Ising model is a model of a magnet developed by W. Lenz and solved by his student,
E. Ising, and is given by the following Hamiltonian:

H [s] = −J
∑

〈i,j〉
sisj . (5.80)

Here i and j are integers which can take values 1 · · · , L, where the size of the
system is L. The value of the spin is si = ±1. J (>0) is a coupling constant, which
we take to be J = 1 in the following. In this case, it is called a ferromagnetic Ising
model because the energy decreases when the signs of the spins are aligned. Also,

26Since the even-numbered points are not closest to each other, they can be updated at the same
time, so that part can be parallelized.
27Here, we use the formulation of statistical mechanics without explaining the statistical mechanics
itself.
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〈i, j 〉 is a symbol that indicates that the sum is taken for the nearest neighbor pairs
of the lattice points.

If we consider all possible configurations for the case where the length of the
system is L = 3, there are eight possible configurations:

{s} =↑ ↑ ↑ H [s] = −3
∑

j

sj = 3,

{s} =↑ ↑ ↓ H [s] = 1
∑

j

sj = 1,

{s} =↑ ↓ ↑ H [s] = 1
∑

j

sj = 1,

{s} =↑ ↓ ↓ H [s] = 1
∑

j

sj = −1,

{s} =↓ ↑ ↑ H [s] = 1
∑

j

sj = 1,

{s} =↓ ↑ ↓ H [s] = 1
∑

j

sj = −1,

{s} =↓ ↓ ↑ H [s] = 1
∑

j

sj = −1,

{s} =↓ ↓ ↓ H [s] = −3
∑

j

sj = −3.

We also show the sum of the values of the Hamiltonian H [s] and the spin (∝
magnetization) for the periodic boundary condition. For a generic L, there are 2L

spin configurations, and we find that it is difficult to add up all of them. We will not
go into details here, but it can be solved exactly, using a method called the transfer
matrix method. Namely, the closed function form of Zβ can be obtained. From the
exact solution, we know that the 1D Ising model cannot be ferromagnetic at any low
temperature, but is paramagnetic.

In classical statistical mechanics, realization of any configuration is subject to
probabilities.28 The probability for realizing a spin configuration s at the inverse
temperature β is given by

P(s) = 1

Zβ
e−βH [s] . (5.81)

28In quantum statistical mechanics for fermions, there are examples where the probability
interpretation does not hold, such as a negative sign problem.
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Using this realization probability, the expectation values are defined. For example,
the expectation value of the spatial average of the spins is

〈M〉 = lim
V→∞

1

V

∑

{s}

∑

n

P (s)σn . (5.82)

Here V is the spatial volume.29 The Helmholtz free energy is

F(β) = − 1

β
log Zβ , (5.83)

and the other physical quantities are obtained from the derivative of the Helmholtz
free energy. Once a closed form of the Helmholtz free energy is obtained, then we
say that the model is solved as a statistical mechanics.

Major ways to solve the Ising model is as follows:

1. Mean field approximation
2. Transfer matrix method

The mean field approximation is a self-consistent approximation method in which
one equates the magnetic field generated by magnetization with the external
magnetic field. In the case of one dimension, it gives a wrong answer, but in
two dimensions or more, it gives a qualitatively correct result. The transfer matrix
method is an effective method for one and two dimensions and gives exact solutions.
However, as of January 2019, no solution to the Ising model in more than two
dimensions is known.

As a model with a non-trivial phase structure, we consider a two-dimensional
Ising model. The two-dimensional Ising model is given by the following Hamilto-
nian:

H [s] = −J
∑

〈i,j〉
sisj . (5.84)

Here i = (ix, iy) is a point on the lattice, and 〈i, j〉 represents the nearest neighbor
pair. If the size of the system is Lx ×Ly , the number of states is 2Lx×Ly . It is known
that this model can also be solved by the transfer matrix method. From the exact
solution, we know that there exists a phase transition at a finite temperature Tc =

2
log(

√
2+1)

[74, 75], and that is a transition between paramagnetic and ferromagnetic

phases. In Chap. 8, we will explain to use a neural network to detect this phase
transition.

29Strictly speaking, in order to determine the ground state to be unique, we need to break the
symmetry by turning on the external field once, and after taking the limit of infinite volume, we
then take the limit of the vanishing external field, and calculate 〈M〉.
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By the way, by extending the Ising model, we will find the Hamiltonian of the
Hopfield model which appears in the context of machine learning (see Chap. 10).
First, consider the Edwards–Anderson model, which is a slightly extended version
of the Ising model. The coupling constant of the nearest neighbors depends on the
location of the spins,

H [s] = −
∑

〈i,j〉
ki,j sisj − B

∑

i

si . (5.85)

When viewed as a spinglass model, the Gaussian mean is typically taken for the
coupling constant after taking the state sum for s. Not only can we consider the
nearest neighbor dependence of the coupling constant, we can also consider a model
with a coordinate-dependent magnetic field,

H [s] = −
∑

i,j

ki,j si sj −
∑

i

Bisi . (5.86)

This is called the energy function of the Hopfield model.30 This is the Hamiltonian
used for Boltzmann machines. This form of Hamiltonian also appears in the
description of spinglass models.

Here we describe the difference between the viewpoints of statistical mechanics
and machine learning. In statistical mechanics, the magnetization 〈M〉, which is
the spatial average of spins, for a given inverse temperature β and a given external
magnetic field B, is obtained. On the other hand, in machine learning, we have
to find ki,j that reproduces a given s, which is exactly an inverse problem. These
inverse problems are generally described in Chap. 7.

Now, let us double the number of species of spins and call them v and h,

H [v, h] = −
∑

i,j

kvv
i,j vivj −

∑

i

Bv
i vi −

∑

i,j

khh
i,j hihj −

∑

i

Bh
i hi −

∑

i,j

kvh
i,j vihj .

(5.87)

kvv is the coupling between v spins, khh is the coupling between h spins, kvh is the
coupling between the spin v and the spin h. B is the coupling of the external field to
each spin. This model also has a name, the Boltzmann machine, and will appear in
the next chapter. To avoid some difficulties, the restricted Boltzmann machine with
kvv
i,j = khh

i,j = 0 is actually used. The details will be explained in the next chapter.
In this way, although the Ising model is a simple model, it has become a source of
ideas and applications for machine learning.

30Strictly speaking, it is necessary to impose Hebb’s rule and a symmetry on the coupling constant
ki,j , but we do not get into the details here.



Chapter 6
Unsupervised Deep Learning

Abstract In this chapter, at the end of Part I, we will explain Boltzmann machines
and Generative adversarial networks (GANs). Both models are not the “find an
answer” network given in Chap. 3, but rather the network itself giving the probability
distribution of the input. Boltzmann machines have historically been the cornerstone
of neural networks and are given by the Hamiltonian statistical mechanics of multi-
particle spin systems. It is an important bridge between machine learning and
physics. Generative adversarial networks are also one of the important topics in
deep learning in recent years, and we try to provide an explanation of it from a
physical point of view.

Chapters 2 and 3 described machine learning when a data set consisting of an input
and a training label is given. In this chapter, we change the subject and explain the
method of machine learning when no training label is given: the case of a generative
model.1

6.1 Unsupervised Learning

What is unsupervised learning? It is a machine learning scheme that uses data that
has only “input data” and no “answer signal” for it:

{x[i]}i=1,2,...,# . (6.1)

1In addition to generative models, tasks such as clustering and principal component analysis are
included in unsupervised learning. It should be noted here that in the sense that data is provided in
advance, it is different from schemes such as reinforcement learning where data is not provided.
Reinforcement learning is a very important machine learning technique that is not discussed in this
book. Instead, here we provide some references. First, the standard textbook is Ref. [76] written
by Sutton et al. This also describes the historical background.
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Even in this case, we assume that there exists some probability distribution P(x),

x[i] ∼ P(x) . (6.2)

So now, let us consider that there is a model QJ (x), that is, a probability distribution
with a set of parameters J , and we want to make it closer to P(x). In other words,
we want to reduce

K(J ) =
∫

dx P(x) log
P(x)

QJ (x)
. (6.3)

Once this minimization is achieved, QJ (x) can be used to create “fake” data.

6.2 Boltzmann Machine

First, as usual, we consider a “statistical mechanics” model as QJ (x). For example,
consider a Hamiltonian with an interaction for each component of x as

HJ (x) =
∑

i

xiJi +
∑

ij

xiJij xj + . . . (6.4)

and the model is given as

QJ (x) = e−HJ (x)

ZJ

. (6.5)

It is only necessary to adjust the “coupling constant” J to reduce (6.3). This is
called a Boltzmann machine. The simplest algorithm would be to differentiate (6.3)
and use the derivative to change the values of J :

J ← J − ε∂J K(J ). (6.6)

The derivative is given by

∂J K(J ) = ∂J

∫
dx P(x) log

P(x)

QJ (x)

= −
∫

dx P(x)∂J log QJ (x)

= −
∫

dx P(x)∂J

[
−HJ (x)− log ZJ

]

= 〈∂J HJ (x)〉P − 〈∂J HJ (x)〉QJ . (6.7)
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Here

〈•(x)〉P =
∫

dx P(x) • (x) (6.8)

represents the expectation value by the probability distribution P .

Training in actual cases
In reality, P(x) is not directly known, but what is known is the data (6.1) which
is regarded as a sampling from that. In this case, the first term in (6.7) can be
approximated by replacing the integral with the sampling average. On the other
hand, it is difficult to calculate the second term even if the form of QJ (x) is
known, because it is necessary to calculate the partition function.2 So usually, we
approximate also the second term by some kind of sampling using a model,

y[i] ∼ QJ (x) (6.9)

to obtain

∂J K(J ) = 〈∂J HJ (x)〉P − 〈∂J HJ (x)〉QJ

≈
Npositive∑

i=1

1

Npositive
∂J HJ (x[i])−

Nnegative∑

i=1

1

Nnegative
∂J HJ (y[i]) . (6.10)

Although the approximation of the first term in (6.7) cannot be improved, the quality
of the algorithm will depend on how well the sampling in the second term is
performed.

6.2.1 Restricted Boltzmann Machine

In fact, with a little ingenuity, a Boltzmann machine with a slightly more efficient
learning algorithm can be constructed. To do this, we introduce a “hidden degree of
freedom” h and consider the following Hamiltonian:

HJ (x, h) =
∑

i

xiJi +
∑

α

hαJα +
∑

iα

xiJiαhα (6.11)

2It is very difficult to calculate the partition function using the Monte Carlo method. Roughly
speaking, the partition function needs information on all states, but the Monte Carlo method
focuses on information on parts that contribute to expectation values.
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and the resultant effective Hamiltonian,3

H eff
J (x) = log ZJ − log

∑

h

e−HJ (x,h) . (6.12)

And we define the model as

QJ (x) = e−H eff
J (x) . (6.13)

The model whose interaction is restricted in this way is called restricted Boltzmann
machine.

Learning in a restricted Boltzmann machine
Substituting (6.12) for HJ (x) in the expression (6.10), we find

∂J K(J )

= 〈∂J H eff
J (x)〉x∼P − 〈∂J H eff

J (y)〉y∼QJ

= 〈∂J

[
log ZJ − log

∑

h

e−HJ (x,h)
]
〉x∼P − 〈∂J

[
log ZJ − log

∑

h

e−HJ (y,h)
]
〉y∼QJ

=
〈∑

hn
e−HJ (x,hn)∂J HJ (x, hn)∑

hd
e−HJ (x,hd )

〉

x∼P
−
〈∑

hn
e−HJ (y,hn)∂J HJ (y, hn)∑

hd
e−HJ (y,hd )

〉

y∼QJ

=
〈∑

hn

PJ (hn|x)∂J HJ (x, hn)
〉

x∼P
−
〈∑

hn

PJ (hn|y)∂J HJ (y, hn)
〉

y∼QJ

.

(6.14)

Here

PJ (hn|x) = e−HJ (x,hn)

∑
hd

e−HJ (x,hd)
(6.15)

is the conditional probability described in the column in Chap. 2. The inverse
conditional probability

PJ (xn|h) = e−HJ (xn,h)

∑
xd

e−HJ (xd ,h)
(6.16)

will also be needed below.

3The effective Hamiltonian is defined to satisfy the following equation: exp[−H eff
J (x)] =∑

h exp[−HJ (x, h)]/ZJ .
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Training of a restricted Boltzmann machine
At this rate, y ∼ QJ (y) is needed to approximate the second term of (6.14), and
so the partition function needs to be calculated, just as in the case of the normal
Boltzmann machine. To improve the situation, in the training of the restricted
Boltzmann machine, the sampling y ∼ QJ (y) of our concern is replaced by

y ∼ PJ (xn|h), h ∼ PJ (h|x), x ∼ P(x) . (6.17)

This is called contrastive divergence method.4 So the learning algorithm is

J ← J − εδJ, (6.18)

δJ =
〈
∂J HJ (x, hn)

〉

hn∼PJ (hn|x), x∼P(x)

−
〈
∂J HJ (y, h2)

〉

h2∼PJ (h2|y), y∼PJ (xn|h1), h1∼PJ (h1|x), x∼P(x)
. (6.19)

Since this algorithm uses only the conditional probabilities (6.15) and (6.16) at
the time of sampling, there is no need to calculate the first term of the partition
function (6.12). This makes it a very fast learning algorithm. This method was
proposed by Hinton in Ref. [77], and an explanation of why such a substitution
could be made was given in Ref. [78] and other references. In the following, we
provide a physical explanation of it.

Heatbath method and detailed balance
Once you have trained the restricted Boltzmann machine and obtained good
parameters J ∗, you can use it as a data sampling machine. The sampling is then
done using the algorithm of the heatbath method as follows:

1. Initialize x appropriately and call it x0. (6.20)

2. Repeat the following for t = 1, 2, . . . : (6.21)

ht ∼ PJ ∗(h|xt ), (6.22)

xt+1 ∼ PJ ∗(x|ht ). (6.23)

In this sampling, the transition probability is written as

PJ ∗(x′|x) =
∑

h

PJ ∗(x′|h)PJ ∗(h|x) . (6.24)

4The contrastive divergence method is abbreviated as “CD method.” What is used here is also
called the CD-1 method. In general, the contrastive divergence method is called the CD-k method,
where k is the number of samples using the heatbath method for the process between x and h.
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Let us consider what is the detailed balance condition that this transition probability
satisfies. To do that, we just need to know the difference between the original
probability and the one where x and x′ have been swapped in (6.24). As a trial,
we write (6.24) with x and x′ replaced, and try to get as close as possible to the
original form:

PJ ∗(x|x′) =
∑

h

PJ ∗(x|h)PJ ∗(h|x′)

=
∑

h

PJ ∗(h|x′)PJ ∗(x|h) . (6.25)

From the first line to the second line, the order of multiplication in the sum was
changed. Of course, this is not equal to the original (6.24), but we notice that
the conditional probability argument has been swapped. Using Bayes’ theorem
explained in the column of Chap. 2, the following identity holds:

PJ (h|x)e−H eff
J (x) = PJ (x|h)e−H eff

J (h) . (6.26)

Here H eff
J (h) is the effective Hamiltonian for the hidden degrees of freedom,

H eff
J (h) = log ZJ − log

∑

x

e−HJ (x,h) . (6.27)

Using Bayes’ theorem (6.26) to transform the two conditional probabilities
of (6.25), we find that the terms H eff

J (h) just cancel each other and

(6.25) = e−H eff
J∗ (x)

e−H eff
J∗ (x′)

PJ ∗(x′|x) . (6.28)

This is the equation of the detailed balance condition whose convergence limit is

QJ ∗(x) = e−H eff
J∗ (x) . (6.29)

So, if QJ ∗ is sufficiently close to the target distribution P as in the scenario up to
this point, it can produce a fake sample which is quite close to the real thing by
sampling using the heatbath method. In addition, the contrastive divergence method
is, in a sense, a “self-consistent”İ optimization. The reason is that the second term of
the formula (6.19) was originally a sampling from QJ , but if the training progresses
and QJ gets close enough to P , the second term is nothing but an iterative part
of the heatbath algorithm described above. In fact, the derivation of the contrastive
divergence method can be discussed from the point of view of such detailed balance.
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6.3 Generative Adversarial Network

Unsupervised learning explained so far has basically been based on algorithms
that reduce the relative entropy (6.3). However, this is not the only way to get
the probability distribution QJ closer to P . Here, we shall explain models called
generative adversarial networks, GANs [79], which have been attracting attention
in recent years.

Basic settings
In a GAN setting, we prepare two types of networks. In the following, the space
where the values of each pixel of the image are arranged (the space where the data
lives) is called X, and another space (called the latent space or the feature space)
that the user of the GAN sets is called Z. Each network is a function

G : Z → X, (6.30)

D : X → R, (6.31)

which is represented by a neural network. G is called a generator, and D is called a
discriminator. As an analogy, G is counterfeiting, aiming to create as much elaborate
and realistic data xfake as possible, while D is a police officer and its learning
objective is to be able to distinguish between real samples xreal and fake samples
xfake. The goal of GANs is to have two different (but adversarial) networks compete
with each other to get G, which can produce fake data xfake that can be mistaken for
the real thing.

Probability distribution induced by G

GAN formulation is also based on probability theory. First, we set a probability
distribution on Z by hand. This is a “seed” of the fake data, and we often take
a distribution that is relatively easy to sample, such as a Gaussian distribution, a
uniform distribution on a spherical surface,5 or a uniform distribution in a box
[−1, 1]dimZ . We name a chosen distribution pz(z). G takes the “seed” z as an
argument and transfers it to a point in the data space, and the probability distribution
on X is induced from pz,

QG(x) =
∫

dz pz(z)δ
(
x −G(z)

)
. (6.32)

Here δ is the Dirac delta function often used in quantum mechanics and electromag-
netism. In other words, this is the same as

x ∼ QG(x) ⇔ z ∼ pz(z), x = G(z) . (6.33)

5By the way, since Z usually brings a space of several hundred dimensions, there is not much
difference between the Gaussian distribution and the uniform distribution on the sphere due to the
effect of the curse of dimensionality. This is because the higher the dimension, the larger the ratio
of the spherical shell to the inside of the spherical surface.
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Objective function and learning process
The interesting point about GANs is that it does not use the relative entropy (6.3)
directly to optimize (6.32). Instead, one considers the following function:6

VD(G,D) = 〈log(1 + e−D(x))〉x∼P(x) + 〈log(1 + e+D(x))〉x∼QG(x), (6.35)

VG(G,D) = −VD(G,D). (6.36)

This just means: (the value of VD is small) ⇔ (D(xreal) =large, D(xfake) = small).
If we train D to reduce VD , then we can put a role as a “police officer” to D. On
the other hand, according to (6.36), decreasing VG = increasing VD , so if this value
of VG is reduced, G can trick D. Namely, the learning process of GANs is to repeat
the following updates:

G ← G− ε∇GVG(G,D), (6.37)

D ← D − ε∇GVD(G,D), (6.38)

This optimization is a search for a Nash equilibrium,

G∗ s.t.∀G, VG(G∗,D∗) ≤ VG(G,D∗), (6.39)

D∗ s.t.∀D, VD(G∗,D∗) ≤ VD(G∗,D). (6.40)

In fact, with the condition of (6.36), that is, the sum of the objective function of G

and the objective function of D becomes zero, the equilibrium point is shown to
satisfy

VD(G∗,D∗) = min
G

max
D

VD(G,D). (6.41)

This is a consequence of the minimax theorem [80] by von Neumann.7 From this
condition, it is relatively easy to prove why QG reproduces P . First, we look at
maxD of (6.41). D is a function on X and the functional VD is differentiable; this

6This is written with the sigmoid function σ(u) = (1 + e−u)−1 as

−〈log σ(D(x))〉x∼P (x) − 〈log(1 − σ(D(x)))〉x∼QG(x) (6.34)

and it is similar to the cross-entropy error (3.16), which is the error function derived for binary
classification in Chap. 3. In fact, this is identical to a binary classification problem of discriminating
whether an item of data is real (x ∼ P (x)) or not (x ∼ QG(x)).
7The minimax theorem is that if f (x, y) is a concave (convex) function with respect to the 1st
(2nd) variable x (y),

min
x

max
y

f (x, y) = max
y

min
x

f (x, y) . (6.42)

Taking f = VD and setting the solution of this minimax problem to G,D, one can prove that
these satisfy the Nash equilibrium condition (6.39) and (6.40). In the proof, one uses the condition
VG + VD = 0 (the zero-sum condition).
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can be regarded as a variational problem in physics, to seek for a solution of the
equation

0 = δVD(G,D)

δD(x)
. (6.43)

The variation of VD is

δVD(G,D) = δ

∫
dx
(
P(x) log(1 + e−D(x))+QG(x) log(1 + e+D(x))

)

=
∫

dx δD(x)
(
− P(x)

e−D(x)

1 + e−D(x)
+QG(x)

e+D(x)

1+ e+D(x)

)
.

