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Abstract. We present an efficient and provably good partitioning and load balancing algorithm
for parallel adaptive N-body simulation. The main ingredient of our method is a novel geometric
characterization of a class of communication graphs that can be used to support hierarchical N-body
methods such as the fast multipole method (FMM) and the Barnes–Hut method (BH). We show
that communication graphs of these methods have a good partition that can be found efficiently
sequentially and in parallel. In particular, we show that an N-body communication graph (either
for BH or for FMM) can be partitioned into two subgraphs with equal computation load by re-
moving only O(

√
n logn) and O(n2/3(logn)1/3) number of nodes, respectively, for two and three

dimensions. These bounds on node-partition imply bounds on edge-partition of O(
√
n(logn)3/2)

and O(n2/3(logn)4/3), respectively, for two and three dimensions. To the best of our knowledge,
this is the first theoretical result on the quality of partitioning N-body communication graphs for
nonuniformly distributed particles. Our results imply that parallel adaptive N-body simulation can
be made as scalable as computation on regular grids and as efficient as parallel N-body simulation
on uniformly distributed particles.
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1. Introduction. The most commonly used approaches for numerical simula-
tion of complex physical problems are the mesh-based numerical approach (to solving
partial differential equations) [29] and the particle simulation method [14]. In addi-
tion to its direct applications in astrophysics, molecular dynamics, plasma physics,
and fluid dynamics, the particle methods, especially the recently developed N-body
techniques, have been applied to boundary element methods and the eigensystem
analysis of tridiagonal linear systems.

A major challenge of real-world scientific problems is solving very large scale
computation problems. For example, we need to simulate hundreds of millions or
even thousands of millions of particles for most of the applications mentioned above.
The use of high-performance computers, in the form of either tightly coupled parallel
machines or relatively loosely coupled workstation clusters, is inevitable.

However, equally importantly, the use of more advanced and more efficient meth-
ods is critical to solving large-scale problems on parallel machines. For N-body simu-
lation, though the O(n2)-time direct method can be easily parallelized, more sophis-
ticated methods such as hierarchical methods are needed to reduce the total number
of operations to much more slowly growing functions (e.g., O(n logn) or O(n)).

The hierarchical methods include the O(n)-time algorithms of Greengard and
Rokhlin [13], Anderson [1], and Zhao [33], and the O(n logn)-time algorithms (with
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a smaller constant in the big-O) of Appel1 [2] and Barnes and Hut [3]. These meth-
ods were originally designed for sequential machines and have been implemented on
various parallel platforms by several groups of researchers [5, 12, 15, 16, 17, 23, 24,
26, 28, 34].

In order to fully utilize a parallel machine with a distributed memory to solve
a large problem, we need to efficiently (in parallel) decompose the problem into a
given number of subproblems, each with roughly equal computational requirements,
to balance the load. However, to achieve a close-to-optimal speed-up on a parallel
machine, in addition to balancing load, we need to simultaneously preserve locality
and minimize the communication overhead. The load balancing and partitioning
problems are much better understood for uniformly distributed particles but are much
harder for nonuniformly distributed particles, where adaptive hierarchical methods
are required. Several heuristics have been developed and evaluated experimentally
[24, 28]. However, to the best of our knowledge, no provably good bounds are known
for these heuristics.

The time complexity of the N-body algorithms mentioned above is valid only
for “reasonably” uniform distributions of particles. The algorithms of Appel [2] and
Barnes and Hut [3] are readily extended to nonuniformly distributed particles. Car-
rier, Greengard, and Rokhlin [7] presented an adaptive version of Greengard and
Rokhlin’s fast multipole method (FMM) (see Procedure Interaction-Pair in section
2.4). Similar extensions can be made to Anderson’s [1] and Zhao’s [33] algorithms.
As particles move close to each other nonuniformly, the time complexity of these exten-
sions becomes superlinear—even exceeding O(n logn) for some distributions. There is
an elegant O(n logn)-time algorithm given by Callahan and Kosaraju [6] which is in-
dependent of particle distributions. They obtained this complexity using the notion of
well-separated-pair decomposition of particles. Some ideas of their construction, such
as shrinking boxes, were originally proposed by Vaidya in the context of computing
nearest neighbor graphs [35]. They also show that their algorithm can be parallelized
to run on a PRAM of n processors in O(logn) time.