(6.44)

So, the solution D = D∗ makes the quantity in the parentheses vanish, which leads
to

e−D∗(x) = QG(x)

P (x)
. (6.45)

Substituting this into VG = −VD gives the objective function of minG,

VG(G,D∗) =
∫

dx
(
P(x) log

P(x)

P (x)+QG(x)
+QG(x) log

QG(x)

P (x)+QG(x)

)

= DKL

(
P

∣∣∣
∣∣∣
P +QG

2

)
+DKL

(
QG

∣∣∣
∣∣∣
P +QG

2

)
− 2 log 2 . (6.46)

Due to the property of relative entropy, minimizing this functional with respect to
G has to be attained by

P(x) = P(x)+QG(x)

2
= QG(x) . (6.47)

Training in actual cases
However, in actual GAN training, things do not go as in the theory, causing various
learning instabilities. An early perceived problem was that D became too strong
first, and the gradient for G disappeared. To avoid this, in most of the cases, instead
of (6.36),

VG(G,D) = 〈log(1 + e−D(x))〉x∼QG(x) (6.48)

is used. The above proof heavily relied on (6.41), so there is no theoretical guarantee
that replacing VG will work. The GAN has been recognized explosively since
the announcement of implementing it to a convolutional neural network (deep
convolutional GAN, DCGAN) [42] for learning more stably. From this, it is
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expected that creating a theory of why it works will require incorporating conditions
not only about the algorithm but also about the structure of the actual network used.
As of April 2019, to the best of the authors’ knowledge, the theoretical guarantees
of the (6.48) version of GANs are an open question.

6.3.1 Energy-Based GAN

Another example of VG,D is called an energy-based GAN [81], which is defined as

VD(G,D) = 〈D(x)〉x∼P(x) + 〈max(0,m−D(x))〉x∼QG(x), (6.49)

VG(G,D) = 〈D(x)〉x∼QG(x). (6.50)

Here m(> 0) is a manually set value that corresponds to the energy of the fake data.
It is the energy to measure “how much data x looks real,” which is modeled by
the classifier D. As in an ordinary physical system, energy must be bounded from
below:

D(x) ≥ 0 . (6.51)

In the energy-based GAN, a classifier network is configured to satisfy this energy
condition (6.51). Under these settings, The training of D is performed as follows:

If x is real, make D(x) close to 0.

If x is fake, make D(x) close to m.
(6.52)

This corresponds to making the value of (6.49) as small as possible.8 The training
of G is to make xfake = G(z) have the lowest possible energy (= realistic). The
“equilibrium point” (6.39) and (6.40) based on (6.49) and (6.50) can be shown to
give QG∗(x) = P(x) without the help of the minimax theorem. The proof might be
too mathematical, but here we shall show it.9

Property obtained from equilibrium point of VD

The inequality (6.40) says that for VD(G∗,D) into which G = G∗ is substituted,
D∗ takes the minimum value. So we start by looking at what happens to D(x) that
minimizes the following:

VD(G∗,D) =
∫

dx
[
P(x)D(x)+QG∗(x) max(0,m−D(x))

]
. (6.53)

8Just as VD in the original GAN corresponds to the cross entropy, the objective function (6.49)
called hinge loss corresponds to the error function of a support vector machine (which is not
described in this book).
9This is a detailed version of the proof provided in the appendix of the original paper.
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As before, one may want to take a variation with respect to D(x), but unfortunately
it does not work because of the condition (6.51) and the discontinuous function
“max.” So, we evaluate what the integrand looks like at each x. Then basically we
just need to consider a one-variable function

f (D) = PD +Q max(0,m−D), 0 < P,Q < 1. (6.54)

and we find that it is just a matter of division of cases:

min f (D) =
{

f (D = 0) = mQ (P < Q),

f (D = m) = mP (P ≥ Q).
(6.55)

Then, there is this function for each point x, so we find

VD(G∗,D∗) = m
[ ∫

1P(x)<QG∗(x)dx P (x)+
∫

1P(x)≥QG∗(x)dx QG∗(x)
]
.

(6.56)

Here, 1condition is a step function that takes 1 (0) when the condition is (not) satisfied.
By definition

1P(x)≥QG∗(x) = 1 − 1P(x)<QG∗(x) . (6.57)

Substituting this into (6.56), using the fact that QG∗(x) is a probability distribution
and so its integration gives 1, we find

VD(G∗,D∗) = m
[
1 +

∫
1P(x)<QG∗(x)dx

(
P(x)−QG∗(x)︸ ︷︷ ︸

<0

)]
≤ m . (6.58)

This inequality is the first important conclusion. The point here is that the rela-
tionship with the last m is ≤ instead of <. This is the heart of the proof, so let us
elaborate on the explanation. The reason why we do not have < is that there can be
no10 point x satisfying P(x)−QG∗(x) < 0. In this case, the contribution from the
second term of (6.58) is zero due to the step function 1P(x)<QG∗(x).

Property obtained from equilibrium point of VG

Next, we write the inequality (6.39) by integration as

∀G,

∫
dx QG∗(x)D∗(x) ≤

∫
dx QG(x)D∗(x) . (6.59)

10To be precise, it is better to say P (x) − QG∗ (x) ≥ 0 almost everywhere. The meaning of this
expression is explained in the next footnote.



114 6 Unsupervised Deep Learning

Can we extract any useful information from here? The point is to imagine a “perfect
generator” Gperfect,

QGperfect(x) = P(x) . (6.60)

Since in this proof G is assumed to have infinite expressive power (it can
approximate all possible functions), we may substitute Gperfect into G. Since (6.59)
holds for any G, the inequality holds also for the “perfect generator”:
∫

dx QG∗(x)D∗(x) ≤
∫

dx QGperfect(x)D∗(x) =
∫

dx P(x)D∗(x) . (6.61)

The integral in this last expression is the same as the first term of (6.53) into which
D = D∗ is substituted, so using this inequality we newly obtain

VD(G∗,D∗) ≥
∫

dx QG∗(x)
[
D∗(x)+ max(0,m−D∗(x))

]
. (6.62)

Here, we can prove11 that “almost everywhere”12 the following holds:

D∗(x) ≤ m . (6.66)

11Let us prove it by reductio ad absurdum. The negation of the statement that almost everywhere
we have (6.66) is

S = {x|D∗(x) > m}contributes to the integral. (6.63)

We define a new D̃(x) = min(m,D∗(x)) and substituting it into D of VD(G∗,D), we just put
D = D̃ in (6.53),

VD(G∗, D̃) =
∫

S∪Sc

dx
[
P (x)D̃(x) +QG∗ (x) max(0,m − D̃(x))

]

=
∫

S

dx
[
P (x) D̃(x)︸ ︷︷ ︸

=m<D∗(x)

+QG∗ (x) max(0,m − D̃(x))︸ ︷︷ ︸
=0<max(0,m−D∗(x))

]

+
∫

Sc

dx
[
P (x) D̃(x)︸ ︷︷ ︸

D∗(x)

+QG∗ (x) max(0,m − D̃(x)︸ ︷︷ ︸
D∗(x)

)
]

<

∫

S∪Sc

dx
[
P (x)D∗(x) +QG∗ (x) max(0,m −D∗(x))

]
= VD(G∗,D∗) .

(6.64)

This inequality contradicts the Nash equilibrium definition (6.40), where D∗ gives the minimum
value of VD(G∗,D) for D.
12This is equivalent to

∫
1D∗(x)>mdx = 0 . (6.65)

In other words, the support set S = {x|D∗(x) > m} does not contribute to the integral.
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So we find

VD(G∗,D∗) ≥
∫

dx QG∗(x)
[
D∗(x)+ max(0,m−D∗(x))︸ ︷︷ ︸

=m−D∗(x)

]
= m. (6.67)

This is the second important conclusion.

Proof completion
Finally, two inequalities (6.58) and (6.67) including equalities, which differ only in
the directions, hold, hence we find

VD(G∗,D∗) = m . (6.68)

Together with

(6.58):VD(G∗,D∗) = m
[
1 +

∫
1P(x)<QG∗(x)dx

(
P(x)−QG∗(x)︸ ︷︷ ︸

<0

)]
≤ m ,

(6.69)

this leads to

0 =
∫

1P(x)<QG∗(x)dx
(

P(x)−QG∗(x)︸ ︷︷ ︸
<0

)
. (6.70)

Since the ︸︷︷︸ part contributes only with negative values, this means that there is no

integration range in the first place,

0 =
∫

1P(x)<QG∗(x)dx . (6.71)

This means that we need P(x) ≥ QG∗(x) almost everywhere. Considering the case
where the inequality sign is reversed,

∫
1P(x)>QG∗(x)dx

(
P(x)−QG∗(x)︸ ︷︷ ︸

>0

)

=
∫

(1 − 1P(x)≤QG∗(x))dx
(
P(x)−QG∗(x)

)

=
∫

dx
(
P(x)−QG∗(x)

)

︸ ︷︷ ︸
1−1=0

−
∫

1P(x)≤QG∗(x)︸ ︷︷ ︸
Integrand is zero for “=”

dx
(
P(x)−QG∗(x)

)

= −
∫

1P(x)<QG∗(x)dx
(
P(x)−QG∗(x)

)
(6.70)= 0 . (6.72)
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For the same reason, we find

0 =
∫

1P(x)>QG∗(x)dx, (6.73)

and now, almost everywhere, P(x) ≤ QG∗(x). So after all, almost everywhere

P(x) = QG∗(x) . (6.74)

This is what we wanted to show.

6.3.2 Wasserstein GAN

Another interesting extension [82] of the GAN is possible by considering unsu-
pervised learning in the context of optimal transport [83, 84]. Optimal transport
treats minimization of transport energy, so the model can be interpreted physically.
Regarding the probability distribution Q as a pile of sand, and the probability
distribution P as a hole of the same volume dug in the ground, then the optimal
transport energy is defined as the minimum energy consumed for transporting sand
from the pile to the hole to make a flat surface. One of the typical optimal transport
energies is what is called the Wasserstein distance. The definition is

DW (P,Q) = min
π∈ (6.77)

U(π), (6.75)

U(π) = 〈E(x, y)〉(x,y)∼π(x,y). (6.76)

Here E(x, y) represents the transportation cost energy between data points x, y.
Typically, we take the distance between x, y for it. π(x, y) is a joint probability
distribution of how much to transport y → x, which is assumed to satisfy

∫
dx π(x, y) = Q(y),

∫
dy π(x, y) = P(x) . (6.77)

U(π) is the expectation value of the transportation cost energy using this probability
distribution π , and in the analogy to thermodynamics we can think of it as “internal
energy.” If the transportation cost E(x, y) satisfies the property of distance:

{
0 ≤ DW (P,Q),

0 = DW (P,Q) ⇔ ∀x, P (x) = Q(x),
(6.78)

it has properties as a substitute for the relative entropy.
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Generalization to Helmholtz free energy
The interesting thing about this distance is that there is an equivalent expression
which looks completely different. In order to derive it, once we put this system
in the nonzero temperature, and consider, not the minimum value of the internal
energy, but the minimum value of Helmholtz free energy.13

DT
W (P,Q) = min

π∈ (6.77)

(
U(π)− T S(π)

)
. (6.79)

Here, we adopt the following entropy14 of the transportation plan π ,

S(π) = 〈− log π(x, y)+ 1〉(x,y)∼π(x,y) . (6.80)

Because of the temperature, this does not actually satisfy the property of dis-
tance (6.78). However, in thermodynamics, free energy often gives a better per-
spective than internal energy, and accordingly it acquires good properties.15

Now, we want to determine the transportation plan π that minimizes this free
energy, and a difficulty is how to take into account the constraint (6.77). We put
the constraint into the optimization by using the Lagrange multiplier method. The
expectation value is written in the form of an integral as

DT
W(P,Q) = min

π
max
f,g

( ∫
dxdy π(x, y)

[
E(x, y)+ T log π(x, y)− T

]

+
∫

dx f (x)
[
P(x)−

∫
dy π(x, y)

]

+
∫

dy g(y)
[
Q(y)−

∫
dx π(x, y)

])
. (6.81)

We consider changing the order, as minπ maxf,g = maxf,g minπ . To find the
minimum value over π first, it is sufficient to take the variation of π and set it
to zero,

0 = E(x, y)+ T log π∗(x, y)− f (x)− g(y) . (6.82)

Then we can substitute this solution and consider maxf,g, to find another expression

DT
W (P,Q) = max

f,g

(
〈f (x)〉x∼P(x) + 〈g(y)〉y∼Q(y) − T

∫
dxdy π∗(x, y)

)
.

(6.83)

13This generalization is not necessary to derive the final form of the WGAN, but considering the
Helmholtz free energy makes the derivation easier to understand.
14The term “+1” is not necessary but it will make the later discussion cleaner.
15For example, there is a way to reduce the amount of calculation in the actual calculation
algorithm compared to the original zero temperature problem [85].
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Such a situation that the original problem (min) becomes equivalent to some other
problem (max) often appears in machine learning,16 and it is called a strong duality
in optimization problems. Looking at the derivation here, we see that the new
degree of freedom of the dual problem is the Lagrange multiplier that expresses the
constraint, and it is similar to the duality in statistical mechanics and field theories.
At the time of writing this, the authors cannot tell if this is just a similarity or has a
profound meaning.

Kantorovich-Rubinstein duality
Consider taking a zero temperature limit T → +0 to return to the original
problem (6.76). The dual problem appears to be able to reach the limit without
any difficulty. Solving (6.82) gives

π∗(x, y) = e
−H(x,y)

T , (6.84)

H(x, y) = E(x, y)− f (x)− g(y). (6.85)

Since (6.83) is about the maximum value, from the beginning, it is better to remove
f, g with which the last term becomes −∞. According to this argument, we find a
condition similar to (6.51), where the “Hamiltonian” (6.85) is bounded from below,

H(x, y) ≥ 0, i.e., f (x)+ g(y) ≤ E(x, y) . (6.86)

Therefore,

DW (P,Q) = max
f (x)+g(y)≤E(x,y)

(
〈f (x)〉x∼P(x) + 〈g(y)〉y∼Q(y)

)
. (6.87)

In particular, if the energy function for transport is taken as E(x, y) = ||x − y||, at
least g = −f must be attained to achieve the maximum, so finally

DW(P,Q) = max
f (x)−f (y)≤||x−y||

(
〈f (x)〉x∼P(x) − 〈f (y)〉y∼Q(y)

)
. (6.88)

In other words, the point is that f is restricted to functions with Lipschitz continuity.

WGAN
Incorporating idea of GAN into this duality leads to the idea of Wasserstein GAN.
Simply we set Q = QG and optimize G to minimize the Wasserstein distance:

min
G

DW (P,QG) = min
G

max
f (x)−f (y)≤||x−y||

(
〈f (x)〉x∼P(x) − 〈f (y)〉y∼Q(y)

)
.

(6.89)

16As another example, support vector machines (which are not described in this book) have also a
duality.
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Then, adopting f = D, we find that this is a minimax problem (6.41) in the zero-
sum GAN! Namely, for

VD(G,D) = 〈D(x)〉x∼P(x) − 〈D(y)〉y∼Q(y) , (6.90)

VG(G,D) = −VD(G,D) , (6.91)

the equilibrium point of the GAN is also expected from the property of DW(P,QG)

to satisfy

P(x) = QG(x) . (6.92)

One should note that here D must be Lipschitz-continuous. When making D

with a neural network, normally this condition is not satisfied. The original paper
implements an approximate Lipschitz continuity by restricting the range of the
values of the weights. And later years there appeared some ideas such as an
approximate implementation with a gradient penalty (||∇xD(x)||2 − 1)2 for D as a
regularization term [86], or a spectral normalization in which the network weights
are normalized by their maximum singular value [87].17 The gradient penalty and
the spectral normalization are also known to improve the performance of other
GANs which are not WGAN.

6.4 Generalization in Generative Models

So far, we have introduced various models and algorithms of unsupervised machine
learning and deep learning.18 All of those are aimed to make

QJ ∗(x) = P(x) . (6.93)

However, as we have emphasized many times, we cannot access the data generation
probability distribution P(x) in machine learning in the first place. So the learning
algorithm has to use the empirical distribution P̂ (x) for P(x), and how should we
think about generalization?

17Actually, spectral normalization was introduced to stabilize the learning process of conventional
GANs rather than to use it for WGANs, and the authors are not aware of successful examples
of using spectral normalization in WGAN implementations. With this normalization, the network
acquires a K-Lipschitz continuity with a certain number K , so there is no reason why it cannot be
used for WGAN.
18Noteworthy deep generative models that we have not been able to introduce here include
variational auto-encoder (VAE) [88, 89] and nonlinear independent component estimation (NICE)
[90]. A brief review is provided by a physicist, L. Wang [91].
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Case of rote memorization
First, if we simply replace (6.93) with the empirical distribution,

QJ ∗(x) = P̂ (x) , (6.94)

it simply appears that “the machine remembers the data that came out.” Actually,
we want the machine to create new images that do not exist in the data, so this
is not sufficient. However, there are things we can learn from this setup. We
have already derived an inequality of generalization performance in unsupervised
machine learning of the rote memorization: it is (5.21) which was explained at
the end of the section for the central limit theorem. Here we repeat explaining
the problem again. An event with an occurrence probability of p1, p2, . . . , pW

is defined as A1, A2, . . . , AW , and the specific value of the probability pi is not
known. Instead, we have only the data

•
{

The number of event A1 is #1, the number of A2 is #2, . . . , the number of AW is #W ,

In total, the number of events is # =∑W
i=1 #i .

(6.95)

and the problem is to estimate the value of pi . This problem can be thought of as
an unsupervised learning. Obviously, the appropriate estimated probability is the
“empirical distribution” qi = #i

# , and if this probability is close to pi , it can be said
that the model is generalized. The central limit theorem says

With approximately 70% probability,

one finds pi −
√

pi(1 − pi)

#
< qi < pi +

√
pi(1 − pi)

#
. (6.96)

Therefore, even in the case of the unsupervised learning, the generalization perfor-
mance is expected to be of the order of 1/

√
#.

Actual cases
Do actual deep generative models memorize everything by rote? In the case of
using the actual empirical distribution P̂ (x), the proof for (6.93) of GANs can be
applied exactly as it is, and it appears that (6.94) is proven. However, there are other
differences between the proof and the actual cases:

• The convergence proof of GANs assumes that G and D have infinite expressive
power, while in the actual training, G and D are deep neural networks with a
fixed structure, and their expression is limited.

• The Nash equilibrium condition (6.39), (6.40) which is assumed in the proof
is actually solved by the gradient method (6.37), (6.38). However, the gradient
method is not exact, and therefore, the obtained trained model is not an exact
equilibrium point.
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Fig. 6.1 Left: Images created by G. Right: Image created by G (upper left red frame) and 9 images
closest to it in the training data

Therefore, it is too early to say that the proof of (6.93) under ideal assumptions is
actually “only” (6.94), which is a replacement with an empirical distribution. Then,
what is the conclusion, in the end? A picture is worth a thousand words. Here, we
show the image generated by a GAN which was actually trained with CIFAR-10, in
Fig. 6.1 (left). With this alone, we cannot tell more than “something that looks like
a natural image is generated,” so in Fig. 6.1 (right) we show the image generated by
the GAN and the training data in the neighborhood of it found in the image space.
A glance finds no image which looks exactly the same as the image generated by G,
and furthermore, even in the closest image the detailed structure is different. This is
supporting evidence that the GAN, a kind of deep generative model, avoids a rote
memorization (6.94) and generalizes.

Inception score
Let us introduce an attempt to measure a “generalization performance” in
image generation from a completely different perspective. In the first place, we
regard (6.93) as a state which generalizes, because the sampling from this generator
gives us a “realistic” image x. Hence the generalization performance is whether
images that “look real to humans” can be generated or not. On the other hand, many
“image classification networks” led by ResNet [24] trained using the ImageNet
dataset [26] are now known to have classification accuracy superior to that of
humans [92]. So the idea is to have the image classification network decide whether
the generated image is “real-looking to humans” or not. Let us prepare

Probability distribution given by generator: QG∗(x), (6.97)

Trained image classification network: QJ ∗(d|x). (6.98)
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What quantity should be considered using these two? First, suppose the generator
draws some image:

xfake ∼ QG∗(x). (6.99)

Using this image, what is the probability QJ ∗(d|xfake) of the classification label d?
For simplicity, let d = (dog, cat). As a first example, suppose the generated image
is completely useless, and xfake looks like a mysterious animal between dogs and
cats. Then the image looks like a cat and like a dog, so

QJ ∗(d = dog|xfake) ≈ 1

2
, QJ ∗(d = cat|xfake) ≈ 1

2
. (6.100)

On the other hand, if xfake is an image which looks really like a dog, we should have

QJ ∗(d = dog|xfake) ≈ 1, QJ ∗(d = cat|xfake) ≈ 0 . (6.101)

The entropy in each case is

S(xfake) = −
∑

d

QJ ∗(d|xfake) log QJ ∗(d|xfake)

≈
{

log 2 (xfake is a bad image (6.100)),
0 (xfake is a good image (6.101)).

(6.102)

Namely, the closer S(xfake) is to 0, the more reality it has. So, this quantity is the
appropriate one to calculate.

But here is a trap. Equation (6.102) certainly measures the reality, but it only
measures goodness for a single xfake. For example, by sampling from the generator,
we obtain many images

xfake1, xfake2, . . . ,∼ QG∗(x) , (6.103)

and if most of the images are similar dog images, the individual (6.102) values
are certainly large, but it is not possible to create a new image, so, resultantly, the
machine has not generalized. In other words, generators are required to generate
realistic images that are “sufficiently diverse.” Entropy can also be used to measure
such diversity. We just need to calculate the entropy of the expectation value of the
classification probability when various xfake are input,

Q(d) =
∫

dxQJ ∗(d|x)QG∗(x) = 〈QJ ∗(d|x)〉x∼QG∗(x) . (6.104)
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Explaining again with the example of dogs and cats, if QG∗(x) generates both dog
and cat images equally, the probability for xfake to be classified as dog or cat is 1

2 ,

Q(d = dog) ≈ 1

2
, Q(d = cat) . ≈ 1

2
. (6.105)

On the other hand, if QG∗(x) generates only dogs as in the case above, we have

Q(d = dog) ≈ 1, Q(d = cat) ≈ 0 . (6.106)

Then the entropy of Q(d) is

S = −
∑

d

Q(d) log Q(d)

≈
{

log 2 (QG∗ is diverse, (6.105)),
0 (QG∗ is not diverse, (6.106)).

(6.107)

We see that the larger S, the more diverse.
Taken together, a good generator should decrease (6.102) and increase (6.107).

Since entropy is additive, the “score” of the generator can be thought of as the
difference. Then this can be written as an expectation value of a relative entropy.19

S − 〈S(x)〉x∼QG∗ (x)

=
∑

d

(
〈QJ ∗(d|x) log QJ ∗(d|x)〉x∼QG∗ (x)︸ ︷︷ ︸

Transform this into an integration

− Q(d)︸ ︷︷ ︸
(6.104)

log Q(d)
)

=
∑

d

( ∫
dx QG∗(x)QJ ∗ (d|x) log QJ ∗ (d|x)−

∫
dx QG∗ (x)QJ ∗ (d|x) log Q(d)

)

=
∫

dx QG∗(x)
(∑

d

QJ ∗(d|x) log
QJ ∗ (d|x)

Q(d)

)

=
∫

dx QG∗(x)DKL

(
QJ ∗(d|x)

∣∣∣
∣∣∣Q(d)

)

=
〈
DKL

(
QJ ∗(d|x)

∣∣∣
∣∣∣Q(d)

)〉

x∼QG∗ (x)
. (6.109)

19Yet another transform

(6.109) =
∫

dx
∑

d

QJ ∗G∗ (x, d) log
QJ ∗G∗ (x, d)

QG∗ (x)Q(d)
, QJ ∗G∗ (x, d) = QJ ∗ (d|x)QG∗ (x)

(6.108)

provides a quantity called mutual information between the generated image and the classification
labels. Reference [93] used this to hack IS, that is, generate images that have an unusually large
value of the IS (although images that make little sense to the human eyes). As seen from this
example, it is not always true that the higher the IS, the better.
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Fig. 6.2 IS(Left) = 8.54, and IS(Right) = 36.8 (official value)

As in the Sanov theorem introduced in Chap. 1, the exponentiation of this quantity
is called the inception score, the score of the generator QG∗ in image generation
[94]:

IS(QG∗) = exp
〈
DKL

(
QJ ∗(d|x)

∣∣∣
∣∣∣Q(d)

)〉

x∼QG∗(x)
. (6.110)

This score is calculated using a sampling approximation from QG∗(x), based
on the law of large numbers. It is one of the de facto standards for measuring
GAN metrics.20 This “Inception” is a neural network module in the structure
of GoogLeNet [96], a winning model by Google in the ImageNet classification
competition in 2014,21 and this GoogLeNet is used exclusively for the calculation
of IS.

Figure 6.2 shows the generated images of a GAN trained with STL-10 [97] and
of the model trained with ImageNet, which is freely available [87, 98] (https://
github.com/pfnet-research/sngan_projection). We can see that the IS is high when
the generator can generate images well.

20There is another index called Fréchet inception distance (FID) [95], which is the Wasserstein
distance (which is called the Fréchet distance, and the name FID follows from it) between the
data image distribution and the generated image distribution in the hidden layer (feature space) of
image classification network, assuming that the features in a classification network follow a certain
Gaussian distribution.
21The name Inception came from the title of a popular Hollywood movie “Inception”: the title of
the GoogLeNet paper is “Going deeper with convolutions,” while the main character’s line in the
movie is “We need to go deeper.” The original paper even cites the movie (the article summarizing
the backgrounds). It is a witty naming that makes anyone who has seen this movie grin.

https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/sngan_projection
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The highest value of IS for ImageNet as of March 2019 is probably IS = 166.3
achieved in Ref. [99]. Interested readers should take a look at the image given in
the first page of the paper (which can be read for free). We are sure that the readers
will be surprised at how exquisite it is. For reference, if one uses QJ ∗(d|x) which
processes a task classifying 1000 labels (classification using ImageNet), the full
mark for the score is IS = 1000 [93, 95].

Column: Self-Learning Monte Carlo Method

According to Ref. [100], the contrastive divergence method is a kind of optimization
of an “error function”

Kex(θ) = DKL

(
Pθ(x′|x)P (x)

∣∣∣
∣∣∣Pθ (x|x′)P (x′)

)
. (6.111)

At θ = θ0 where this quantity vanishes, the detailed balance condition is satisfied,
so the target distribution P(x) is a convergence destination of a Markov chain
Pθ0(x

′|x). A little massage of this equation using Bayes’ theorem gives

Kex(θ) = DKL

(
Pθ(x′|x)P (x)

∣∣∣
∣∣∣Pθ (x′|x)

e−H eff
θ (x)

e−H eff
θ (x′)

P (x′)
)

= −
〈

log
P(x′)e−H eff

θ (x)

P (x)e−H eff
θ (x′)

〉

Pθ (x′|x)P (x)
≥ 0 . (6.112)

The last inequality is due to the property of relative entropy. Therefore, roughly
speaking, bringing the following quantity closer to 1,

P(x′)e−H eff
θ (x)

P (x)e−H eff
θ (x′)

(6.113)

is the contrastive divergence method. As a matter of fact, the transition probability
obtained by the heatbath method together with the Metropolis test using this factor
satisfies exactly the detailed balance condition.

Pex
θ (x′|x) = min

(
1,

P (x′)e−H eff
θ (x)

P (x)e−H eff
θ (x′)

)
Pθ (x′|x)

= P(x′)e−H eff
θ (x)

P (x)e−H eff
θ (x′)

min
(P(x)e−H eff

θ (x′)

P (x′)e−H eff
θ (x)

, 1
)e−H eff

θ (x′)

e−H eff
θ (x)

Pθ (x|x′)

= P(x′)
P (x)

P ex
θ (x|x′) . (6.114)
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In this way, the desired convergence is guaranteed even if the probability defined by
H eff

θ does not exactly match the target P . Note that, to implement this correction
term, one needs to have access to the value of P(x). For example, if the target is
written by some Hamiltonian

P(x) = e−Htrue(x)

Z
, (6.115)

it is possible. In this case, the training sample is a snapshot of the configuration from
the statistical mechanical system defined by this Hamiltonian. A machine learning
Metropolis method that repeats the cycle of (1) training H eff

θ with the configurations
generated by Markov chain Monte Carlo method for (6.115), and (2) generating new
configurations with a Markov chain of type (6.114), is called a self-learning Monte
Carlo method, which has been actively studied since 2016 [101].



Part II
Applications to Physics

The second part describes the application of machine learning to theoretical physics,
which has recently begun, with examples and history. Because machine learning
is one of the new techniques in science, its involvement in physics is diverse.
From the standard viewpoints in physics: “inverse problems”, “phases”, “differential
equations”, “quantum many systems”, and “spacetime”, we will look at possible
standpoints of machine learning, historical development of it, and some of the
recent developments. This understanding of machine learning from the perspective
of physics will provide readers’ perspectives on the relationship between machine
learning and physics so far and in the future, and will be helpful for study and
research.

Chapter 7: Inverse Problems in Physics First, we consider inverse problems in
physics. In fact, inverse problems are at the heart of revolutionary development
in physics. What does it mean to solve an inverse problem? What is the meaning
of the phrase “machine learning is good at solving inverse problems”? You will
gain a comprehensive perspective and significance in applying machine learning
to theoretical physics.

Chapter 8: Detection of Phase Transition by Machines As an approach to the
important question of whether machines can learn the discovery of physics,
this chapter examines the question “Can phase transitions be found by deep
learning?” Understanding phases is one of the most important subjects in physics.
Can machine learning really discover the thermal phase transition in the basic
physical system: the Ising model?

Chapter 9: Dynamical Systems and Neural Networks Neural networks are a way
of expressing a variety of nonlinear functions, but can also be thought of as waves
of information propagating between layers. In this chapter, we show that such
multi-layer propagation can be interpreted as the time evolution of dynamical
systems, and hence of Hamiltonian systems, and look at the close relationship
between the fundamental concept of “time evolution” in physics and deep neural
networks.
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Chapter 10: Spinglass and Neural Networks To begin with, neural networks are
based on neural circuits formed by neurons in human brains. One of the important
mechanisms of the brain is memory. The Hopfield model, which explains the
mechanism of memory in terms of physics, is a bridge between physics and
neural networks. In this chapter, we explain the Hopfield model and investigate
the relationship between machine learning and spin glass, which is still a rich
subject in condensed matter physics.

Chapter 11: Quantum Manybody Systems, Tensor Networks and Neural
Networks In condensed matter physics, finding the wave function of a quantum
many-body system is the most important issue. Theoretical development in
recent years includes a wave function approximation using a tensor network.
At first glance, it is very similar to neural network diagrams, and how are they
actually related? In this chapter we will see the relation and mapping, and that
the restricted Boltzmann machine is closely related to tensor networks.

Chapter 12: Application to Superstring Theory The last chapter describes an
example of solving the inverse problem of string theory as an application of
deep learning. The superstring theory unifies gravity and other forces, and in
recent years, the “holographic principle,” that the world governed by gravity is
equivalent to the world of other forces, has been actively studied. We will solve
the inverse problem of the emergence of the gravitational world by applying the
correspondence to the dynamical system seen in Chap. 9, and look at the new
relationship between machine learning and spacetime.

These chapters, from Chaps. 7 to 12, can be read almost independently. You can
pick up a section that interests you. Reading all the chapters will lead the readers to
find a clear understanding of the relationship between machine learning and physics
through its various examples and uses in physics, and through its history.



Chapter 7
Inverse Problems in Physics

Abstract First, we consider inverse problems in physics. In fact, inverse problems
are at the heart of revolutionary development in physics. What does it mean to
solve an inverse problem? What is the meaning of the phrase “machine learning
is good at solving inverse problems”? You will gain a comprehensive perspective
and significance in applying machine learning to theoretical physics.

There are many inverse problems in the world, and so there are in physics. In
this chapter, we will look at inverse problems1 that can appear in physics from the
perspective of the machine learning, and learn the significance of them.2 What is
an “inverse problem,” in the first place? In general, machine learning is often said
to be good at solving inverse problems. Why is that? By examining these, we can
concretely see how machine learning and deep learning can be applied to physics,
and at the same time we will learn how it makes sense to rely on machine learning
for individual physics problems that individual researchers have.

7.1 Inverse Problems and Learning

The inverse of the usual approach to solving a problem is commonly called the
inverse problem. The general nature of the inverse problem will be described later,
and let us start with a simple example.

Consider a classical mechanical problem that follows the evolution of time.
Given a differential equation that determines the time evolution, and then given the
initial state at a certain time t = 0, the state at any time t > 0 is determined. The

1The inverse problem in mathematics is different from the generic inverse problem dealt with here.
In mathematics, when there is a theorem C that A is B, then the proposition that B is A is called the
inverse of theorem C. For example, one of the famous theorems proved by Kiyoshi Oka is Hartogs’
inverse problem, which is the inverse problem in that sense.
2The contents of this chapter do not enumerate general solutions for inverse problems.
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Schrödinger equation in quantum mechanics is considered the same way. On the
other hand, as its “inverse,” we can ask the following question: given the state at a
certain time t > 0, is it possible to determine the state at the time t = 0 to reproduce
it? This is what is called the initial value problem, and it is an inverse problem.

This example of a time evolution is easy to understand. More generally, the
inverse problem can be formulated as follows. Consider a polynomial function with
real number x as an argument:

f (x) =
n∑

k=0

Jkx
k . (7.1)

Given x, f (x) is determined, so the procedure to calculate f (x) from x can be
thought of as “time evolution” in which, given an initial value of x, after a while,
the system gives f (x). Thus, the inverse problem of “going back in time”İ is that,
when a function f (x) is given and a value of y = f (a) is given, “solve a” is the
problem. Causally, it is a matter of estimating the cause from the result.3

When considering the temporal order, there is a causal relationship between
the cause and the result. There are many inverse problems that are not about the
temporal order, but about spatial order. For example, nondestructive inspection
and X-ray tomography are often said to be typical examples of inverse problems.
This is a method of estimating whether there is a cavity inside an object by using
laws of conduction. Given the external shape of the object (outer surface boundary
condition, y = f (a) in the above equation) and the laws of conduction (e.g. Poisson
equation, wave equation, heat conduction equation, etc. which give the form of the
function f (x), that is, the coefficient Jk), the problem is to find the shape of the
internal cavity, that is, x. In this way, the problem of finding the original initial
conditions or boundary conditions from the values, for a given system of equations,
is an inverse problem.

Now, there is another kind of inverse problem, namely, when the function f (x)

itself is unknown, find the function f (x). In this case, the given condition is that
when the input data is x = x1, the output data is y1 = f (x1). Given such a condition,
the problem is to determine the unknown function f (x).

Of course, just a condition y1 = f (x1) cannot determine a general function.
This pair (x1, y1) only has one constraint expression for the unknown coefficients
J0, · · · , Jn of the polynomial function. Therefore, to determine the unknown
function f (x), generally the same number of input/output pairs (xi, yi) (i =
1, 2, 3, · · · ) must be prepared.

Supervised machine learning is this latter problem. The pair of input data and
output data becomes the training data, and the unknown function becomes a neural

3Of course, the Schrödinger equation is a linear equation, so positive time evolution and negative
time evolution are the same in terms of difficulty to solve, and should not be called inverse
problems.
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network. In other words, the coefficients of the unknown function correspond to the
weights of the neural network.

If the form of the function f (x) is known to a certain extent, the term “modeling”
is often used, rather than machine learning. Due to physical requirements, the
shape of f (x) is restricted. For example, if we know the basic behavior such as
a heat diffusion system and wave system, and if external field fluctuations and other
interactions are added to it, the basic form of f (x) is determined, and one will write
the model in a perturbative way with small effects. The additional effect adds a
new term to the function, so its coefficient is unknown. This unknown coefficient is
determined from the input data and the output data. For example, if it is known that
f (x) is a linear function of x, a linear regression suffices.

On the other hand, in the case of deep learning, since the function form is
versatile,4 we deal with a very wide class of functions without specifying the model.
And by the training of the machine, we gradually limit the model, that is, the
shape of the function. Therefore, machine learning and deep learning are the inverse
problems of the latter type among the above two meanings, and can be said to be
those which do not assume a model (function form) as its unknown function.

In this way, the nature of the inverse problem in the map (7.1) greatly depends
on which part is considered unknown. Learning is considered to be a kind of inverse
problems as described above. But when applying it to a physical system or exploring
an analogy with a physical system, one needs to be clear about what one is trying to
solve and which part is unknown.

The general properties of a problem called the “inverse problem” include the
following:

• Knowing objects that cannot be measured directly
• Infering the cause from the results
• Determining physical laws and governing equations
• Determining physical constants

An inverse problem is one of the above, requiring a way to solve it in the reverse
direction. Of these, things like “determining the laws of physics” are the most
important things in physics, and it is no exaggeration to say that all physics
innovations are inverse problems. Johannes Kepler discovered his third law of
planetary motion from Tycho Brahe’s precise planetary observation data. Max
Planck discovered the radiation formula. The underlying regularity in the data
sublimated to the law, which is the inverse problem. The importance of it is obvious.

Machine learning is a technique that has the potential to apply to all four of these
properties. Of course, the underlying mechanism, such as generalization, is not well
understood yet, but instead of relying solely on the physical sense of those called
“genius physicists,” machine learning provides a powerful and general method for
inverse problems.

4Refer to Chap. 3 for the universal approximation theorem.
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7.2 Regularization in Inverse Problems

Now, to look more closely at the relationship between machine learning and
inverse problems, consider the case of a linear function, instead of the nonlinear
function (7.1), where the nature of the inverse problem is clearer. As we will see
below, there are ways to solve inverse problems well for linear function problems.
Along the way, we introduce the important concept called regularization.

First, consider the following linear transformation:

yi =
m∑

k=1

Jikxk . (7.2)

Here, the input or the initial value is the vector xk . Let its dimension be m. If the
dimension of the output yi is n, J is a matrix of the size n×m.

In this linear equation (7.2), consider the usual (the first one in the above sense)
inverse problem of finding xk for a given yi . In the case of a square matrix n = m,
the story is simple. If the inverse matrix J−1 of the matrix J is obtained, then xk is
obtained as follows:

xk =
m∑

i=1

[
J−1

]

ki
yi . (7.3)

While this inverse problem seems to work, there are actually two difficulties that
can arise:

• First, when the determinant of the matrix J is very close to zero numerically, the
difficulty is that xk changes significantly even for slightly different values of yi .

• Second, if the number of data yi is not enough, it is difficult to determine xk even
if there is an inverse matrix. This can be considered equivalent to the case n < m.

These issues are related in terms of data errors. When data is actually handled,
it always comes with fluctuations and errors of the measurements. Taking these
factors into account, solving the inverse problem can have such difficulties, even for
a simple linear problem.

Generally, well-posed problems defined by J. S. Hadamard refers to a problem
that satisfies the following three properties:

(1) Existence of a solution
(2) Uniqueness of the solution
(3) Stability of the solution (the solution changes infinitesimally when the initial

condition changes infinitesimally)

Problems where any of these are not met are called ill-posed problems. The inverse
problem which we described as the first example in the above is an ill-posed
problem.
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In many cases, although the forward problem satisfies the well-posedness, the
inverse problem is ill-posed. A typical example is the process of the many-body
system evolving to a macroscopic equilibrium. In a normal physical system in which
relaxation to an equilibrium state occurs, such as a thermal diffusion system, in order
to obtain the initial state before time evolution from the state after time evolution, a
very small fluctuation of the output value (from a perfect equilibrium state) must be
measured. In other words, relaxed systems generally do not have the stability (3).

How can we deal with ill-posed problems? For example, when n > m in the
equation system (7.2), it is an overdetermined system, and solutions cannot be
determined in that form. To obtain a “close solution” xi in such a situation, consider
the following. First, rewrite (7.2) to the equivalent equation:

L ≡
n∑

i=1

(
yi −

m∑

k=1

Jikxk

)2

= 0 . (7.4)

There is generally no solution for this equation, but instead of finding a solution, we
seek an xk that minimizes L. This is exactly the least squares method.

Tikhonov’s regularization method is a general method to treat ill-posed
problems. Let’s consider the case where the number of conditions is not enough
(n < m), instead of the overdetermined system. There are countless solutions xk

that satisfy Eq. (7.2), but a solution is required that has the properties one wants.
This “property” depends on the physical background of the problem. For example,
one may require a physical property that xk’s should better to have the same order
of magnitude, or that there should not be much difference between them. To add
the condition that any of the xk’s should not be much bigger than the other, add a
regularization term to the L and find the xk so that the following L′ is minimized:

L′ ≡ L+ α

m∑

k=1

(xk)
2 . (7.5)

Then, from the myriad of solutions, one can get the solution with the properties
one wants.5 In an ill-posed problem, adding a regularization term and changing the
problem to a well-posed one in this way is called Tikhonov’s regularization method.
The regularization term to be added may be the L2 norm as described above or the
L1 norm.6 If a condition of no rattling is necessary, the following regularization

5The coefficient α is called a regularization parameter, and from the learning point of view it is
called a hyperparameter. Choosing hyperparameters generally depends on what solution one wants
and how to make learning more efficient, and it also prevents machines from over-training. A
method to determine the hyperparameter α from the guideline that the nature of the solution (for
example, the size of |x| in the case of (7.4)) is about the same as the size of the input/output error,
is called Morozov’s discrepancy principle.
6These cases are called sparse modeling, and applied to physical systems [102].
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term may be added:

	L ≡ α

m−1∑

k=1

(xk − xk+1)
2 . (7.6)

One way to find a solution that minimizes (7.5) is the singular value decomposi-
tion (SVD). Decompose the matrix J as follows:

Jik =
P∑

p=1

μpu
(p)

i v
(p)

k . (7.7)

Here the vector u and v are orthogonal bases satisfying

n∑

i=1

u
(p)
i u

(q)
i = δp,q ,

m∑

i=1

v
(p)
k v

(q)
k = δp,q . (7.8)

P can be taken to satisfy n ≥ P , m ≥ P . Such (7.7) is called the singular value
decomposition of J . Using this singular value decomposition, the solution xk that
minimizes (7.5) is known to be constructed as follows:

xk =
n∑

i=1

A(α)kiyi , (7.9)

A(α)ki ≡
P∑

p=1

μp

(μp)2 + α
u

(p)
i v

(p)
k . (7.10)

The matrix A(α) is a generalization of the inverse matrix, and is called the Moore–
Penrose inverse matrix, especially when α = 0.

Thus, in the case of linear transformation, even if the inverse problem is ill-posed,
there is a general solution using regularization. However, in the case of machine
learning, the number of parameters and the amount of data are enormous, so it is
a large-scale underdetermined system or a overdetermined system, and since the
function is nonlinear, there is no analytic solution. Therefore, one has to search for a
solution by numerical calculation that incorporates various regularization methods.

7.3 Inverse Problems and Physical Machine Learning

As described so far, there are two types of inverse problems: boundary value
problems and system decision problems. All of these are issues that frequently
appear in physics and are important scenes in actual research.
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The boundary value problem does not work well when there is a stability
problem, among the ill-posedness according to Hadamard. As one of such examples,
we described the thermal diffusion equation. More generally, the inverse problem
of chaotic systems has stability problems. A chaotic system is a deterministic
dynamical system with bounded orbits and a small difference in initial conditions
shows an exponential increase. In other words, it is a system that “gets messed up
over time and does not remember the initial state.” Given the final state, one will not
be able to go back in time to build the initial state.