However, in practice, the depth of the hierarchical structure used in these N-body
algorithms is limited by the machine precision as pointed out by Greengard. Con-
sequently, the benefit from Callahan and Kosaraju becomes apparent on machines
with high precision. Callahan and Kosaraju’s parallel N-body algorithm runs on the
PRAM model, and hence the communication cost and the load balancing issue are
not considered explicitly. In this paper, we develop a partitioning and load balancing
algorithm which can be applied to adaptive hierarchical N-body methods on “prac-
tical” particle distributions and machine architectures. We will make an assumption
on nonuniformity (see section 2.3) which allows us to derive bounds for a variety of
distributions while retaining the applicability to real-life particle problems.

There are two major difficulties in load balancing adaptive N-body methods.
First, the communication pattern (graph) is not explicitly known a priori. This
makes the load balancing problem for the parallel N-body simulation harder than that
for parallel unstructured-mesh computations. Second, the communication pattern in
nonuniform N-body simulations is much more irregular than that of unstructured-
mesh computations—not all communications are between near neighbors. So the par-
titioning problem is much harder even though the communication pattern is known
in advance.

This paper makes two key contributions:

1The complexity of Appel’s algorithm has been shown to be of O(N) [9].
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1. We show that the communication graphs (implicitly) used in FMM and the
Barnes–Hut (BH) method for nonuniform distributed particles have a good
partition. In particular, we show that an N-body communication graph
(either a BH graph or a FMM graph) can be partitioned into two sub-
graphs of roughly equal computation load by removing only O(

√
n logn)

and O(n2/3(logn)1/3) number of nodes, respectively, for two and three di-
mensions. These bounds on node-partition imply bounds on edge-partition
of O(

√
n(logn)3/2) and O(n2/3(logn)4/3), respectively. Our result implies,

from the load balancing viewpoint, that any N-body communication graph
has a partition of quality almost as good as that for regular grids. Therefore,
parallel adaptive N-body simulation can, in theory, be as scalable as compu-
tations on regular grids and as efficient as N-body simulation on uniformly
distributed particles.

2. We develop an efficient parallel algorithm for finding such a partition. More
significantly, our algorithm does not need an explicit representation of the
N-body communication graph. Our algorithm can partition an N-body com-
munication graph directly from the input positions of particles. We then use
our partitioning algorithm in the design of an efficient parallel divide-and-
conquer algorithm for constructing the N-body communication graph.

The main ingredient of our method is a novel geometric characterization of the
communication graphs used in hierarchical N-body methods. Such a geometric char-
acterization not only enables us to prove rigorously that an N-body communication
graph has a good partition but also provides an efficient parallel method for finding
such a partition.

In section 2, we briefly review hierarchical N-body methods and introduce no-
tation that will be used in this paper. In section 3, we define and characterize the
communication graphs used in FMM and BH. We present a refinement of FMM to
make it more suitable for nonuniformly distributed particles. In section 4, we study
the geometric structure of N-body communication graphs and show that any such
communication graph can be partitioned into two subgraphs of roughly equal size
by removing only O(n1−1/d(logn)1/d) (d = 2, 3) nodes. In section 5, we incorporate
the computational requirement into the communication graph and present an efficient
parallel load balancing algorithm. In section 6, we exploit our partitioning method
to develop an efficient parallel algorithm for computing the communication graph di-
rectly from the positions of the particles. In section 7, we discuss our avenues for
future research plans and give some open questions.

2. Hierarchical methods for N-body simulation. The crux of hierarchical
N-body methods is to decompose the potential at a point x, φ(x), into the sum of
two potentials: φN (x), the potential induced by “near-field” particles; and φF (x),
the potential due to “far-field” particles [2, 3, 13, 33]. In these methods, φN (x) is
computed exactly, while φF (x) is computed approximately.

2.1. Well-separated clusters for far-field approximation. The approxi-
mation is based on a notion of well-separated clusters [3, 13]. Suppose we have two
clusters A and B, whose “centers” are distance r away. See Fig. 1.

Direct potential calculation for all particles in A induced by particles in B (and
vice versa) requires O(|A||B|) operations. If r is much larger than both r1 and r2; i.e.,
A and B are “well separated,” then we can use the pth-order multipole expansion to
express the pth-order approximation of potential due to all particles in B. Let ΦpB(x)
denote such a multipole expansion (for details see [1, 13, 33]). To (approximately)
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FIG. 1. Well-separated clusters.