Nevertheless, the research of chaos is progressing in various ways. The reason
is that there are research perspectives regarding what kind of decision equation
of time evolution can produce chaos, and what is the source. For example, there
is a proof that chaos does not occur if the number of degrees of freedom is too
small: the Poincaré–Bendixson theorem. Therefore, even if the boundary value
inverse problem is ill-posed, the target of research could be fertile, putting the actual
problem of solvability aside.

For example, there are many studies that show that chaotic attractors are related
to the mechanism of memory in the brain, so research related to neural networks can
be expected in the future. In addition, the Lyapunov exponent, which characterizes
the strength of chaos (the Lyapunov exponent λ measures the extent to which
the difference exponentially amplifies as eλt ), gives a quantitative idea of how ill-
posed the inverse problem is. The Lyapunov exponent of quantum systems is being
studied in relation to the AdS/CFT correspondence in string theory and quantum
information theory, and further development about the relationship with machine
learning is expected.

On the other hand, the inverse problem which is categorized as the system
determination problem is exactly where machine learning is applied. A system
determination problem that has been studied for a long time is a potential determi-
nation problem in quantum mechanics. Here we describe one example of the inverse
problem in quantum mechanics.

The quantum mechanics of a one-body system is defined by a Hamiltonian H .
Given the initial state wave function, the final state wave function can be obtained
by the time evolution operator e−iH t with the Hamiltonian H . This is a forward
problem. The inverse problem as a system determination problem is the case when
the Hamiltonian H is unknown. What we should regard as known is important to
solve this problem. As an example, let us describe one of the well-studied methods,
the inverse scattering method. In the inverse scattering method, when the unknown
part of the Hamiltonian is the potential V (x) and the potential is asymptotically flat,
the potential is determined from information such as scattering amplitudes. Suppose
a one-dimensional non-relativistic quantum mechanics is given by an unknown
potential V (x). Suppose also that we measured the S matrix that tells us how
much of a plane wave coming from the spatial infinity is transmitted and reflected.
In addition, suppose we know how the wave function bound to potential V (x)

approaches zero near infinity. A method for reconstructing the potential V (x) from
this information is the inverse scattering method. In the inverse scattering method,
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the potential function V (x) can be constructed by solving a certain integral equation
from these data.7

In the inverse scattering method, an unknown potential, or Hamiltonian, was
constructed from asymptotic data on scattering and bound states. Then, what about
a system that has only bound states? In this case, the Hamiltonian eigenvalues will
be the known data. Can we reconstruct the Hamiltonian from energy eigenvalues?
There has been a wide variety of such motivated studies for many years. For
example, when exploring superconducting materials, the interaction Hamiltonian
that can produce a superconducting state even at high temperatures is being sought.
In a broad sense, drug discovery is the same type of problem. As can be seen
from these motivations, we need to model the Hamiltonian to some extent and
determine its coefficients from the data. Recent advances in machine learning
research have shown that machine learning has great potential for determining
models and determining coefficients.

The holographic principle in string theory (AdS/CFT correspondence), which
will be described as an example in Chap. 12, is also an inverse problem as a system
determination problem. It can also be a boundary value problem in the sense of
determining gravity theory, the inside (bulk), from the quantum field theory “living”
on the boundary. In the following chapters, we will also introduce how to view the
neural network itself as the time axis of the time evolution of dynamical systems,
and how to view it as an emergent space in the AdS/CFT correspondence.

A closer look at the relationship between deep learning and physics may reveal
solutions to the “bottleneck” of inverse problems in various physics problems. For-
mulating the inverse problem is essentially the way of discovering the fundamentals
of science. So it is natural to expect that the discovery of new laws will come from
revealing the relationship between machine learning and physics.

Column: Sparse Modeling

In this column, let us take a look at a technique called sparse modeling. Sparse
modeling is a research field of image sensing such as the one for medical purposes8

and has been used for nearly 20 years. Some readers may have heard that recently it
was used for the “method that captures the shadow of a black hole” [103]. By using
this method, one can extract beautiful images from noisy data.9

We take a closer look at Tikhonov’s regularization method described in this
chapter. Generally, an equation system in which the number of unknowns is larger
than the number of equations is called an underdetermined system. Consider the

7It is known that V (x) cannot be constructed only with an S matrix.
8For example, it is used for improving MRI (magnetic resonance imaging) with higher resolution.
9In the case of the observation that captured the “shape” of a black hole (called “black hole
shadow”), the Fourier components were the observed value and the image data was the output.
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following equation:

Ax = y . (7.11)

Here, A is an n×m matrix, x is an mdimensional vector, and y is an ndimensional
vector. The problem is to find the unknown vector x under the given A and y. As
shown in this chapter, the equation system (7.11) is rewritten as a minimization
problem10

min
x
{|Ax − y|22} (for given y). (7.12)

Here the L2-norm |v|2 is defined as |v|2 =
√

x2
1 + x2

2 + x2
3 + · · · for the vector v.

Unfortunately, in general, if the number of unknowns is greater than the number
of independent equations (which is roughly the amount of the given information),
that is, if m > n, the system cannot be solved. Such a system is called an
underdetermined system. There is not enough information to solve it. The technique
described in this chapter is to find

min
x
{|Ax − y|22 − λ|x|2} (for given y and λ) (7.13)

Then you can obtain a plausible solution x. This is called a ridge regression. In this
manner the Moore–Penrose inverse was given.

Let us proceed along this direction. For example, let us say that A is sparse and
the dimensionality is low, effectively. In this case, the solution x will have many
vanishing elements. Therefore, consider the following minimization problem:

min
x
{|Ax − y|22 − λ|x|0} (for given y and λ). (7.14)

Here |v|0 is the number of vanishing elements of the vector v. Thanks to this
regularization term, it can still be solved, and a plausible answer can be obtained.
And also, this method is effective in the sense that unnecessary zeros are discarded.
On the other hand, in order to solve this problem, it is necessary to solve all
x elements while checking whether they are 0, which causes a combinatorial
explosion and is not practical.

Then, what about using the L1-norm that is halfway between the L2-norm and
the L0-norm?

min
x
{|Ax − y|22 − λ|x|1} (for given y and λ). (7.15)

10This rewriting is based on the conjugate gradient method [104].
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Here, |v|1 is the sum of the absolute values of the components, |v|1 = |v1| + |v2| +
· · · for the vector v. This is a regression called LASSO (least absolute shrinkage and
selection operator). This regression is known to have no computational difficulties
and to have better properties than the ridge regression.

The problem of solving simultaneous equations can occur in various situations,
and one example is when two quantities are related by an integral transformation.
This is indeed the case for image sensing and black hole shadows. In the context
of physics, the energy spectrum ρ(ω) and the Green’s function G(τ) are typically
related by the following equation: the Fourier transform,

G(τ) =
∫

dωK(τ, ω)ρ(ω). (7.16)

Discretizing time τ and energy ω and considering the integral as Riemann sum, this
can be regarded as the following equation of a vector G, ρ and a matrix K:

G = Kρ . (7.17)

We want to know ρ(ω) from G(τ). In actual calculations, as for the Green function
G(τ) only about 10 points are known, while as its energy spectrum ρ, we want to
obtain more than 1000 points, for example. So, this is an underdetermined system,11

and you can use LASSO, which we described above.12 For more details, we suggest
that readers look at [105].

11In the case of black hole shadows in the EHT (event horizon telescope) project, we know peaks
at several values of energy as data, while we want an image that is the inverse Fourier transform.
Thus essentially this is the same as the above.
12For Green’s function, it is necessary to perform a singular value decomposition and move to a
base where essential data is easy to see.



Chapter 8
Detection of Phase Transition by
Machines

Abstract As an approach to the important question of whether machines can
learn the discovery of physics, this chapter examines the question “Can phase
transitions be found by deep learning?”. Understanding phases is one of the most
important subjects in physics. Can machine learning really discover the thermal
phase transition in the basic physical system: Ising model?

In this chapter, we explain how to detect a phase transition in the Ising model by
machine learning. After a brief review of the phase transitions, we will explain phase
transition detection using neural networks.

8.1 What is Phase Transition?

Let us review the phase transition of the Ising model, which will be used in this
chapter as a target physical system. First, consider a spin variable si in the total
volume V , and consider the expectation value of the spatial average of the spin
variables M[s] = 1

V

∑
i si in the canonical ensemble, that is, the (spontaneous)

magnetization. That is given by

〈M〉 = 1

Z

∑

{s}
e−βH [s]M[s] . (8.1)

On the right–hand side, the spin variable s is regarded as a random variable, and the
magnetization is defined as the spatial average M[s] of the spin variable under the
probability distribution 1

Z
e−βH [s].

If the Hamiltonian has a spin inversion symmetry H [s] = H [−s], the
magnetization 〈M〉 always vanishes. This can be shown in the following way. We
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write down the definition of magnetization and massage it as follows:

〈M〉 = 1

Z

∑

{s}
e−βH [s]M[s] (8.2)

= 1

Z

∑

{−s}
e−βH [−s]M[−s] (8.3)

= 1

Z

∑

{s}
e−βH [s]M[−s] (8.4)

= − 1

Z

∑

{s}
e−βH [s]M[s] (8.5)

= −〈M〉 . (8.6)

So we get the equation 〈M〉 = − 〈M〉, but the only solution is 〈M〉 = 0. In the
course of obtaining the equation, we used that the state sum variable s is a dummy
variable, and that H is symmetric about the flip of s. Also, by definition, M[−s] =
−M[s]. In the case of Hamiltonians where the spins are aligned and they prefer to
be parallel to each other, we can expect spontaneous magnetization to appear, but
what made this calculation wrong? In fact, the state sum

∑
{s} is an infinite sum, so

you have to be careful about it. In other words, since the order of the sums cannot
be changed arbitrarily, the calculation given above is not always correct: even if H

is symmetric with respect to the flip of the sign of s, it could lead to 〈M〉 �= 0.1

More specifically, in the Ising model in two or more dimensions, it is known
that 〈M〉 �= 0 at low temperature while 〈M〉 = 0 at temperature higher than a
certain value. The temperature region where 〈M〉 = 0 is called the paramagnetic or
disordered phase, and the region where 〈M〉 �= 0 is called the ferromagnetic phase
or the ordered phase. The temperature at which the phases switch is called the
phase transition temperature, and the phase change is called the phase transition.

1In order for this to happen, the limit V → ∞ (the thermodynamic limit, or the large number
limit of the degrees of freedom) is mathematically necessary. In physics, a sufficiently large
V can actually be realized. For example, in the Ising model, consider the ground state with
all spins pointing up and that with all spins pointing down. A transition between these two
states is possible in a finite volume because it has a finite transition probability. Therefore,
if the large number limit is not taken, the spin average (the spontaneous magnetization) must
be always zero. However, if the transition probability between the states is sufficiently smaller
than exp(−1/lifetime of the universe), it means that there is no practical problem in assuming
no transition. Although the volume of a real material is finite, the number of atoms is about
the Avogadro number, and in practice, the infinite limit is a good approximation (which is an
idealization). To describe the phase transition theoretically using statistical mechanics, one needs
to calculate limB→0 limV→∞ 〈M〉 while keeping the order of the limits, and to find the limit of
〈M〉 as a function of temperature, where B is the external field that breaks the symmetry (in this
case, the magnetic field along the z axis).
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The magnetization M that appears here is called an order parameter, which
characterizes the phase transition.

The phase transition phenomenon is not only widely observed in materials such
as the magnetization transition and the gas–liquid phase transition of water, but also
in the field of elementary particle physics. For example, a vacuum phase transition
that changes the nature of the vacuum itself is related to the existence of mass, and
it is an important research subject.

Phase transitions are described by finding the symmetry that characterizes the
phase and defining the order parameter associated with the symmetry. And typically,
the order parameter is derived from a derivative of the free energy. Except for a few
models such as the two-dimensional Ising model, the phase transition temperature
has not been determined analytically, but can only be determined using numerical
calculations. It is also known that the phase transition of topological materials
does not have a local order parameter, making it difficult to characterize the phase
transition. In such a situation, it is a natural idea to find a phase transition using a
neural network. The following describes a study to directly find a phase transition
using a neural network.

8.2 Detecting Phase Transition by a Neural Network

When using a neural network for supervised learning, the neural network can do the
following:

• When a lot of data (x, d) = (input, answer) are given, it can guess what is the
result d ′ for a new input value x ′.

To predict unknown phenomena, a lot of training data must be prepared. Fortunately,
in the research in computational physics, a huge amount of data is available
through numerical calculations. Particularly in the field of computational physics
using the Monte Carlo method, data can be generated almost infinitely (as long as
computational resources allow), so the situation is suitable for machine learning.

For example, consider a model with some phase transition in statistical mechan-
ics, and generate its spin configurations by the Monte Carlo method. Can machine
learning determine which phase each spin configuration belongs to? The two-
dimensional Ising model is the simplest of the models that have a phase transition at
finite temperature, and the question of whether a neural network can distinguish the
phase transition of the Ising model is positively answered in the literature [106].2

2Principal component analysis was used to detect a phase transition [107].
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First, the training data can be generated relatively easily by using the Metropolis
method. Consider a spin on a two-dimensional square lattice. The Hamiltonian H is

H [s] = −
∑

i,j

si,j (si+1,j + si,j+1) . (8.7)

Here, the exchange interaction constant is taken as −1, which represents the
ferromagnetism. This model is known to undergo a paramagnetic / ferromagnetic
phase transition around T = 2.27, as mentioned in the column of Chap. 5 (see
[74, 75]).

Let us move on to the phase transition detection using neural networks. The
spin configuration that serves as the training data is generated by the following
procedure:

1. Select a temperature value T .
2. Sample spin configuration s at the temperature T generated by the Metropolis

method.
3. If T < 2.27, set d = 0. If T > 2.27, set d = 1.
4. Add (s, d) to the training data.

If this step is repeated in the range T ∈ [Tlow, Thigh] which includes the phase
transition temperature T = 2.27, it is possible to generate a training data for a neural
network to determine whether a given spin configuration s is in the ordered phase
T < 2.27 or the disordered phase (T > 2.27). In other words, a neural network is
designed and trained as a “phase discriminator.”

Interesting applications are possible using the neural network trained with this
data. Instead of the square lattice Ising model defined by the previous H , it is known
that the triangular lattice Ising model

H3[s] = −
∑

i,j

si,j (si+1,j + si,j+1 + si+1,j+1) (8.8)

has a similar phase structure. The phase transition temperature is not T = 2.27, but
T = 3.64. In fact, a neural network trained using H can detect the phase transition
of H3 (Fig. 8.1). We can see that the output of the neural network jumps from 0 to 1
around T = 3.64. If this fact holds for other models, we have a new way to detect
phase transitions.

The idea of this “phase discriminator” is certainly interesting, but it has its
weaknesses when actually discovering unknown phase transitions. The point is that
when generating the training data, at least the phase transition point of a similar
model must be known. In other words, all of the phase transition detection cannot be
covered by the neural network, and it is necessary to know the phase transition point
theoretically for a model. This means that the usage is limited. The following simple
question comes to mind: can we automatically detect even the phase transition point
itself in a single model — in the present case the transition temperature T = 2.27?
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Fig. 8.1 The output of the
neural network for each
temperature when the
configuration of the triangular
lattice Ising model H3 is put
as an input data, after the
training with the square
lattice Ising model H . (This
figure is taken from the paper
[106])

So let us change our point of view and consider creating a “thermometer” instead
of the “phase detector” [108]. In the above-mentioned binary classification, the
whole was divided into two classes depending on whether T was 2.27 or less. But
this time, without using such prior knowledge of the phase transition temperature,
we simply split the whole to N classes. More specifically, the training data is made
in the range [Tlow, Thigh] that includes the phase transition temperature T = 2.27,
and is classified into N sections: Class 1, Class 2, . . . , Class N , depending on the
temperature. The error function is chosen to be the softmax entropy.

We visualize the weight J that connects the final layer and the penultimate layer
A of the trained neural network. We plot the weights as a pixel image representing
the matrix elements of the trained weights J . The horizontal axis is the node of the
last layer (the discretized class of the temperature), and the vertical axis is the label
m of the components of the layer A. Then, we find that there exists a sudden change
in the matrix components near the phase transition temperature (Fig. 8.2). The paper
[108] proposed a method for estimating specific phase boundary values from this
heat map. As a result, one finds the value of the temperature which is close to
T = 2.27 (the inverse temperature is β = 0.44 · · · ). Details are given in the original
paper, while the results are shown in Table 8.1, and the transition temperature
has certainly been detected. This method is interesting because it suggests the
possibility of discovering the phase transition phenomenon without knowing the
physical properties of the system in advance.

8.3 What the Neural Network Sees

It is also possible to make theoretical considerations as to why this technique can
detect phase transition phenomena. Here, we will explain it, based on [109]. First,
let us set the number of units in the middle layer to 3 in the following network
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Fig. 8.2 Heat map of weight J adjacent to the final layer of the neural network after the training.
(Excerpt from [108])

Table 8.1 The top three rows show the phase transition temperature values detected by the neural
network. The values of their inverse temperature β are given. The limit L → ∞ corresponds to
an infinite volume, where the exact inverse temperature of the phase transition is known: βExact

c =
1
2 log(

√
2 + 1). “CNN” is a convolutional neural network, and “FC” is a fully connected neural

network

System size βc CNN βc FC

8×8 0.478915 0.462494

16×16 0.448562 0.433915

32×32 0.451887 0.415596

L →∞ βExact
c ∼ 0.440686

of (8.9) that repeats linear and nonlinear transformations twice:

fθ,ϕ(x) = σ (θz) , z = σ (ϕs) . (8.9)

Here s is a vector-like arrangement of the spin configuration s. The activation
function σ used is a softmax function, and its definition is

[σ (z)]I = ezI

∑
J ezJ

. (8.10)
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Fig. 8.3 Left: θ∗ for the case that the intermediate layer has 3 units. Right: Correlation between
each component of u and the magnetization. (Excerpt from [109])

The output is normalized and so can be regarded as a probability. θ and ϕ are the
parameters to be trained (weights). The results of the numerical experiments are
shown on the left of Fig. 8.3. Looking at the θ∗ obtained in this case, we can see that
the phase transition is again detected.

By the way, what kind of information is hidden in the following intermediate
three-dimensional vector?

u =
⎛

⎝
ured

ugreen

ublue

⎞

⎠ = ϕ∗x . (8.11)

The vector components are plotted for various spin configurations (the magnetiza-
tion 〈M〉 on the horizontal axis and u on the vertical axis). See the right panel of
Fig. 8.3. As you can see, there exists a clear correlation, so we can conclude that the
order parameter of the phase transition has been learned at the middle layer.

Once you deepen the network, you can actually confirm that even the information
about the internal energy is directly embedded. This suggests a theoretical connec-
tion between neural networks and statistical systems. Interested readers should refer
to the paper [109], and a related reference [110].



Chapter 9
Dynamical Systems and Neural Networks

Abstract Neural networks are a way of expressing a variety of nonlinear functions,
but can also be thought of as waves of information propagating between layers. In
this chapter, we show that such multi-layer propagation can be interpreted as the
time evolution of dynamical systems, and hence of Hamiltonian systems, and look
at the close relationship between the fundamental concept of “time evolution” in
physics and deep neural networks.

If a variety of physical systems can be represented using neural networks, it will
greatly open the possibility of applying the systems to machine learning for analysis.
In physics, differential equations are the basic equations due to the concept of
locality and causality, so it is necessary to find out what differential equations
allow the representation of neural networks. In machine learning, there are so many
types of neural networks, and a new network structure is proposed mainly from the
viewpoint of improving learning efficiency, so the correspondence to differential
equations is not clear. In other words, the network obtained by discretizing the
differential equation has a different intention from the neural network for machine
learning and deep learning.

In this chapter, we review the relationship between differential equations and
neural networks, and discuss, in particular, Hamiltonian dynamical systems, and
which Hamiltonians allow the structure of a typical neural network.

9.1 Differential Equations and Neural Networks

First, let us define what we call “a typical neural network” in this chapter. Consider
a neural network given in Fig. 9.1. The layers are arranged from left to right, and
each layer has a vector xi of the same dimension (the subscript i labels the elements
of the vector). Between layers, the linear transformation xi → Jij xj and the local
nonlinear transformation xi → σ(xi) by the activation function act in order. With
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Fig. 9.1 Typical deep neural network. The solid line represents the linear transformation mul-
tiplied by the matrix J , and the triple line represents the nonlinear transformation (activation
function)

this stacking, the final output of the neural network is written as

y(x(1)) = fiσ (J
(N−1)
ij σ (J

(N−2)
jk · · ·σ(J

(1)
lm x(1)

m ))) . (9.1)

To reiterate, learning means, by changing the network variables (fi , J
(n)
ij ) (n =

1, 2, · · · , N − 1), to minimize the following error function:

L ≡
∑

data

∣∣∣∣ y(x(1))− y

∣∣∣∣ +Lreg(J ) . (9.2)

Here the sum runs over the entire set of training data pairs {(x(1), y)}. The input data
x(1) is put to the first layer, and y is the correct output data that should be output
from the last layer. The additional term Lreg is called the regularization term and is
introduced to control learning.

Now let us look at the relationship between neural networks and differential
equations. In 2016, a deep neural network called ResNet (Residual Network,
residual neural network) was proposed [24]. It is known as an efficient network
where learning progresses even with a very large number of layers. In this method,
a detour is provided in the neural network, and the detour is joined without any
modification:

x
(n+1)
i = f (Jij x

(n)
j )+ x

(n)
i . (9.3)

The first term on the right-hand side is the typical neural network, but the second
term is a “skip connection,” the detour. By adding such terms, it has been found that
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Fig. 9.2 Conceptual diagram of the ResNet. The effect of adding x
(n)
i , represented by a dotted

line, is combined with the structure of the typical deep neural network represented in Fig. 9.1. The
box surrounding the “+” represents a linear transformation that adds the inputs

learning progresses even when the network goes deeper.1 It is thought that the reason
may be that error backpropagation proceeds efficiently. The conceptual diagram of
ResNet is shown in Fig. 9.2.

This ResNet can be interpreted as a discretized version of a differential equation
[112]. Let us consider an equation that determines the time evolution of a dynamical
system,

ẋi(t) = fi(xj (t)) . (9.5)

If we discretize the time coordinate, we find

xi(tn+1) = xi(tn)+ (	t)fi(xj (tn)) , tn+1 = tn +	t . (9.6)

The ResNet (9.3) has this form. That is, the deepened ResNet becomes a continuous
time evolution equation if an appropriate limit on the size of the activation function
(this size is equivalent to 	t and is regarded as a hyperparameter for learning) is
taken.2

Note that not all differential equations in dynamical systems can be written like
ResNet. If x has several components, that is, if there are more than one unit, you
cannot generally write the differential equation like the ResNet. In order to form a
neural network, the nonlinear term must be in the form of an activation function
of (9.3), that is, f (Jij xj ). Any fi(x(t)) that defines a dynamical system is not

1Even before the advent of ResNet, the possibility of a detour was considered. It is called a highway
network [111] and has the following form:

x(n+1) = T
(
J̃ x(n)

)
f
(
Jx(n)

)
+
(

1 − T
(
J̃ x(n)

))
x(n) . (9.4)

Here, T (J̃ x(n)), which is the variable parameter of the network, determines the ratio of the amount
to be sent to the detour. If T (J̃ x(n)) is a constant and T = 1/2, the ResNet (9.3) can be obtained.
2The continuous limit of deepening is discussed in [113] from the viewpoint of data assimilation.
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always in that form. We will look at these subtleties in more detail later in the case
of Hamiltonian dynamical systems.

Now, as a further generalization of ResNet, there is a neural network called
RevNet (reversible residual network) [114]. The RevNet is again a residual learning,
but has a symmetric form:

x
(n+1)
i = f (Jij y

(n)
j )+ x

(n)
i , (9.7)

y
(n+1)
i = g(Jij x

(n+1)
j )+ y

(n)
i . (9.8)

With the same analogy, it can be seen that this neural network is a discretized version
of the following dynamical system:

ẋ(t) = f (y(t)) , ẏ(t) = g(x(t)) . (9.9)

Reversible means that you can return to the input layer in order from the data output
value at the last layer. If you look closely at the right-hand side of (9.8), you find
x

(n+1)
j instead of x

(n)
j . With this, if output data (y

(n+1)
i , x

(n+1)
i ) is given, first y

(n)
i

is obtained through (9.8), then (9.7) returns x
(n)
i , and so on. Being able to return is

actually related to the amount of memory used for learning. In the normal neural
network backpropagation method, the values of the weight at each layer must be
stored in memory. However, in the case of a reversible neural network, the values of
the weight at each layer can be recalculated from the data of the last layer, so there
is no need to store the weight in memory, and efficient learning concerning memory
consumption is provided.

Furthermore, being reversible is deeply related to differential equations in
dynamical systems. In dynamical systems, a characteristic behavior called chaos is
one of the important research subjects. Chaos is the sensitivity to the initial values.
In terms of neural networks, the output value changes completely even if the initial
input data is slightly perturbed. A neural network obtained by a discretization of
a chaotic dynamical system is susceptible to perturbation of the input data, that
is, learning is considered to be difficult. A neural network based on a dynamical
system without chaos is called a “stable neural network” [115]. On the other hand,
in a reversible neural network, a similar problem can occur if there is chaotic
behavior when considering propagation in the reverse direction. In this case, rather,
it corresponds to the situation where the initial value difference completely collapses
before reaching the final layer (the output data does not change due to the difference
in the input data). It is related to the existence of an attractor. The degree of chaos
in a dynamical system is measured by a constant called the Lyapunov exponent.
The system is chaotic when it is positive, while the system is “collapsing” when it is
negative. Dynamical systems in which the Lyapunov exponent has no real part are
appropriate for reversible neural networks [116].
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In addition, there are neural networks created by imitating Hamilton equations3

and also those that are made from second-order differential equations instead of the
first order. In this way, the skip connection that appeared to deepen and efficiently
train neural networks has a convenient form to interpret the neural network as a
discretized version of differential equations.4

9.2 Representation of Hamiltonian Dynamical System

It is difficult to represent the time evolution of any Hamiltonian dynamical system
by a neural network. However, for a limited class of Hamiltonians, representation of
neural networks using local activation functions can be easily obtained. Let us look
at this.5

When a Hamiltonian H(p, q) is given, the time evolution of the system is
determined by the following Hamilton equation:

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
. (9.12)

Here, for simplicity, we consider a one-dimensional system, that is, one p(t) and
one q(t), but generalization to a multidimensional system is easy.6

First, let us try the simplest interpretation. It takes the dimension of the vector
of each layer of the neural network as 2, equates it with (q(t), p(t)). Then we
discretize the t direction, and regard it as the depth direction in which the layers are
stacking. This method unfortunately shows that only free Hamiltonians (namely,
Hamiltonians consisting only of second-order polynomials in p and q) allow a
neural network representation, as we will see below.

3For example, reference [115] gives a neural network that discretizes the following differential
equation based on the Hamiltonian dynamical system:

ẏ(t) = σ(k(t)z(t)+ b(t)) , (9.10)

ż(t) = −σ(k(t)y(t) + b(t)) . (9.11)

Here, k(t) and b(t) are parts corresponding to weight and bias, and σ is an activation function. As
you can see from the minus sign in front of the right-hand side of the second equation, this is a
neural network-like differential equation inspired by the Hamilton equation. (However, if you look
carefully, this differential equation is not derived from any Hamiltonian.)
4Also, the method of using the ordinary differential equation itself as a neural network has been
studied [117].
5The result of this section is based on [118].
6Identification of Hamiltonian dynamical systems with neural networks in other ways can be found,
for example, in the literature [119]. Chapter 12 introduces the neural network representation of
nonlinear ordinary differential equations in string theory applications.
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Fig. 9.3 Left: A simple network that considers canonical variables as units of a neural network
and views the transformation between layers as discrete time translation. Right: Neural network
extended to represent more general Hamiltonian dynamical systems

A neural network that identifies the discrete-time translation t → t + 	t with
the transformation between layers can be written as

q(t +	t) = σ1(J11q(t)+ J12p(t)) ,

p(t +	t) = σ2(J21q(t)+ J22p(t)) .

(9.13)

That is, the linear transformation J and the nonlinear local transformation σ are
performed successively. Here, “local” means that the argument of σ1 is only the
value of the first unit, and the argument of σ2 is only the value of the second unit.
This network is shown in Fig. 9.3 left. Here, the units x

(n)
1 and x

(n)
2 are directly

identified with q(t) and p(t). The time t is discretized, and the interval is 	t; this is
expressed as t = n	t .

Then, can the Hamilton equation (9.12) be written as a neural network (9.13)?
First, in order for (9.13) to be interpreted as a discretized version of the differential
equation in continuous time, (9.13) must have a consistent limit 	t → 0. The
following conditions are required for the weight J and the activation function σ :

J11 = 1 + O(	t) , J22 = 1 + O(	t) , (9.14)

J12 = O(	t) , J21 = O(	t) , (9.15)

σ(x) = x + O(	t) . (9.16)

To satisfy these, let us assume the following:

Jij = δij + wij	t , σi(x) = x + gi(x)	t . (9.17)

Here wij (i, j = 1, 2) is the weight (constant parameters) and gi(x) (i = 1, 2) is
a nonlinear function. Substituting these into (9.13) and taking the limit of 	t → 0
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yields the following formula:

q̇ = w11q +w12p + g1(q) , (9.18)

ṗ = w21q +w22p + g2(p) . (9.19)

In order for them to be Hamilton equations (9.12), their right-hand sides must satisfy
the symplectic relation:

∂

∂q
(w11q +w12p + g1(q))+ ∂

∂p
(w21q +w22p + g2(p)) = 0 . (9.20)

However, this equation does not allow any nonlinear gi(x). Therefore, simply
equating the unit vector with (p, q) yields only a linear Hamilton equation.

So, let us use some ingenuity. We extend the relationship between units and
canonical variables, and also extend the relationship between time evolution and
transformation between layers. We shall assume the following relationship:

xi(t +	t) = J̃ij σj (Jjkxk(t)) . (9.21)

This differs from (9.13) in two ways: First, x1 = q and x2 = p are the
same as before, but we add x0 and x3, and set i, j, k = 0, 1, 2, 3. Second, it
introduces J̃ . This second point does not change the neural network. We simply
split J between the layers into two linear transformations and rewrote the first
linear transformation as a transformation working at the previous layer. Thus, the
following combination, the linear translation J → nonlinear local transformation σ

→ the linear transformation J̃ , is regarded as a 	t time translation.
In the neural network expanded like this, we choose sparse weights and local

activation functions as follows:

J =

⎛
⎜⎜⎝

0 0 v 0
0 1 +w11	t w12	t 0
0 w21	t 1 +w22	t 0
0 u 0 0

⎞
⎟⎟⎠ , J̃ =

⎛
⎜⎜⎝

0 0 0 0
λ1 1 0 0
0 0 1 λ2

0 0 0 0

⎞
⎟⎟⎠ , (9.22)

⎛

⎜⎜⎝

σ0(x0)

σ1(x1)

σ2(x2)

σ3(x3)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

f (x0)	t

1
1

g(x3)	t

⎞

⎟⎟⎠ . (9.23)

Here (u, v,wij ) (i, j = 1, 2) is a weight constant. The conceptual picture of this
neural network is shown in the right panel of Fig. 9.3.
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Using this definition of time translation, the transformation between layers is

q̇ = w11q +w12p + λ1f (vp) , (9.24)

ṗ = w21q + w22p + λ2g(uq) . (9.25)

The condition of the symplectic structure of the Hamilton equation is

w11 +w22 = 0 (9.26)

which can be easily satisfied. The corresponding Hamiltonian is

H = w11pq + 1

2
w12p

2 − 1

2
w21q

2 + λ1

v
F(vp) − λ2

u
G(uq) , (9.27)

and we chose here

F ′(x0) = f (x0) , G′(x3) = g(x3) . (9.28)

This is a nonlinear Hamiltonian with a deep neural network representation.
As an example, if we choose

w11 = w21 = 0 , w12 = 1/m , λ1 = 0 , λ2 = 1 , u = 1 , (9.29)

the corresponding Hamiltonian is the Hamiltonian of a nonrelativistic particle
moving in an arbitrary potential:

H = 1

2m
p2 −G(q) . (9.30)

It is easy to see that if you devise F(p), you can also create a relativistic particle
Hamiltonian.

In order to construct, using a neural network, a general nonlinear Hamiltonian
in which both p and q are included as nonlinear functions, a network configuration
using a basis of linear combinations for the whole nonlinearity is required. Although
not described in detail here, various types of Hamiltonians can be built by
generalizing the network as described above.7

In this chapter, we have seen that the time evolution of differential equations and
Hamilton equations can be reconstructed as data propagation over neural networks.
By using the method introduced here, the time evolution of physical systems can be
directly applied to the deep learning scheme. The main issue of machine learning is
generalization and solving inverse problems. If the problem of time evolution of a

7Nonlinear Schrödinger equations can be constructed in a similar way.
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physical system is an inverse problem or is based on application to unknown data,
the method in this chapter may be effective.

In Chap. 12, we explain a solution by deep learning, taking an example where an
evolution problem of a physical system is an inverse problem. In other words, it is
a problem to determine the evolution equation itself, when the evolution equation
is unknown and the data before and after the evolution is given. Determining a
system of equations is the most essential part of physics, and using machine learning
techniques on such an aspect can sometimes help to analyze it effectively.



Chapter 10
Spinglass and Neural Networks

Abstract To begin with, neural networks are based on neural circuits formed by
neurons in human brains. One of the important mechanisms of the brain is memory.
The Hopfield model, which explains the mechanism of memory in terms of physics,
is a bridge between physics and neural networks. In this chapter, we explain the
Hopfield model and investigate the relationship between machine learning and spin
glass, which is still a rich subject in condensed matter physics.

The similarity between the neural network and the physical system cannot be
described without the Hopfield model [120]. This model explains the mechanism of
brain memory by a system in which many spins are coupled.1 Let us consider that
many particles with spins gather and there are various interactions among the spins.
There appear many metastable states at low energy, and they degenerate. Such a
system is called spinglass. It is called spinglass because glass can take many states
instead of atoms being lined up in order like a solid. Such a classical spinglass
system can be considered as a kind of a neural network.

Linking neural networks to our familiar physical systems is one of the subjects of
this book. It is interesting to see that the spinglass system, which plays a leading role
in statistical physics, is related to neural networks, and it is one major intersection
that links physics and machine learning. Hopfield has modeled human memory
(information storage) using some collective dynamics of spinglasses, as we will
see below. This gives the idea that long-term memory can be considered as an
attractor of dynamical systems. Historically, from this perspective, the chaos of
brains, that is, the understanding of the brain as a dynamical system, has evolved.
In this chapter, we will return to the idea of Hopfield and look at the relationship
between spinglasses and neural networks.

1S. Amari published a similar model ten years earlier [121], and the Hopfield’s model is also known
as the Amari–Hopfield model.
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10.1 Hopfield Model and Spinglass

Let us introduce the Hopfield model, a brain model of long-term memory and
association. The neural circuit is composed of the mutual connection of neural cells
(neurons). Neurons are connected at synapses, and neurons can have firing and non-
firing states. When one neuron is firing, signals are transmitted through the synapse
to the next neuron. The next neuron fires when the weighted sum of all incoming
electrical signals exceeds a certain threshold.

We model such a system as follows. In a system in which N neurons are
collected, the state of each neuron is {si} (i = 1, 2, · · · , N), and the firing state
of the i–th neuron is defined as si = 1 and the non-firing state as si = 0. Then, write
the synaptic strength between the i–th neuron and the j–th neuron as Jij . The rule
that determines that the input changes the state si to the state s′i is

si → s′i ≡ θ

⎛

⎝
∑

j

Jij sj − hi

⎞

⎠ . (10.1)

Here, hi is the threshold, and θ(x) is the step function:

θ(x) =
{

1 (x > 0) ,

0 (x ≤ 0) .
(10.2)

Therefore, when the weighted sum of input signals
∑

j Jij sj exceeds the threshold
hi , it fires: s′i = 1.

The rule of the Hopfield model (10.1) appears to be the same as those of the
neural networks with the inter-layer data propagation, as you look back at the neural
networks that have appeared so far, if you regard the step function as an activation
function. So how is the Hopfield model different from deep learning?

First, the deep neural network used for ordinary deep learning has a hierarchical
layer structure, and adopts a rule of successively propagating from the input layer to
the output layer. On the other hand, in the Hopfield model, one neuron is extracted
at random and only that neuron is updated with the rule (10.1). Then one repeats
the operation of taking out randomly again. This is based on the idea that updates in
the real brain are not perfectly synchronized in time. Therefore, the Hopfield model
does not have the framework of propagation through the layers.2

Related to this, the Hopfield model assumes the following:

Jij = Jji . (10.3)

2The Hopfield model is similar to the Boltzmann machine, and a Boltzmann machine that does not
allow intra-layer coupling is called a restricted Boltzmann machine (RBM). See Chap. 6.
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Unlike the connection of neurons in the brain, the connection between neurons is
assumed to be bidirectional. This emphasizes the similarity with spin systems.

Now, in order to see the relationship with the spinglass, redefine the degrees of
freedom as follows:

Si ≡ 2si − 1 . (10.4)

Then, Si = ±1 can be interpreted as up and down spins.3 Furthermore, suppose a
virtual (N + 1)–th spin which only takes SN+1 = +1. Then, the update rule (10.1)
is put together in the following concise form:

Si → S′i ≡ sgn

(
N+1∑

i=1

Jij Sj

)
. (10.5)

Here we have defined4

Ji,N+1 = JN+1,i ≡
N∑

j=1

Jij − 2hi . (10.6)

And, sgn(x) is a sign function defined as

sgn(x) =
{

1 (x > 0) ,

−1 (x ≤ 0) .
(10.7)

It is useful to remember that at x �= 0 it can be written as sgn(x) = x/|x|.
Now let us consider how the whole spin behaves when the rule (10.1) is applied.

In a spin system, we define the following fundamental function, which is the
potential energy (interaction energy between spins):

E ≡ −1

2

∑

i,j

Jij SiSj . (10.8)

One can show that this function is a Lyapunov function as follows. The Lyapunov
function is a function which changes monotonically under the evolution. It is used to
find the stability of the equilibrium point of a dynamical system, and can be thought

3In quantum spin systems, this binary system can be considered as spin 1/2, but here we consider
classical systems only.
4If the self-coupling JN+1,N+1 is taken sufficiently large positive, SN+1 = +1 will be retained in
the updates.
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of as physically equivalent to the energy of the system. The change in E under the
rule is

	E = −
∑

i,j

Jij Sj	Si . (10.9)

If 	Si = (+1) − (−1) = 2, then
∑

i,j Jij Sj > 0, so the contribution is 	E < 0.
If 	Si = (−1) − (+1) = −2, then

∑
i,j Jij Sj < 0, so again the contribution

is negative, namely 	E < 0. If 	Si = 0, the contribution has no effect on 	E.
Therefore, we can show

	E ≤ 0. (10.10)

That is, E is invariant or monotonically decreasing and satisfies the properties of
any Lyapunov function.

The meaning that the function E plays the role of energy should be understood in
the broad sense that the system proceeds in the direction of decreasing energy.5 In
this sense, the Hopfield model is similar to the potential energy part of many-body
spin systems. In fact, the Hopfield model was the historical origin of the Boltzmann
machine described in Chap. 6.

What is the spin configuration that minimizes or extremizes the potential
energy (10.9)? Considering a general Jij , we can see that a very large number
of configurations achieve a local minimum. Such a system is called a spinglass.
For example, if spins are arranged at equal intervals on a one-dimensional line,
and only adjacent spins have a bond of Ji,i+1 = J (> 0), the lowest energy
state realized is ferromagnetic, that is, Si = +1 for all i’s. In this case, there is
no degeneration. On the other hand, for example, considering only three spins, if
J12 = J13 = −J23 = J (> 0), the lowest energy state has six patterns, thus there
is a sixfold degeneracy. The three spins are in a state of three-way deadlock, and if
you try to lower any one of the interaction energies, some other will increase. The
system in which such a state is realized is called the system with “frustration.” If
you allow a general coupling as J whose value can be a positive or negative general
value, you will have a frustrated system.

In summary, in the Hopfield model, when the firing state of each neuron evolves
according to the rule (10.1), the state finally reaches various states which are quite
degenerate.

5Energy is conserved if it has a time-translation invariant Hamiltonian. In that sense, the Lyapunov
function is not equivalent to energy. However, for example, if the Hamiltonian system is in
contact with an external heatbath and the temperature of the heatbath is low, the energy drops
monotonically in time.
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10.2 Memory and Attractor

In the Hopfield model, “memory” refers to the set of spin values {Si = ai}. The
information of the memory is stored in a synapse Jij . Assume that the synapses
have the following values (α > 0), respectively, by a certain mechanism which we
explain later:

Jij = αaiaj . (10.11)

Then the memory {Si = ai} is a fixed point under the update rule (10.1):

S′i = sgn

⎛

⎝
∑

j

Jij aj

⎞

⎠ = sgn

⎛

⎝
∑

j

αaiajaj

⎞

⎠ = sgn (α(N + 1)ai) = ai .

(10.12)

Therefore, once the spin state falls into {Si = ai}, it will stay there.
Is this state stable? When the state changes a little from the fixed point by some

external perturbation, will it return to the original fixed point? Let us evaluate the
Lyapunov function (10.9),

E = −α

2

∑

ij

aiaiaj aj = −α

2
(N + 1)2 . (10.13)

This has a very large negative value. In fact, the value of O(N2) is the maximum
magnitude that the Lyapunov function can have, and the memory {Si = ai} is at the
bottom of a very deep valley, so is a stable fixed point. In other words, when starting
from an arbitrary firing state, the state is updated according to the rule (10.1), and
finally reaches a stable fixed point {Si = ai} and stops moving. Such a fixed point
is called an attractor, from the viewpoint of dynamical systems. Reaching the
attractor is interpreted as a mechanism of “recalling” memory.

For an important memory the Lyapunov function must fall into deeper valleys.
And in addition, there are many shallow valleys because of the frustration. Even if it
gets stuck in such a shallow valley, it is expected that various external perturbations
will finally lead to the deep valley.