FIG. 2. Quadtree.

compute the potential at particles in A, we simply evaluate ΦpB() at each particle in
A. Suppose ΦpB() has g(p, d) terms. Using multipole expansion, we reduce the number
of operations to g(p, d)(|A| + |B|). The error of the multipole expansion depends on
p and the ratio max(r1, r2)/r. We say A and B are β-well-separated, for a β > 2, if
max(r1, r2)/r ≤ 1/β. As shown in [13], the error of the pth-order multipole expansion
is bounded by (1/(β − 1))p.

The above example illustrates the particle–cluster interaction between two well-
separated clusters. Greengard and Rokhlin [13] showed that the cluster–cluster inter-
section among well-separated clusters can further improve the hierarchical method.
Suppose we have k clusters B1, . . . , Bk that are well separated from a cluster A. Let
Φpi () be the pth-order multipole expansion of Bi. Using particle–cluster interaction
to approximate the far-field potential at A, we need to perform

g(p, d)|A|(|B1|+ |B2|+ · · ·+ |Bk|)

operations. Greengard and Rokhlin showed that from Φpi () we can efficiently compute
a local expansion Ψp

i () centered at the centroid of A that approximates Φpi (). Such
an operation of transforming Φpi () to Ψp

i () is called a FLIP. The cluster–cluster inter-
action first flips Φpi () to Ψp

i (); we then compute Ψp
A() =

∑k
i=1 Ψp

i () and use Ψp
A() to

evaluate the potential at each particle in A. This reduces the number of operations
to the order of

g(p, d)(|A|+ |B1|+ |B2|+ · · ·+ |Bk|).

2.2. Hierarchical decomposition for a canonical set of boxes. Hierarchi-
cal N-body methods use quadtree (for two dimensions) and octree (for three dimen-
sions) to generate a canonical set of boxes to define clusters. The number of boxes is
typically linear in the number of particles, i.e., O(n).

A quadtree [25] is a recursive partition of a region of the plane into axis-aligned
squares (see Fig. 2). One square, the root , covers the entire set of particles. It is often
chosen to be the smallest (up to a constant factor) square that contains all particles.
A square can be divided into four child squares by splitting it with horizontal and
vertical line segments through its center. The collection of squares then forms a tree,
with smaller squares at lower levels of the tree. The recursive decomposition is often
adaptive to the local geometry. The most commonly used termination condition is
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FIG. 3. Octree.

as follows: the division stops when a box contains less than some constant (typically
m = 100) number of particles. Octrees are the three-dimensional version of quadtrees
(see Fig. 3). The root of an octree is a box covering the entire set of particles. An
octree is constructed by recursively and adaptively dividing a box into eight child-
boxes, by splitting it with hyperplanes normal to each axis through its center (see
Fig. 3).

In the remainder of the paper, we refer to both quadtree and octree as hierarchical
trees.

For a set of uniformly distributed n points, the leaf-boxes of the hierarchical tree
form a regular grid. The height of the tree, the tree distance from a leaf to the root,
is log4(n/m) and log8(n/m), respectively, for two and three dimensions.

In practical simulations, particles are usually not uniformly distributed. Particles
may be highly clustered in some regions and relatively scattered in some other regions.
Thus, the hierarchical tree is adaptively generated, with smaller boxes for regions of
clustered particles. The computation and communication patterns of a hierarchical
method become more complex and often are not known explicitly in advance.

2.3. An assumption on nonuniform distributions. In this paper, we use
the following notion of nonuniformity: we say a point set P = {p1, . . . ,pn} in d
dimensions is µ-nonuniform if the height of the hierarchical tree generated for P is
log2d(n/m) + µ. In other words, the ratio of the size of smallest leaf-box to the
root-box is 1/2log2d (n/m)+µ. In practice, µ is less than 100.

Our notion of nonuniformity is very closely related with the precision of a point
set. One measurement of the precision, in the context of hierarchical decomposition,
is height of the hierarchical tree that separates all points. Another common measure-
ment is the logarithm of the ratio of the distance between the farthest two points to
the distance between the closest two points.

2.4. The BH and FM methods. We now review the basic steps of BH2 and
FMM for evaluating far-field interactions. Both methods start with the construction
of a hierarchical tree, followed by the computation of the multipole expansion at each
box in the hierarchical tree. BH uses the particle–box interaction, while FMM uses
the box–box interaction, i.e., FLIP, to further reduce the number of operations.