Of course, there are many patterns to remember, not just a single pattern {Si =
ai}. So, let us consider a situation where you want to store M kinds of patterns
{Si = a

(m)
i } (m = 1, 2, · · · ,M). Then the appropriate coupling is

Jij = α

M

∑

m

a
(m)
i a

(m)
j . (10.14)

In particular, it is assumed that the patterns of memory are orthogonal to each other:

∑

i

a
(m)
i a

(n)
i = (N + 1)δm,n . (10.15)
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Then, as before, you can see that each memory {Si = a
(m)
i } is a fixed point under

the update rule (10.1),

S′i = sgn

⎛

⎝
∑

j

Jij a
(m)
j

⎞

⎠

= sgn

⎛

⎝
∑

n

∑

j

α

M
a

(n)
i a

(n)
j a

(m)
j

⎞

⎠

= sgn

(
α(N + 1)

M
a

(m)
i

)

= a
(m)
i . (10.16)

Here, the orthogonal condition of memory (10.15) was used. Also, we can evaluate
the Lyapunov function (10.9) about the memory {Si = a

(m)
i } as

E = − α

2M

∑

i,j

(
∑

n

a
(n)
i a

(n)
j

)
a

(m)
i a

(m)
j = − α

2M
(N + 1)2 . (10.17)

After all, each memory is at the bottom of a deep valley of O(N2).
If you start updating from any initial conditions, you are expected to eventually

reach a “near” deep valley. This can be interpreted as a mechanism whereby past
memories are awakened when a near phenomenon is perceived. Here, âĂIJnearâĂİ
specifically depends on the details of the structure of the Lyapunov function. Due to
the orthogonality condition of memory (10.15), it is expected that the “near” may
mean that the inner product with a pattern {Si = a

(m)
i } is large. This is because the

evaluation method of the Lyapunov function is the inner product, as in (10.17).
So far, we have seen that when the coupling Jij takes the value (10.11), a

deep valley is realized, which behaves as a stable fixed point. Then, how is the
value (10.11) itself realized? In supervised machine learning, neural networks
are trained by updating weights using the gradient descent method, while the
Hopfield model does not look at the correlation between an input and an output.
The realization of (10.11) is thought to be performed by a theory generally called
Hebbian learning theory. Hebb’s rule is a rule that synapses are strengthened when
both of the neurons they connect are firing, while they will attenuate when the
neurons did not fire. From this idea, for example, an equation like the following
is expected:

μ
d

dt
Jij (t) = −Jij (t)+ αaiaj . (10.18)
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The first term on the right-hand side is the attenuation term. The second term on
the right-hand side is a reinforcement term that depends on the state of both ends
connected by the synapse. When the memory pattern {Si = a

(m)
i } is input from

outside for a long period of time, J will be updated according to this kind of
equation. Since the equation is written to converge exponentially to (10.11), the
shape of the reinforcement term provides the appropriate weight.

10.3 Synchronization and Layering

Updating only randomly selected spins according to the rule (10.1) is not similar to
that of a multilayer deep neural network. However, modifying the Hopfield model
such that it updates all spins at the same time makes it possible to incorporate a
hierarchical structure.

Since we update the state of all spins at once, we shall label the number of steps
in that synchronized update as n:

Si(n) → Si(n+ 1) ≡ sgn

(
N+1∑

i=1

Jij Sj (n)

)
. (10.19)

Then, as a Lyapunov function, it is known that the following choice works well:

E(n) ≡ −1

2

∑

ij

Jij Si(n+ 1)Sj (n) . (10.20)

In fact, with a quantity that shows how E(n) changes with updates,

	E(n) ≡ E(n+ 1)− E(n) , (10.21)

we can show that it is always negative or zero, as follows. First, let us massage
	E(n):

	E(n) = −1

2

∑

ij

Jij (Si(n+ 2)− Si(n)) Sj (n+ 1)

= −1

2

∑

i

(Si(n+ 2)− Si(n))
∑

j

Jij Sj (n+ 1)

= −1

2

∑

i

(Si(n+ 2)− Si(n))
Si(n+ 2)

|∑j Jij Sj (n+ 1)| . (10.22)
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For the last line, we used sgn(x) = x/|x|. In this last line, using

(Si(n+ 2)− Si(n)) Si(n+ 2) = 0 or 2 , (10.23)

the following has been proven as expected:

	E(n) ≤ 0. (10.24)

In other words, E(n) is a Lyapunov function, and it is shown that E(n) evolves to a
smaller value by the updates of the system.

When Jij satisfies (10.11), it can be shown by the same logic as before that the
fixed point is {Si = ai}. At this fixed point, E(n) takes the value of O(N2), so it is
an attractor. The difference from the case without synchronization is that two types
of attractor behavior are allowed due to the difference of the Lyapunov function.
The first type is the same as the previous fixed point, but the second type can be

Si(n+ 2) = Si(n) . (10.25)

This condition yields 	E(n) = 0, which results in a stable orbit. In dynamical
systems, such a cycle is called a limit cycle. Therefore, we conclude that, in addition
to the usual fixed point, a limit cycle of period 2 is allowed as a stable trajectory.

Now, the synchronous Hopfield model can be rewritten as a hierarchical network.
In other words, by regarding the updated label n as a layer label, the Hopfield model
is copied by an arbitrary number of layers. If you prepare multiple attractors, it will
be a neural network for classification.

On the other hand, there are two major differences from ordinary deep neural
networks. First, Jij is symmetric with respect to the indices, and the same Ji,j is
shared in all the layers. In this sense, it can be called a sparse network. Second,
the way of training is completely different. These differences can be thought of as
differences in learning methods depending on the purpose.

The Hopfield model we saw in this chapter is a primitive model of a neural
network that has historically led to Boltzmann machines (see Chap. 6), and we
should recognize that the model is deeply related to typical properties of spinglass
systems. When discussing the relationship between physics and machine learning,
it is important not only to know what you want to train, but also to physically
interpret the neural network itself. In condensed matter physics that deals with
manybody systems in physics, spin models are fundamental, and various spin
models dominate intriguing physical phenomena and phase diagrams. From this
point of view, the Hopfield model similar to a spinglass can be a starting point in the
future development of physics and machine learning.



Chapter 11
Quantum Manybody Systems, Tensor
Networks and Neural Networks

Abstract In condensed matter physics, finding the wave function of a quantum
many-body system is the most important issue. Theoretical development in recent
years includes a wave function approximation using a tensor network. At first
glance, the tensor network looks very similar to neural network diagrams, but how
are they actually related? In this chapter we will see the relation and the mapping,
and that the restricted Boltzmann machine is closely related to tensor networks.

Microscopically, physics is a quantum system, and all isolated quantum systems are
governed by wave functions. For example, for simplicity, let us consider a situation
with zero temperature. Given a Hamiltonian of a system, the quantum phase is
determined by its lowest energy state (the ground state). To obtain a concrete wave
function is one of the most important ways to characterize quantum systems.

Hilbert space, which builds states of quantum many-body systems, suffers
from enormous combinatorial possibilities. For example, consider a system with N

qubits. A qubit is a system with two states, |0〉 and |1〉, and is quantum mechanically
the same as a system with a spin h̄/2. In this case, the Hilbert space has 2N

dimensions, so the number of states increases exponentially with the number of
degrees of freedom. Since the problem of finding the ground state of a quantum
many-body system is the task of selecting only one state from this huge Hilbert
space, some “physical sense” is needed. That is where machine learning approaches
come into play.

Until now, methods have been developed that minimize the energy in a subspace,
considering only the states described by a relatively small number of parameters
in the Hilbert space. A method of constructing a subspace particularly efficiently
is called a tensor network.1 There are various types of tensor networks depending
on their physical meaning and their targets. On the other hand, in this book we
have described various neural networks and how to use them. According to the
neural network universal approximation theorem (see Chap. 3), any function can

1The tensor network is not a physical network arranged spatially. It is a graph specifying how spins
etc. are intertwined with each other.
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be approximated by increasing the number of units sufficiently. Therefore, we can
use neural networks as a method of constructing quantum states.

In the following, we will introduce the methods proposed in literature [122] and
the results, and also look at the differences between tensor networks and neural
networks.

11.1 Neural Network Wave Function

First, let us consider how the wave function of a quantum system can be represented
by a neural network. A wave function of an N-qubit system is the coefficient
ψ(s1, · · · , sN ) in the state |ψ〉,

|ψ〉 =
∑

s1,··· ,sN
ψ(s1, · · · , sN )|s1〉 · · · |sN 〉 . (11.1)

Here, sa = 0, 1 is the basis of the qubit, and ψ is a complex function
using it as a variable. That is, the nonlinear function ψ transforms the input
such as (s1, · · · , sN ) = (0, 0, 1, 0, 1, · · · ) into a complex-valued output
ψ(0, 0, 1, 0, 1, · · · ). The nonlinear function ψ defines the quantum state. When
this nonlinear function is determined so that the energy of the system

E = 〈ψ|H |ψ〉
〈ψ|ψ〉 (11.2)

is minimized, we call the state a ground state.
Therefore, if we recapture this problem as machine learning, we represent the

nonlinear function ψ by a neural network and consider the error function as the
system energy E. Hence, this is not supervised learning. In supervised machine
learning, the error function is defined as the difference from the correct output,
because there is a correct combination of an input and an output, and training is
performed so that a function provides the correct output when the input is given. On
the other hand, in the problem of finding the ground-state wave function, the energy
of the system is adopted as the error function, and the wave function is trained so
that the energy becomes small.

Now, according to the literature [122], let us express the wave function by a
restricted Boltzmann machine.2 As seen in Chap. 6, the restricted Boltzmann
machine provides a Boltzmann weight factor as an output. The relation between
the hidden layer unit and the input unit is given with a spin Hamiltonian. If the unit

2See also [123]. A physical interpretation of the neural network is described in [124].
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value in the hidden layer is h1, · · · , hM , the output will be as follows:

ψ(s1, · · · , sN ) =
∑

hA

exp

⎡

⎣
∑

a

aasa +
∑

A

bAhA +
∑

a,A

JaAsahA

⎤

⎦ . (11.3)

The exponent is the “Hamiltonian” to produce the Boltzmann factor. Note that this
Hamiltonian has nothing to do with the Hamiltonian of the quantum system we are
thinking about. aa and bA are biases, and JaA is the weight of the neural network.
One can explicitly make the summation

∑
hA

, to find

ψ(s1, · · · , sN ) = e
∑

a aasa

M∏

A=1

2 cosh

[
bA +

∑

a

JaAsa

]
. (11.4)

Based on this expression, one updates the bias aa, bA and the weight JaA, and lowers
the energy (11.2) of the system. The update procedure is the same as for the previous
supervised learning.

Let us look at the results of an actual application example. Consider a two-
dimensional Heisenberg model with an antiferromagnetic Hamiltonian. The Hamil-
tonian uses the spin operators σ̂ x , σ̂ y, σ̂ z,

H =
∑

〈a,b〉

[
σ̂ x

a σ̂ x
b + σ̂

y
a σ̂

y
b + σ̂ z

a σ̂ z
b

]
. (11.5)

Here 〈a, b〉 represents two adjacent lattice points on a 10×10 periodic square lattice.
In this system, after the weight and bias in the wave function using a restricted
Boltzmann machine are updated, a low-energy wave function is obtained. According
to the literature [122], as shown in Fig. 11.1, the result is that the neural network
wave functions give less energy than an energy value (“EPS” or “PEPS”) obtained

Fig. 11.1 Energy of the two-dimensional antiferromagnetic Heisenberg model, given in [122].
EPS and PEPS are energy minimizations using wave functions written by conventional tensor
networks. α represents the number of hidden units. The more hidden units, the lower the energy,
indicating that we are approaching the true ground state
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by optimizing the wave function of the conventional method. And it can be seen that
the more hidden units α, the better the neural network wave function is.

11.2 Tensor Networks and Neural Networks

Tensor networks provide a way to efficiently represent wave functions of quantum
many-body systems, that is, a way to construct subspaces in Hilbert space. So let us
discuss the relationship with neural networks here.

11.2.1 Tensor Network

The state represented by the simplest tensor network is the case with N = 2,

∑

i,j=0,1

Aij |i〉|j 〉 . (11.6)

Here, i, j = 0, 1 is an index for the spin, and Aij is called a tensor. The tensor
A has 2 × 2 = 4 components, so it has four complex degrees of freedom. In
the following, we will use Einstein’s convention3 and omit the

∑
symbol. Next,

consider the following state of N = 4:

BmnAmijAnkl|i〉|j 〉|k〉|l〉 . (11.7)

Tensor A has three indices and tensor B has two indices. They are contracted by
indices m,n. In the N = 2 example (11.6), the tensor parameter A can represent
all of the Hilbert space, but in the N = 4 example (11.7), it is not possible. This is
because if N = 4, the entire Hilbert space is spanned by 24 = 16 complex numbers,
but the degree of freedom of the tensor is 23 = 8 for A and 22 = 4 for B, thus only
12 in total. In other words, a subspace of the Hilbert space is parameterized.

It is standard to use a graph to represent the wave function by the tensor A or
B. The typical notation is that a tensor has legs whose number is that of the indices
(see Fig. 11.2). It appears to be similar to the neural network notation, but note that
the meaning of the line is completely different in the following ways: In a tensor
network, tensors are represented by squares, triangles, and circles. The line (leg)
extending from it has the meaning of subscript i = 0, 1, and so, the line means
an input or an output. Since a tensor with three indices has three legs, some of
the three are inputs and the remaining lines are outputs. In neural networks, on

3Einstein’s convention is the understanding that indices that appear more than once will be summed
over.
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Fig. 11.2 Quantum
states (11.6) and (11.7)
represented by tensor
networks

the other hand, the lines mean “multiplying weights W ,” which is the role of a
tensor in a tensor network. Also, in the neural network, the units (circles) have the
meaning of the input and the output, and in the tensor network, circles are tensors
(the role of weighting). Therefore, the meaning of lines and circles is reversed in
tensor networks and neural networks.

11.2.2 Tensor Network Representation of Restricted Boltzmann
Machines

Now let us look at the relationship between the restricted Boltzmann machines
and the tensor networks [125]. In the neural network graph that gives a restricted
Boltzmann machine, we associate the following 2 × 2 matrix with each line
connecting a visible unit sa and a hidden unit hA,

M
(aA)

ss ′ ≡
(

1 1
1 exp[JaA]

)

ss ′
, (11.8)

and also associate the following 2 × 2 matrix at the connection of the unit and the
line,

�
(a)

ss ′ ≡
(

1 0
0 exp[aa]

)

ss ′
, �̃

(A)

ss ′ ≡
(

1 0
0 exp[bA]

)

ss ′
. (11.9)

With this rule, all restricted Boltzmann machines can be interpreted as tensor
networks.

For example, consider the simplest restricted Boltzmann machine made of a
single visible unit, a single hidden unit and a single line connecting them (Fig. 11.3
left). According to the above rules,

�̃(a=1)M(1,1)�(A=1) =
(

1 ea1

eb1 ea1+b1+J11

)
. (11.10)

The elements of this matrix correspond to the weights of the restricted Boltzmann
machine to which (s, h) = (0, 0), (0, 1), (1, 0), (1, 1) is substituted. To make a
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Fig. 11.3 Tensor network
representation of a restricted
Boltzmann machine

summation over hidden unit variables, we just need to take a product with the vector
(1, 1),

ψ(s) = [(1, 1) �̃(1)M(1,1)�(1)
]
s

(11.11)

which is equivalent to (11.3). The expression (11.10) describes the restricted
Boltzmann machine as a product of matrices, and since the elements of the final
matrix product represent the components of the unit, it is exactly a tensor network
representation.

Let us consider a slightly more complicated example: a restricted Boltzmann
machine as shown in the right panel of Fig. 11.3. According to the rules, we have a
matrix product

�̃
(A=1)
st M

(a=1,A=1)

t t ′ M
(a=2,A=1)

t t ′′ �
(a=1)

t ′s ′ �
(a=2)

t ′′s ′′ . (11.12)

Here the matrix M is multiplied twice as the number of lines is two, and the matrix
�, �̃ is multiplied three times as the number of units is three. Note that the index
t appears three times, and the above expression omits

∑
t . The sum over an index

that appears three times cannot be expressed by a matrix multiplication. Therefore,
we define

M̃st ′t ′′ ≡ �̃
(A=1)
st M

(a=1,A=1)

t t ′ M
(a=2,A=1)

t t ′′ , (11.13)

which works well and will be useful later. The new entry M̃ has three indices
and corresponds to a three-legged tensor. So again, we found that this restricted
Boltzmann machine has a representation in a tensor network. Looking at the right
panel of Fig. 11.3, a tensor network representation is given.

Thus, the restricted Boltzmann machine allows tensor expressions. On the other
hand, is a general tensor network represented by a neural network? In fact, it has
been proven that every state composed of tensor networks (that is, every state that
can be represented by a quantum circuit) can be represented by a deep Boltzmann
machine [126].4 Therefore, tensor networks often used in condensed matter physics
are well suited for machine learning in the sense of Boltzmann machines. From this
perspective, various studies are underway.

4The relations among the parameters of the networks are discussed in [127].
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What about a feedforward neural network instead of a Boltzmann machine? As
we saw in Chap. 3, feedforward neural networks have a universal approximation
theorem, so any nonlinear function can be expressed, and in this sense any tensor
network can be expressed. However, constructing a neural network to represent a
given tensor network has some difficulties, as we describe below.

First, in the case of Fig. 11.3 right, two A’s are connected to the two legs of
tensor B, and the state of the tensor network includes a multiplication of A. In
general, tensors combine by multiplication, which creates nonlinearities, whereas
feedforward neural networks do not, and create nonlinearities in the form of
activation functions acting on a unit-by-unit basis. To make up for this difference,
you need to use an activation function in the form of a multiplication.5

A tensor network that can be expressed as a neural network using such a new
activation function is a tree graph. A tensor network of graphs with loops inside
(which also includes what is called MERA6), instead of a tree, is difficult to express
with a feedforward type. This is because the loop graph has two or more outputs
in the middle layer, and tensors connected to them appear in parallel (the tensor
product structure), but in a feedforward neural network, when tensors arranged in
parallel are recombined, it allows only one of them to be expressed with priority,
and the parallelism of the tensor is hindered.

As described above, tensor networks are different from neural networks in many
ways. However, each has its advantages and can be moved back and forth through
common concepts. As explained in Chap. 10, neural networks originate from
physical many-body systems such as Hopfield models, so they are compatible with
physical systems. In the future, interconnection of quantum many-body systems and
machine learning will advance in various forms.

5There is also a study that uses product pooling to see a correspondence [128].
6MERA stands for Multiscale Entanglement Renormalization Ansatz.



Chapter 12
Application to Superstring Theory

Abstract The last chapter describes an example of solving the inverse problem
of string theory as an application of deep learning. The superstring theory unifies
gravity and other forces, and in recent years, the “holographic principle,” that
the world governed by gravity is equivalent to the world of other forces, has
been actively studied. We will solve the inverse problem of the emergence of the
gravitational world by applying the correspondence to the dynamical system seen in
Chap. 9, and look at the new relationship between machine learning and spacetime.

Superstring theory has been studied as quantum theory of gravity and as a theory
that can describe all the forces in the universe in a unified way.1 This chapter shows
examples of applying machine learning, especially deep learning, to mathematical
problems in string theory. Despite its history, a variety of studies that apply machine
learning techniques to physics in earnest has only recently opened up. The content
of this chapter is mainly based on collaborative research between the authors and
Sotaro Sugishita [118, 130], and other kinds of research on string theory have been
done, so diverse progress is expected.

First, let us outline two of the inverse problems in string theory from a general
perspective without using mathematical formulas. Next, we explain how to regard
deep neural networks as spacetimes, as one of the methods to solve an inverse
problem in the holographic principle.

12.1 Inverse Problems in String Theory

There are two major characteristics of the mathematical achievements of superstring
theory that enable the quantization of gravity. The first is the constraint that the
spacetime needs to be 10-dimensional, and the second is that it results in various
gauge symmetries and sets of elementary particles which transform under them.

1For an introductory book on string theory, see [129].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. Tanaka et al., Deep Learning and Physics, Mathematical Physics Studies,
https://doi.org/10.1007/978-981-33-6108-9_12

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6108-9_12&domain=pdf
https://doi.org/10.1007/978-981-33-6108-9_12


174 12 Application to Superstring Theory

From these two characteristics, it is not an exaggeration to say that research on string
theory has greatly advanced. In the following, we will mention that there are two
important inverse problems in string theory. The first inverse problem is the problem
of compaction, and the second inverse problem is the holographic principle.2

12.1.1 Compactification as an Inverse Problem

The first constraint and the second point are related. The spacetime dimension of our
universe is 4, so if it was originally a 10-dimensional spacetime, the 6-dimensional
space must be a very small and compact space. If we adopt what is generally called
a Calabi–Yau manifold as the space, it is known that the resulting 4-dimensional
spacetime theory will be closer to our familiar elementary particle theory. There
are many types of Calabi–Yau manifolds, all of which are mathematically allowed
in perturbative string theory. If one Calabi–Yau manifold is adopted as a compact
6-dimensional internal space, the types, numbers, and symmetry of the remaining
4-dimensional spacetime elementary particles will be determined accordingly.

In this sense, string theory leaves various possibilities. Instead of deriving a single
elementary particle model in 4-dimensional spacetime, it derives many types of
elementary particle models. Since there are a finite number of Calabi-Yau manifolds,
mathematically the number of models is finite, but the number is very large. Of
course, there is an infinite variety of types of quantum field theory that do not
include gravity, and string theory imposes restrictions on quantum field theories
in that sense. However, the restrictions are not very strong, and various elementary
particle models are allowed.3

Therefore, if we consider string theory as a theory describing our universe, we
need to find a Calabi–Yau manifold that leads to a 4-dimensional model closer to
the standard model of elementary particles. So far, a number of Calabi-Yau varieties
are known that provide particle content and symmetry close to that of the standard
model of elementary particles. However, the research is not complete.