The original particle–box evaluation procedure of BH can be described as follows.
To evaluate the potential for a particle at p, we start with the root-box of the hier-
archical tree and recursively perform the following operations: if p is well separated
from the current box b, then evaluate p against the multipole expansion of b and add
the contribution of b to the potential of p; otherwise, if b is not a leaf-box and is

2The original BH uses the total mass and the center of mass to approximate a box-cluster. It
can be shown that such an approximation is second order. In this paper, we consider its general
higher-order formulation.
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not well separated from p, then recursively compare p with all child-boxes of b. If
b is a leaf-box, then all particles of b are near-field particles of p, and hence direct
calculations are performed.

We now describe the adaptive FMM for nonuniformly distributed particles due
to Carrier, Greengard, and Rokhlin [7]. The method uses the box–box interaction.
FMM tries to maximize the number of FLIPs among large boxes and also tries to
FLIP between roughly equal sized boxes, a philosophy which can be described as fol-
lows: let parents do as much work as possible and then do as much of the left-over
work as possible before passing to the next generation. We first describe a somewhat
simpler algorithm than the original algorithm given in [7]. We will say more about
that algorithm in section 3.1, where we will give a refined adaptive algorithm. Let
c1, . . . , c2d be the set of child-boxes of the root-box of the hierarchical tree. FMM
generates the set of all interaction-pairs of boxes by taking the union of Interaction-
pair(ci, cj) for all 1 ≤ i < j ≤ 2d, using the interaction-pair procedure defined below.

Procedure Interaction-Pair (b1, b2)
• If b1 and b2 are β-well-separated, then (b1, b2) is an interaction-

pair.
• Else if both b1 and b2 are leaf-boxes, then particles in b1 and
b2 are near-field particles.
• Else if neither b1 nor b2 is a leaf-box, without loss of generality,

assuming that b2 is at least as large as b1 and letting c1, . . . , c2d

be the child-boxes of b2, then recursively decide interaction-pair
by calling interaction-pair(b1,ci) for all 1 ≤ i ≤ 2d.

• Else if one of b1 and b2 is a leaf-box, without loss of generality,
assuming that b1 is a leaf-box and letting c1, . . . , c2d be the
child-boxes of b2, then recursively decide interaction-pairs by
calling interaction-pair(b1,ci) for all 1 ≤ i ≤ 2d.

FMM calculates the far-field interactions as follows: for each interaction-pair
(b1, b2), letting Φpi () (i = 1, 2) be the multipole expansion of bi, FLIP Φp1() to b2
and add to b2’s potential local expansion. Similarly, FLIP Φp2() to b1 and add to b1’s
potential local expansion. Then traverse down the hierarchical tree in a pre-ordering,
shift, and add the potential local expansion of the parent-box of a box to its own local
expansion.

Note that FMM for uniformly distributed particles has a much simpler description
(see [13, 33]) than what we described above. In Carrier, Greengard, and Rokhlin
[7] the set of intersection pairs is defined more directly. Furthermore, their set of
intersection pairs is a subset of the one constructed by the procedure above, and
hence their formulation requires fewer operations than the simple formulation that
we give above. See section 3.1 for more details.

3. Communication graphs for N-body simulations. In order to efficiently
implement an N-body method on a parallel machine, we need to understand its com-
munication pattern, which can be described by a graph that characterizes the pattern
of information exchange during the execution of the method. The communication
graph is defined on basic computational elements of the method. The basic elements
of hierarchical N-body methods are boxes and points, where points give the locations
of particles and boxes are generated by the hierarchical method. Formally, the com-
munication graph is an edge-weighted directed graph, where the edges describe the
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FIG. 4. A nonuniform example.

pattern of communication and the weight on an edge specifies the communication
requirement along the edge.

In this section, we define the communication graph for parallel N-body simulation.
In section 3.1, we show how to apply the idea of BH to improve parallel adaptive FMM.
In section 3.2, we show how to use FMM communication patterns to support parallel
BH implementation. In the next section, we will study the geometric structure of this
class of graphs and design a provably good partitioning and load balancing algorithm.

3.1. A refined FMM for nonuniform distributions. For parallel implemen-
tation, it is desirable to have a communication graph that uses small edge-weights and
has small in- and out-degrees. However, some boxes in the set of interaction-pairs
defined in the last section may have large degree! Such an example is given in Fig. 4.