In addition, when deriving a 4-dimensional elementary particle model from string
theory, it is not only a matter of choosing the Calabi–Yau manifold. For example,
D-branes4 on which strings can end are introduced into string theory. D-branes
of various dimensions can be considered, and by placing them in 10-dimensional

2These are mutually related, but it is too technical, so here we will just give an overview of each.
3Of course, further progress in string theory research may prove even more restrictive. There
are two reasons for this. First, the region where the superstring theory as the quantum theory
of gravity is well understood is where the perturbational picture holds, that is, when the coupling
constant of the string is small. So, once the non-perturbative properties is understood, stronger
restrictions could be imposed. Second, quantum gravity theory is not always superstring theory.
In the AdS/CFT correspondence which will be described later, quantum gravity theory is defined
more widely, and in that sense the string theory is extended.
4See [129] for an introduction to D-branes.
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spacetime, various symmetries can be realized. By placing a good combination
of D-branes, it is possible to reproduce the symmetry of the standard model of
elementary particles and the particle content. Creating a 4-dimensional spacetime
elementary particle model (or quantum field theory) in this way by combining D-
branes in string theory is generally called brane construction. Various methods have
been combined to create a 4-dimensional spacetime elementary particle model.

At present, a method called F-theory compactification has been developed,
in which compaction by Calabi–Yau manifolds from 10 dimensions and com-
binatrics of the D-branes are approximately integrated. The F-theory is defined
as a 12-dimensional spacetime, and its 2-dimensional compaction reproduces the
type IIB string theory. When the 8-dimensional compaction is performed, an
elementary particle model is created in the remaining 4-dimensional spacetime.
This 8-dimensional compact space employs a complex 4-dimensional Calabi–Yau
manifold. From this standpoint, if the type of complex 4-dimensional Calabi–Yau
manifold is determined, the elementary particle model of 4-dimensional spacetime
is determined, so the type of Calabi–Yau variety needs to be scrutinized.

As you can see, the problem of deriving the standard model of elementary
particles from string theory is an inverse problem. The problem is to select a
manifold necessary for compaction of string theory so that it becomes the standard
model of elementary particles. One of the difficulties with this problem is that the
Calabi-Yau manifold is not well understood (for example, it is difficult to even know
the metric on the manifold). For exploration of compact space, machine learning that
is effective for inverse problems has begun to be used [131–134].

12.1.2 The Holographic Principle as an Inverse Problem

The progress of string theory research for the past 20 years has been carried
by the AdS/CFT correspondence. The AdS/CFT correspondence discovered by
J. Maldacena in 1997 [135–137] is regarded as a concrete realization of the
holographic principle, originally proposed by G. ’tHooft and generalized by
L. Susskind [138].

The holographic principle is that a quantum theory including gravity is equivalent
to a quantum field theory without gravity defined in a lower-dimensional spacetime.
The first example given by Mardacena is the equivalence between type IIB super-
string theory on an AdS5 × S5, that is, a 5-dimensional Anti-de Sitter spacetime
and a 5-dimensional sphere, and the N = 4 supersymmetric Yang–Mills theory
on a flat 4-dimensional spacetime. It was suggested by considering a special limit
in the 10-dimensional string theory with D-branes. It is the equivalence of these
two theories: the former is a quantum gravity theory, while the latter is a lower-
dimensional quantum field theory without gravity. It is a concrete example of the
holographic principle. Generally, the former is called “gravity side” or “AdS side,”
and the latter is called the “CFT side” or “boundary side” or “gauge theory side.”
CFT is an abbreviation of conformal field theory, which is a field theory that is
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invariant under conformal transformation. The N = 4 supersymmetric Yang–Mills
theory is an example of CFT.

In the first example by Maldacena, the gravity side is a quantum gravity
theory (i.e., superstring theory), but the classical limit and low energy region
are often considered. This is because in that area, the quantum gravity theory
becomes a classical Einstein theory (in higher-dimensional spacetimes with some
supersymmetries), and Lagrangians are well known and easy to handle. It is known
that taking such a limit on the gravity side is equivalent to taking the following
two limits in the Yang–Mills theory on the CFT side. First you need the large N

limit, where N is the gauge symmetry SU(N) of the Yang-Mills theory. By taking
N to infinity, the gravity side becomes classical (quantum effects can be ignored).
Next, the strong coupling limit is needed. This is called the large λ limit, where
λ ≡ Ng2 is called the ’t Hooft coupling constant, and g is the coupling constant of
the Yang–Mills theory. By making λ infinite, on the gravitational side, the higher-
order derivatives acting on the fields can be ignored.

There are two important open questions of the holographic principle. The first is
to give a proof of the example which Maldacena originally proposed. The second
is to give a condition on what quantum field theory on the boundary side can allow
a gravitational description. These problems are, of course, thought to be related
to each other, but the first example of Maldacena was suggested by some limit
of string theory, while the second problem is recognized as an issue that needs
to be discussed beyond superstring theory. In particular, as the second problem is
elucidated, we will gain important insights on whether string theory is the only
method for quantum theory of gravity. The difficulty in solving these problems is
that, as mentioned above, the Yang–Mills theory, which is the gauge theory side, has
a strong coupling, so that it is not possible to use the usual perturbation method, so
the research approach is difficult.

Against this background, various examples of the AdS/CFT correspondence
have been built. The AdS/CFT correspondence is generally called “gauge/gravity
duality.” The main early examples were derived from string theory, by deforming
the examples proposed by Maldacena. Furthermore, many examples have been
published that go beyond the derivation from string theory. Those examples have
properties that are expected to be common to the gauge and gravity sides (such as
symmetries).

In the standard model of elementary particles known to us, the part responsible
for the strong force is written by quantum chromodynamics (QCD), which is
based on SU(3) Yang–Mills theory. It is known that various hadron pictures appear
at low energies due to its strong coupling. Solving QCD is important for indicating
possible deviation of the experimental data from the standard model. Moreover, as
the best studied example of quantum theory of strongly coupled fields, it has great
mathematical significance and many researchers are attracted. There is a research
field that applies the gauge/gravity correspondence to this QCD and performs
various calculations on the gravity side to evaluate hadron physical quantities. This
field is called holographic QCD.
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Researchers are experimenting with various gravity models because no gravity-
side theory equivalent to QCD has been found. On the gravity side, one can write
a spacetime metric in a spacetime with one dimension higher, and a Lagrangian of
various matter fields in it. One can perform various classical calculations based on
that, and can use the dictionary for the gauge/gravity duality to calculate the QCD
physical quantities which live on the boundary side. So what is the gravity theory
equivalent to QCD?

As you can see, this is one of the inverse problems. QCD is a well-defined
quantum field theory whose Lagrangian is given, and its physical quantities have
been widely studied. Because of the strong coupling, it is not easy to calculate,
but it has been established that it is possible to evaluate various physical quantities
by numerical calculation using a supercomputer: lattice QCD.5 In particular, as for
the spectrum (mass distribution) of hadrons, which are bound states of elementary
quarks in QCD, the calculation results of the lattice QCD match very well with the
measurement results of accelerator experiments, thus our world is confirmed to be
described by QCD. The problem of finding a gravitational description of such a
given quantum field theory is an inverse problem. This is because, until now, almost
all holographic QCD calculations have been performed for a given gravitational-side
Lagrangian by hand and are interpreted as QCD-like quantities.

In the next section, we will introduce a method using deep learning [118, 130]
to solve this inverse problem. In this method, the data of the lattice QCD simulation
can be used to determine the metric on the gravity side so that it reproduces the data,
by learning.

One of the fundamental problems of the gauge/gravity correspondence is how to
construct the gravity side for a given quantum field theory on the boundary side,
and how to judge whether there is a description of the gravity side in the first place.
This kind of problem is not limited to QCD. In recent years, wider gauge/gravity
correspondences based on entanglement entropy and quantum information theory
have been studied. The concept of “emergent gravity” is gaining widespread
acceptance and there is hope for how the inverse problem will be solved in the
future.

12.2 Curved Spacetime Is a Neural Network

In order to partially solve the inverse problem of finding the gravitational theory
emerging from the boundary quantum field theory such as QCD, the following
simple settings are made. We shall regard the gravitational spacetime itself as a
neural network.

5This is the field of research where the inside of the nucleus can be numerically calculated at
the quark/gluon level from the first principle. Due to the large amount of numerical calculation,
calculations are performed by the Markov chain Monte Carlo method using a supercomputer. The
formulation itself is analogous to statistical mechanics. For details, see [104].
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Fig. 12.1 Conceptual
diagram for AdS/CFT. This
figure and the conceptual
diagram of a typical deep
neural network (Fig. 9.1) are
considered the same, for the
inverse problem to be solved

Given the gravity theory, to find the one-point function of quantum field theory
on the boundary side, we just simply solve the differential equation on the gravity
spacetime (called “bulk”). In particular, if the gravity side is classical, we solve
classical differential equations. Information about the one-point function of the
quantum field theory of the boundary side is provided in the value (at the region
near the boundary) of the solution of the differential equation on the gravity side.
Therefore, determining the metric on the gravity side from the quantum field theory
on the boundary side means the following question: When the boundary value of a
field is given, what is the differential equation that reproduces it as a solution? This
is an example of an inverse problem, as explained in Chap. 7.

At this point, we consider that the theory of gravity itself is regarded as a neural
network, and the weight of the neural network is regarded as the metric of gravity,
so that the metric is read from the trained weights. For the training data, we use a
one-point function of quantum field theory of the boundary side. Since this gives
the value of the field at the boundary in gravity theory, it just functions as the input
data of the neural network.

12.2.1 Neural Network Representation of Field Theory in
Curved Spacetime

Let us rewrite gravity theory with a neural network. The meaning of this is
clear when you look at Figs. 9.1 and 12.1. To build concrete relationships, neural
network expressions of various physical systems introduced in Chap. 9 are useful.
In particular, the form of the time evolution of the Hamiltonian system can be written
as a neural network, so the gravity theory can be written in the same way as a neural
network by regarding the emergent spatial direction in the holographic principle as
the time direction of the Hamiltonian system. Specifically, a neural network is a
nonlinear relation between input data x(1) and output data y, given by

y(x(1)) = fiϕ(J
(N−1)
ij ϕ(J

(N−2)
jk · · ·ϕ(J

(1)
lm x(1)

m ))) . (12.1)

Here J is the weight and ϕ is the activation function.
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First, let us consider a curved spacetime of (d + 1) dimensions. We consider
the theory of gravity on that, but here, for simplicity, consider instead a theory of
a scalar field φ on a curved spacetime. The scalar field theory action is given as
follows:

S=
∫

dd+1x
√− det g

[
−1

2
(∂μφ)2 − 1

2
m2φ2 − V (φ)

]
. (12.2)

Let the spacetime of the quantum field theory on the boundary side be flat and d-
dimensional, and let the direction of the space emerging on the gravity side be η.
The metric of the curved spacetime of the gravity side can be generally written as

ds2 = −f (η)dt2 + dη2 + g(η)(dx2
1 + · · · + dx2

d−1) . (12.3)

Here f (η) and g(η) are metric components and should be determined by learning.
In our gauge the metric component in the η direction is equal to 1. At this point,
f (η) and g(η) are undetermined, but the following two conditions must be satisfied
in order for AdS/CFT correspondence to work. First, at the boundary η → ∞, the
spacetime needs to be asymptotically AdS, f # g # exp[2η/R] (η ∼ ∞), where
R is the AdS radius. The other condition is for the opposite boundary of the curved
spacetime. Assuming that the quantum field theory on the boundary side is a finite
temperature system, as a result, the gravity side becomes a black hole spacetime.
So, the other boundary condition is the event horizon of the black hole. This is
expressed as f ∝ η2, g # const (η ∼ 0).

From this action (12.3), the equation of motion of the field φ(η) is an ordinary
differential equation

∂ηπ + h(η)π −m2φ − δV [φ]
δφ

= 0 , π ≡ ∂ηφ . (12.4)

Here, as explained in Chap. 9, we introduced π(η) as the conjugate momentum for
φ, and transformed the differential equation into a set of the first-order differential
equations. The metric components are included as h(η) ≡ ∂η log

√
f (η)g(η)d−1. In

addition, we discretize the η direction as we did in Chap. 9,

φ(η +	η) = φ(η)+	η π(η) , (12.5)

π(η +	η) = π(η)−	η

(
h(η)π(η)−m2φ(η)− δV (φ)

δφ(η)

)
. (12.6)

This is a neural network representation of the equation of motion for a scalar field φ

in a bulk curved spacetime. A schematic picture is shown in Fig. 12.2. In particular,
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Fig. 12.2 A neural network representation of the equation of motion of a scalar field on a curved
spacetime

since the η direction is discretized as η(n) ≡ (N − n + 1)	η, the input data of the
neural network is (φ(∞), π(∞))T, and the neural network weight J is

J (n) =
(

1 	η

	η m2 1 −	η h(η(n))

)
. (12.7)

So it is interpreted to include the metric information as a part of it. Note that some
weights are fixed to be 1. Namely, this is a sparse network. The activation function
is chosen as follows to reproduce (12.6):

⎧
⎨

⎩
ϕ(x1) = x1 ,

ϕ(x2) = x2 +	η
δV (x1)

δx1
.

(12.8)

In this way, using the simplest deep neural network (Fig. 12.2), if the weights and the
activation functions are chosen as (12.7) and (12.8), the classical equation of motion
of the scalar field in the gravity side can be expressed as a neural network (12.1).

12.2.2 How to Choose Input/Output Data

If the bulk differential equation is regarded as a neural network in this way, the
boundary conditions of the differential equation automatically become the input data
and the output data. In the case of AdS/CFT correspondence, it is known that the
behavior of the solution of the differential equation in the asymptotic AdS region
(η → ∞) corresponds to a one-point function of the quantum field theory of the
boundary side. So you can choose that one-point function as the input data. On
the other hand, the boundary condition on the other boundary (η = 0) of the bulk
spacetime will be the boundary condition imposed by the event horizon of the black
hole. At this stage, we can ask: what is the training? The training is to adjust the
weight of the neural network, that is, the gravity metric, so that when the “correct”
data is input from the η →∞ boundary, the black hole horizon boundary condition
is correctly satisfied at η = 0. This is a function-degree-of-freedom optimization
problem, so, it is a machine learning.



12.2 Curved Spacetime Is a Neural Network 181

The relation between the boundary value of the scalar field in the asymptotic AdS
region and the one-point function of the quantum field theory on the boundary side
is specified by the general principle defined in the literature [139]. Suppose that the
operator of quantum field theory on the boundary side is O, and the term gO exists
in the Lagrangian of the quantum field theory as its source term. Given the source g,
the one-point function 〈O〉 means that the vacuum expectation value 〈O〉 is given as
a function of g. For example, when an external magnetic field is given as a source,
〈O〉 is a magnetization operator, that is, the response to the external field. In QCD,
for example, if the source g is the mass of the quark, the mass term of the QCD is
mqψψ , so the chiral condensate 〈ψψ〉 corresponds to the response. In this manner,
when g and 〈O〉 are obtained by the quantum field theory on the boundary side, the
AdS/CFT correspondence tells us that there is the following relation [139]6 on the
gravity side, under the normalization condition that the AdS radius R is 1,

φ(ηini) = g exp[−	−ηini] + 〈O〉exp[−	+ηini]
	+ −	−

. (12.9)

Here 	 is determined from the mass of the bulk, as 	± ≡ (d/2)±√d2/4 +m2R2,
and 	+ is the conformal dimension7 of the operator O. In addition, a cutoff was
made in the region η → ∞: the boundary is given at η = ηini. Differentiating this
relation by η gives

π(ηini) = −g	− exp[−	−ηini] − 〈O〉	+ exp[−	+ηini]
	+ −	−

. (12.10)

These are the formulas that give the values of φ and π at η → ∞ for a given
one-point function of the quantum field theory.

On the other hand, what about the output data? At the even horizon of the
black hole, only waves that enter the horizon are allowed. Therefore, the solution
of the equation of motion only allows wave solutions in the negative direction of
η. Specifically, we can find out (by restoring the time derivative term as well) the
following condition:

0 = F ≡
[

2

η
π −m2φ − δV (φ)

δφ

]

η=ηfin

. (12.11)

6When the field is evaluated by its integration in the bulk coordinates, the first term is generally a
non-normalizable mode, and the second term is a normalizable mode.
7The conformal dimension 	 means that is in quantum field theory which is invariant under
conformal symmetry, the operator O transforms, when the coordinate scales as x → αx, like
O→ α−	O. In a free field theory, 	 is the mass dimension of the operator (or the field).
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Here η = ηfin ∼ 0 is the cutoff near the horizon. In η → 0, only the first term of F

is important, so simply the horizon condition is as follows:

π = 0 . (12.12)

That is, whether the input data is correct or not is determined by whether the value
of π is zero at the last layer of the neural network.

Of course, since this is a numerical experiment, training will not progress at all
if you request that the output π be completely zero. Therefore, a trick is needed to
judge that the data is correct when the value is close to 0. This can be done by setting
a threshold: for example, if the value of the magnitude of the output is less than 0.1,
it is considered to be 0. Also, the value of π in the final layer may be very large,
while considering that neural networks are good at binary classification problems,
it is also effective to restrict the value range by converting the value of π in the final
layer to tanh(π). With that modification, if “incorrect data” that does not reproduce
the one-point function is input, the training is made such that the output should be 1
instead of 0.

In this way, we have a method to solve the inverse problem of determining
the gravity metric from the quantum data of the boundary quantum field theory.
The important thing in this “transition” of the problem was not only to rewrite the
differential equation into a neural network form, but also to divide the differential
equation and the boundary value problem into unknown and given, so that the
unknown is the network weights, and the known data is the input and the output. If
such separation is possible, the inverse problem can be solved using the techniques
described in this chapter.

12.3 Emergent Spacetime on Neural Networks

Now, let us actually implement the above neural network on a computer and perform
a numerical experiment to see if spacetime metrics can be obtained by learning.
Here, we introduce two independent numerical experiments [118]. The first one is a
numerical experiment to see if a known metric can be reproduced. And the second
one is to answer the question: when a neural network is fed with experimental data
of a real material whose gravity side is not known at all, will a spacetime emerge?8

Time and space emerging from QCD data [130] will be described in more detail
in the next section.

8In physics, the term “emergent” refers to a phenomenon in which properties and equations that
are not expected from the degrees of freedom that define a physical system appear dynamically.
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Fig. 12.3 “Positive data”
(blue) and “negative data”
(green) generated by
discretizing the AdS
Schwarzschild metric (12.13)

12.3.1 Is AdS Black Hole Spacetime Learned?

First, to see if such a learning system works really well, let us check by numerical
experiments whether the known metrics are reproduced. Among asymptotically
AdS black holes, the best known as a solution of the pure Einstein equation is
the AdS Schwarzschild solution. For d = 3, it is a simple function (using the unit
of R = 1),

h(η) = 3 coth(3η) . (12.13)

Now, will this be reproduced by learning?
We discretize the η direction of the bulk into 10 layers and select cutoffs as

ηini = 1 and ηfin = 0.1. The mass and potential terms in the equation of motion
are chosen as m2 = −1 and V [φ] = 1

4φ4 for simplicity. First, we produce a set
of “correct data” using the discretized AdS Schwarzschild metric (12.13). From the
randomly generated (φ(ηini), π(ηini)), we use the neural network with the weight
of (12.13), and name (φ(ηini), π(ηini)) that satisfies |π | < 0.1 at the final layer as
the “positive data.” Similarly, those that do not meet the conditions at the final layer
are called “negative data.” We collect 1000 such data to make a training data set
with a positive/negative label. See Fig. 12.3.

Next, using this training data, we start from a random initial set of weight h(η(n))

and train the neural network.9 The result is shown in Fig. 12.4. The plots (a-1)(a-2)
are the state before the training, and (b-1)(b-2) are the state after the training. The
figures on the left show how well the data is judged to be correct. The figures on
the right are the plots of the metric function h(η). As the training progresses, it can
be seen that positive data and negative data can be correctly discriminated. At the

9PyTorch as a Python library for learning was used. The figure shows the result of 100 epochs
learning with a batch size of 10.
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Fig. 12.4 Results of the AdS Schwarzschild spacetime reproduction experiment. In the upper row,
(a-1) and (a-2) show the discrimination data and metric before the training, and in the lower row,
(b-1) and (b-2) show the data after the training. In (a-1), blue dots are the positive data, and orange
dots are the data judged to be positive by the randomly generated initial metric (orange zigzag line
in figure (a-2)). These are, of course, different from each other. On the other hand, they match in
(b-1) after the training. According to (b-2), the metric after the training (described as the “emergent
metric”) reproduces the AdS Schwarzschild spacetime (described as the “true metric”) except for
a small region where η is close to 0

same time, you can see how the resulting metric reproduces the AdS Schwarzschild
solution (12.13).

It is necessary to introduce appropriate regularization during this numerical
experiment. If you do not introduce regularization, the resulting configuration of
h(η) is often jagged. Even with the jagged configuration of the metric, the network
can distinguish the positive and the negative data. This is because, in general, the
weights of a neural network after the training are not unique, and various local
minima of the error function are obtained as training results. Among the various
h(η) obtained, to pick up a smooth metric that is meaningful as a spacetime, we add
the following regularization term:

L(1)
reg ≡ creg

N−1∑

n=1

(η(n))4
(
h(η(n+1))− h(η(n))

)2
. (12.14)
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Fig. 12.5 Left: For a manganese oxide Sm0.6Sr0.4MnO3, magnetization M[μB/Mn] against
external magnetic field H [Tesla] plotted at various temperatures. Excerpt from the paper [140].
Right: positive data and negative data generated by adding thickness to the 155K data

By adding this term, the values of h in the adjacent η become closer, and a smooth
metric can be obtained. This term works to reduce the error function

∫
dη (h′(η)η2)2

in the continuous limit. Numerical experiments show that if the coefficient of the
added regularization is creg = 10−3, smooth metrics can be extracted without
increasing the final loss value.

This numerical experiment shows that the AdS Schwarzschild spacetime can
be reproduced by solving the inverse problem from the one-point function of the
operator on the boundary side. Deep learning has been found to be effective in
solving the inverse problem.

12.3.2 Emergent Spacetime from Material Data

Next, let us take a look at what spacetime emerges when the data of a real material
is adopted as the data of the one-point function. What is often measured as a one-
point function in matter is the external magnetic field response. In particular, what
is called strongly correlated matter has a strong correlation between electrons and
spins, and is compatible with AdS/CFT that considers the strong coupling limit on
the boundary side. Therefore, we will use the data of the external magnetic field
response of a manganese oxide Sm0.6Sr0.4MnO3 [140]. In Fig. 12.5, we pick up the
data at the temperature of 155K on the left, and divide the data into positive data
and negative data (Fig. 12.5 right).10

Next, we consider the input part of the neural network. Since the boundary value
is related to a one-point function of quantum field theory, such as (12.9) and (12.10),

10As the experimental data has no error bar, we added the thickness of the data by hand. The
technical reason for it is that the training does not progress when the data width is too small.
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the data of (H,M) of matter can be converted to (φ, π). However, in the present
case, the fact that the AdS radius R of the matter is unknown, and the normalization
of the operators that must usually be determined from the two-point function of M

is unknown, we shall reluctantly put it as follows:

φ(ηini) = αH + βM ,

π(ηini) = −	−αH −	+βM .
(12.15)

Here α and β are unknown normalization constants, and

	± = (d/2)

(
1 ±

√
1 + 4m2/h(∞)2

)
(12.16)

determines the conformal dimension of the operator (d/h(∞) gives the AdS radius).
On the numerical code, everything is measured in the unit Runit = 1. We consider
this (12.15) as the 0th layer and add it to the original neural network made of h(η).

The input data and output data are handled in the same way as in the previous
AdS Schwarzschild spacetime reproduction experiment, and the weight of the neural
network is trained.11 In the 10-layer neural network, the parameters to be trained in
this case are the bulk mass m, λ in the interaction potential V = (λ/4)φ4, the
normalization constant α and β, and the metric h(η).

Figure 12.6 shows the training result. The left and middle figures show the fitting
of the positive data after the training and the emergent metric h(η), respectively. You
can see that a smooth emergent metric is obtained.12 The figure on the right shows
statistical data from 13 trials. We can see how it converges to a certain function form.
At the same time, the value of the bulk mass and the strength of the interaction are
learned. The result is m2R2 = 5.6± 2.5 and λ/R = 0.61± 0.22.

In this way, by using a deep neural network, the inverse problem for AdS/CFT
can be solved. From the data of a given material, interesting questions await, such
as what properties the emergent spacetime has and how generally it can be used for
AdS/CFT correspondence.

11In this numerical experiment, we perform the training with two regularization terms: Lreg =
L

(1)
reg + L

(2)
reg. The first one L

(1)
reg is the same as the previous (12.14). For the second term, we

introduced the regularization

L(2)
reg ≡ c(2)

reg(h(η(N))− 1/η(N))2 . (12.17)

This makes h(η(N)) behave like the horizon condition h(η) ∼ 1/η near the black hole horizon.
Examining the size of the regularization term so as not to hinder the training, we adopted the value
c
(2)
reg = 10−4 as its coefficient.

12We stopped the training when the total error function went below 0.02. This is based on the
judgment that the training result is sufficiently close to the training data.
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Fig. 12.6 The spacetime metric which emerged from the magnetic field response of manganese
oxide Sm0.6Sr0.4MnO3. Middle: Emergent metric function h(η). Left: Comparison of magnetic
field response (green + orange) calculated with the emergent metric, and actual magnetic field
response data (green + blue). Right: Emergent metric, its mean and variance of statistical data
from 13 trials

Table 12.1 Left: Chiral condensate [141] as a function of quark mass (in units of lattice constant
a). Right: The same data translated into physical units (using 1/a = 0.829(19) [GeV]). The error
is about 8%

mq 〈ψψ〉
0.0008125 0.0111(2)

0.0016250 0.0202(4)

0.0032500 0.0375(5)

0.0065000 0.0666(8)

0.0130000 0.1186(5)

0.0260000 0.1807(4)

mq [GeV] 〈ψψ〉 [(GeV)3]

0.00067 0.0063

0.0013 0.012

0.0027 0.021

0.0054 0.038

0.011 0.068

0.022 0.10

12.4 Spacetime Emerging from QCD

Then, finally, let us obtain the spacetime emerging from the data of QCD [130],
by solving the inverse problem, regarding the asymptotically AdS spacetime as a
neural network, as before.

The most important one-point function in QCD is the chiral condensate 〈qq〉,
where q(x) is the quark field.13 The chiral condensate is a vacuum expectation value
of the operator qq , while qq is included in the QCD Lagrangian as the quark mass
term mqqq . So, the source of qq is the quark mass mq . Fortunately, there exists data
of the chiral condensate 〈qq〉 measured by lattice QCD while changing mq . Let us
use that as our training data. Table 12.1 gives 〈O〉g = 〈qq〉mq measured in physical
units [141]. The temperature is chosen to be 207 [MeV].

Next, take the area of 0 < mq < 0.022 and 0 < 〈qq〉 < 0.11, and generate
random points in that region. Regard points located close to the curve (which is
a cubic function in mq fitting the data of Table 12.1) within the distance 0.004 as
positive data, and points that do not enter the curve neighborhood as negative data
(Fig. 12.7). 10000 points are randomly generated and used as our training data.

13The chiral condensate corresponds to the magnetization in the Ising model. See Chap. 8.
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Fig. 12.7 Data for training. The x axis is the quark mass [GeV] and the y axis is the chiral
condensate [GeV3], where the blue dots indicate positive data and the orange dots indicate negative
data

To map the data to asymptotic information of the scalar field φ in the asymptotic
AdS spacetime, we again use the AdS/CFT dictionary [139]. Scalar field theory in
the bulk is the φ4 theory, and the potential is

V [φ] = λ

4
φ4. (12.18)

This coupling constant λ is also subject to learning (learned values must be positive).
Since the dimension of the chiral condensate operator qq is 3, the formula

	O ≡ (d/2)+
√

d2/4 +m2R2 (12.19)

gives the mass of the scalar field as m2 = −3/R2. Here R is the AdS radius, which
is also the subject of learning. At the asymptotic boundary of AdS, h(η) ≈ 4/R, so
the equation of motion of the bulk scalar field there is

∂2
ηφ + 4

R
∂ηφ − 3

R2 φ − λφ3 = 0 . (12.20)

The solution is as follows:

R3/2 φ ≈ αe−η/R + βe−3η/R − λα3

2R2 η e−3η/R . (12.21)
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Here, the first term is a non-normalizable mode, the second term is a normalizable
mode, and the third term is a term that comes from the interaction term. The
coefficients are related to the quark mass and the chiral condensate as follows:

α =
√

Nc

2π
mqR , β = π√

Nc

〈qq〉R3 . (12.22)

Since the data is that of QCD, we substitute Nc = 3 hereafter. All numerical
calculations will be measured in units of R and handle dimensionless quantities. In
summary, the QCD data is mapped to the value of the scalar field at the asymptotic
boundary,

φ(ηini) = αe−ηini + βe−3ηini − λα3

2
ηini e

−3ηini . (12.23)

π(ηini) = −αe−ηini −
(

3β + λα3

2

)
e−3ηini

+ 3λα3

2
ηinie

−3ηini . (12.24)

The unknown functions determined in the training are λ, R, h(η).
We will use a 15-layer neural network and discretize the η direction accordingly.

If the ends of the spacetime are chosen as ηini = 1 and ηfin = 0.1 in units of
R = 1, then ηfin ≤ η ≤ ηini will be equally divided into 15 parts. With this
setup, we performed machine learning.14 The condition for discriminating positive
and negative data is the same event horizon condition as before. We implemented
machine learning using PyTorch. As an initial condition, we took h as randomly
generated ones around h = 4 with a fluctuation of size 3, λ = 0.2 and R = 0.8
[GeV−1]. The batch size was 10, and the training was completed at 1500 epochs.
The result of the training (8 trials) with the error less than 0.008 is shown in
Table 12.2, and the plot is shown in Fig. 12.8. The learned coupling constant λ and

14We use the regularization Lreg = L
(smooth)
reg + L

(bdry)
reg . The first term is

L(smooth)
reg ≡ creg

N−1∑

n=1

(η(n))4
(
h(η(n+1))− h(η(n))

)2
, (12.25)

which makes h(η) a smooth function (creg = 0.01). The factor η4 does not prohibit the function
form h(η) ∝ 1/η expected near the event horizon. The second term is

L
(bdry)
reg ≡ creg

(
d − h(η(1))

)2
, (12.26)

which is to make sure that the asymptotic spacetime is (d + 1)-dimensional AdS spacetime. The
coefficient was chosen as creg = 0.01.
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Table 12.2 The spacetime
metric h(η(n))

(n− 1 = 0, 1, · · · , 14 is the
layer number) which emerged
after the training

n− 1 h

0 3.0818 ± 0.0081

1 2.296 ± 0.016

2 1.464 ± 0.025

3 0.627 ± 0.035

4 −0.141 ± 0.045

5 −0.727 ± 0.049

6 −0.974 ± 0.043

7 −0.687 ± 0.032

n-1 h

8 0.374 ± 0.087

9 2.50 ± 0.19

10 6.03 ± 0.30

11 11.46 ± 0.35

12 19.47 ± 0.27

13 31.07 ± 0.17

14 46.70 ± 0.52

Fig. 12.8 A plot of the emergent spacetime metric (Table 12.2). The y axis is the metric h(η), and
the x axis is the emergent spatial coordinate η, that is, the layer number n− 1 = 0, · · · , 14

AdS radius R are

λ = 0.01243± 0.00060 , (12.27)

R = 3.460± 0.021[GeV−1] . (12.28)

This means that, with the standard conversion 5.0677 [GeV−1] = 1 [fm], we obtain
R = 0.6828± 0.0041 [fm].

Let us look at the metric that emerged from the QCD data. There are three
interesting points:

• All eight cases have given the same emergent metric. Therefore, the obtained
metrics can be said to be universal.

• The resulting h(η(n)) diverges as η approaches the event horizon. This is the
same behavior as the black hole metric. It is considered to be a black hole which
automatically emerged from the data of finite temperature lattice QCD.
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• In the middle region, h(η) is negative. This is a behavior not found in any solution
of the ordinary vacuum Einstein equation.

In this way, an asymptotically AdS emergent spacetime metric that consistently
reproduces the chiral condensate data of QCD was obtained. A method of solving
the inverse problem and obtaining a gravity model was made possible by machine
learning.

Then, does the metric gained from this learning make any interesting new
predictions? The strange aspect about the resulting metric is that h is negative,
as mentioned in the third point above. This means that the black hole spacetime
actually shows a confinement behavior. The confinement spacetime is a spacetime
in which the value of the metric increases at a certain spacetime location, so when
going from the asymptotic AdS region to the depth of the spacetime, one reaches
the bottom and cannot proceed further. Since h is with a differentiation by η, the
reversal of its sign indicates the behavior of such a metric. Therefore, although our
spacetime has a black hole horizon (deconfinement), at the same time the metric
shows the confinement.

In fact, with this metric, using the AdS/CFT dictionary we can calculate the
vacuum expectation value of an operator called the Wilson loop. Then we can
see both the properties of Debye screening coming from the event horizon and the
linear potential coming from confining spacetime. They qualitatively match well the
predictions of lattice QCD. Surprisingly, the spacetime that emerged from QCD data
using deep learning had both properties. In this way, when the inverse problem is
specifically solved using deep learning, it has become possible to construct a model
that gives a concept that goes beyond the conventional holographic model.

It is very interesting that the network itself can be interpreted as a smooth
spacetime, beyond the construction of such a practical model. As mentioned in
the column of the Ising model, Hopfield models regard the neural network itself
as a spin system, and the weight of the network corresponded to the strength of
interaction between spins. In the model introduced in this chapter, the network
weights directly include the metric. Therefore, the distance between the nodes of
the network is defined by the weights, and the whole network is interpreted as a
space. Such an idea is especially reminiscent of quantum gravity theory based on
dynamical triangulation. How far can the idea of a network becoming spacetime be
generalized?

Holographic models based on deep learning are classical gravity theories, but
in the future, we may be able to understand how quantum effects and essential
effects of gravity appear, and how this modeling is related to other quantum gravity
concepts.
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Column: Black Holes and Information

In Chap. 1 we explained that Maxwell’s demon made an entropy decrease by log 2.
Here, as a final column of this book, we shall talk about the introduction of black
hole entropy by J. Bekenstein and S. Hawking. Prior to their proposal, it was
pointed out that there was a similarity of the law of increasing entropy to a black
hole growing endlessly by swallowing gas around it. Bekenstein assumed that the
entropy S is given as

S = f (A) , (12.29)

where the area of the black hole horizon is A, and attempted to determine the
function f . The key in his idea is “What is the minimum amount of change in
S?” He assumed the answer as follows:

1. It should correspond to the case where a particle with its Compton length equal
to its radial size falls into a black hole.

2. The entropy change should be log 2 since the particle is either kept retained or
destroyed.

First, the minimum area change from Assumption 1 is semi-classically calculated
as

δA = 2h̄. (12.30)

Combining this with Assumption 2 results in

log 2 = δS = δA · f ′(A) = 2h̄f ′(A) . (12.31)

In this manner Bekenstein derived

S = f (A) = log 2

2

A

h̄
. (12.32)

This is Bekenstein’s original claim. He mentioned in his paper [6] that “Neverthe-
less, it should be clear that if the coefficient is not exactly log 2

2 , then it must be
very close to this, probably within a factor of two.” The precise formula obtained by
Hawking later, in the paper [7] about black hole evaporation with quantized fields,
is

S = 1

4

A

h̄
. (12.33)
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Each of these coefficients is numerically

log 2

2
= 0.34 . . . , (12.34)

1

4
= 0.25 . (12.35)

They are close to each other. The value log 2 is the approximate information that the
particle which fell into the black hole had, and it was converted to the area of the
black hole.

In the topic of Maxwell’s demon mentioned in Chap. 1 and in this topic of the
black hole, the fundamental connection between information and physics is seen. In
fact, in recent developments in quantum gravity theory, the idea that spacetime itself
is formed by quantum entanglement has become mainstream. Also, while research
on the holographic principle is built on the assertion that black holes are the most
chaotic, as described in the column in Chap. 4, computation can be formulated at
the edge of chaos.

Deep learning has a potential to be the foundation of “intelligence” handling
information. In this book, we have seen physics taking an active role there. So far,
deep learning and physics seem mutually related in various ways. We are really
looking forward to the progress and the evolution of information, computability,
machine learning, and physics, in the future.



Chapter 13
Epilogue

Abstract In this book, we have looked at the relationship between deep learn-
ing and physics in detail. We authors (Akinori Tanaka, Akio Tomiya, and Koji
Hashimoto) are also co-authors of research papers in this interdisciplinary field.
Collaborative research is something that is only fun if people who share the same
ambition but have different backgrounds gather. We guess that readers have started
reading this book with various motivations, but in fact, all three of us have different
ideas about the “deep learning and physics.” Here, the three authors express their
feelings, rather than adopting the concluding style of ordinary textbooks, so that
they can be a source of your debate in this new field in the future.

So far, we have looked at the relationship between deep learning and physics in
detail. The authors (Akinori Tanaka, Akio Tomiya, and Koji Hashimoto) are also
co-authors of research papers in this interdisciplinary field. Collaborative research
is something that is only fun if people who share the same ambition but have
different backgrounds gather. We guess the readers have started reading this book
with various motivations, but in fact, all three of us have different ideas about the
“deep learning and physics.” Here, the three authors express their feelings, rather
than adopting the concluding style of ordinary textbooks, so that they can be a source
of your debate in this new field in the future.

13.1 Neural Network, Physics and Technological Innovation
(Akio Tomiya)

From 2003 to 2005, when I was a junior high school student, the world was in
the midst of the second winter of AI. As a computer boy, I was making computer
games, programs—a tic-tac-toe program beating humans, and chatbots.1 Speaking

1Chatbots are programs which react automatically to specific keywords.
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of artificial intelligence at that time, there were expert systems and IBM’s Deep
Blue.2 While doing various searches using the Google webpage (which was already
there at that time), I learned that neural networks were terribly interesting, but gave
up because I couldn’t understand the backpropagation method. On the other hand,
after entering high school, I began to find physics interesting, and then in 2015 I got
a PhD in particle physics and became a postdoc researcher. Then big news came in
2016 that Google’s artificial intelligence had defeated humans at Go.3 In response
to the news, I began study and research while exchanging messages with one of the
authors of this book, Akinori Tanaka. When I studied machine learning for the first
time, I realized that mathematical tools were similar to physics, so I could easily
understand ideas and applied them. As I studied further, I understood that some
ideas were imported from physics.4 The research went well and was formed into
several papers. In this book, physics researchers explain deep learning and related
fields from the basics to the application from that point of view, and in fact, this is
the path I followed.

My specialty is lattice QCD, and it was no surprise to discover that a person
in the field is one of the developers of Jupyter Notebook.5 This is because if you
are doing physics using a computer, you have to visualize a large amount of data.
The WWW, the core technology of today’s Internet, was developed at the European
Nuclear Research Organization (CERN).6 Also, the preprint service called arXiv7

was created by a particle physicist.8 At the meta level, physics supports the next
generation of technology. I am glad if the readers who have studied physics and deep
learning through this book will theoretically solve the mystery of generalization of
deep learning and clarify the relationship between physics and machine learning.
At the same time, I would be happy as well if readers will be responsible for the
next generation of technological innovation that gave us the WWW and Jupyter
Notebook.

2Deep Blue was a supercomputer that defeated the world chess champion Garli Kasparov in 1997.
3Deep Mind’s Alpha Go defeated Lee Sedol.
4This is about the Boltzmann machines that triggered the huge progress in deep learning.
5This person is Fernando Pérez from University of Colorado at Boulder. He obtained a PhD in
Lattice QCD, and was a student of Anna Hasenfratz who is famous in the field.
6The actual development was done by Tim Berners-Lee, an information scientist who was there,
but I don’t think it would have been done without the accelerator, which is a machine that generates
a lot of data by itself, or without a strong motivation to understand nature. It’s also not hard to see
how the hacker spirit of the physicist community (in the original sense) could make this system
free to use.
7The arXiv, https://arxiv.org is a web archive service for researchers to upload research preprints
on physics and mathematics.
8Paul Ginsparg, a prominent physicist whose name is known in the important Gisparg–Wilson
relation in lattice QCD, first started the server for the arXiv. The preceding service was founded by
a physicist, Joanne Cohn. (I thank Shinichi Nojiri, Professor of Nagoya University, for providing
this information.)

https://arxiv.org
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13.2 Why Does Intelligence Exist? (Akinori Tanaka)

Rachel Carson, who is one of the most famous biologists and wrote a book Silent
Spring which describes the harmful effects of chemicals on ecosystems, has a short
essay in her other book, The Sense of Wonder. In that essay, the sense of wonder
is “the mind that feels the nature as it is and as being wonderful.” When learning
/ studying physics and mathematics, people often get asked “why such a useless
subject?” or are labeled as “freakish.” There were such times for me, and I was
frustrated when I couldn’t verbalize why I got attracted to these fields. But a possible
answer may be, to feel the sense of wonder.

Why do we have such a “sense of wonder” in the first place? If the brain’s
actions could all be explained by chemical reactions, there is no possibility that
“consciousness” would appear there. Everything would simply be a physical
phenomenon caused by chemical reactions. In that sense, consciousness may be
an illusion. Even if consciousness is an illusion, at least humans have “intelligence,”
and there is no doubt that they have ability of logical information processing.

Because there are intelligent creatures in this world, I feel that there may be
some relationship between the existence of intelligence and the laws of physics.
I’m interested in the great (and naive) mystery of why the universe started, why
it’s expanding, why it’s four-dimensional, etc., but just as much, I think that
the following is also an interesting question: why does intelligence exist? Once
you know the answer, you may even be able to create intelligence. Although the
development in deep learning in recent years has shown its potential, as is often said,
there is currently no theoretical explanation why deep learning works. Revealing
that, you may be able to approach the mystery of intelligence.

13.3 Why do Physical Laws Exist? (Koji Hashimoto)

“Philosophy is useless when doing physics.” When I was a freshman in graduate
school, I walked down the hall with Thomas Kuhn’s The Structure of the Scientific
Revolution, and I still remember that my supervisor told me those words. Is it really
useless?

“The general coordinate transformation invariance, which is the principle of
general relativity, is natural, because it is a way for humans to recognize the outside
world.” When I was a freshman at university, I was told this by a particle theorist,
Sho Tanaka. Is it true?

As discussed in Chap. 7 of this book, the revolutionary discovery of concepts in
physics is an inverse problem. What performs learning (which is an inverse problem)
is neural networks, which are the means by which humans recognize, think, and
remember the outside world. And, as we have seen repeatedly in this book, artificial
neural networks use the concept of physics when implemented as deep learning and
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on machines. Is there something hidden in these circling connections that can be
called a “theory of theories”?

In learning the amazing developments in machine learning in recent years, I have
been repeatedly aware of its relationship to basic and innovative concepts in physics,
the frequency and breadth of which was surprising. Is this feeling a tautology simply
due to my working memory being too small?

Reduction theory of elementary particles has a history that it has evolved at the
same time as new concepts have been created. I feel that it is impossible for machine
learning to be completely unrelated to the notion that the origin of quantum gravity
spacetime itself, which is the subject of superstring theory, is ultimately elucidated
by human intelligence. I look forward to meeting the readers and discussing physics.
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