Suppose the root-box is divided into four child-boxes A, B, C, and D. Assume
further that boxes A, B, and C contains less than m (< 100) particles, and most
particles, say n of them, are uniformly distributed in D. In the FMM algorithm of
the previous section, we further recursively divide D by log4(n/m) levels. Notice that
A, B, and C are not well separated from any box in D. Hence the FMM algorithm
of the previous subsection will declare all particles of D as near-field particles of A,
B, and C (and vice versa). The drawback is two-fold:

1. From the computational viewpoint, we cannot take advantage of the hierar-
chical tree of D to evaluate potentials in A, B, and C.

2. From the communication viewpoint, boxes A, B, and C have a large in-degree
in the sense that each particle in these boxes needs to receive information from
all n particles in D, making partitioning and load balancing harder.

Carrier, Greengard, and Rokhlin [7], from the computational viewpoint, presented
an efficient way to handle this case when a large leaf-box is next to many small leaf-
boxes. Instead of assigning all small leaf-boxes (such as those in D) to be near-field
boxes of the large leaf-box (e.g., C in our example), they only make those small leaf-
boxes adjacent to the large box to be its near-field boxes. (See list 1, denoted by
U , defined in [7].) Particle–box interactions similar to BH are then used to evaluate
particles in the large box against the hierarchical structure built on other smaller
leaf-boxes. This approach clearly reduces the number of operations. However, the
degree of the large leaf-box in the near-field interaction can still be very large. In the
example above, such contribution to the degree of D is about

√
n/m.

We now show that the particle–box interaction idea of BH adopted in [7] can be
used to further reduce the degree of the large box to O(logn).

Notice that in BH most boxes of D are well separated from particles in A, B,
and C. Hence the well-separation condition is different in BH: because BH uses the
particle–box interaction, the well-separation condition is measured with respect to the
size of the boxes in D. Thus most boxes are well separated from particles in A, B,
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and C. In contrast, because FMM applies the FLIP operation, the well-separation
condition must measure up against the size of the larger box. Hence no box in D is
well separated from A, B, and C.

Our refined FMM algorithm circumvents this problem by incorporating the well-
separation condition of BH into Procedure Interaction-Pair: if b1 and b2 are not well
separated, and b1, the larger of the two, is a leaf-box, then we use a well-separation
condition with respect to b2, instead of to b1, and apply the FLIP operation directly
onto particles in the leaf-box b1 rather than b1 itself.

We will define this new well-separation condition shortly. First, we make the
following observation about Procedure Interaction-Pair. We can prove, by a simple
induction, the following fact: if b1 and b2 are an interaction-pair and both b1 and b2
are not leaf-boxes, then 1/2 ≤ size(b1)/size(b2) ≤ 2. This is precisely the condition
that FMM would like to maintain. For uniformly distributed particles, such a condi-
tion is always true between any interaction-pair (even if one of them is a leaf-box).
However, for nonuniformly distributed particles, if b1, the larger box, is a leaf-box,
then b1 could be much larger than b2.

The new β-well-separation condition, when b1 is a leaf-box, is then defined as
follows: b1 and b2 are β-well separated if b2 is well separated from all particles of
b1 (as in BH). Notice, however, with the new condition, that we can no longer FLIP
the multipole expansion of b1 to a local expansion for b2. Because b1 has only a
constant number of particles, we can directly evaluate the potential induced by these
particles for b2. This new condition makes the FLIP operation of this special class of
interaction-pairs unidirectional: we only FLIP b2 to b1.

We can describe the refined Procedure Interaction-Pair using the modified well-
separation condition when one box is a leaf-box.

Procedure Refined Interaction-Pair (b1, b2)
• If b1 and b2 are β-well-separated and 1/2 ≤ size(b1)/size(b2) ≤

2, then (b1, b2) is a bidirectional interaction-pair.
• Else if the larger box, without loss of generality, b1, is a leaf-box,

then the well-separation condition becomes: b2 is well separated
from all particles of b1. If this condition is true, then (b1, b2) is
a unidirectional interaction-pair from b2 to b1.

• Else if both b1 and b2 are leaf-boxes, then particles in b1 and
b2 are near-field particles.
• Else if neither b1 nor b2 is a leaf-box, without loss of generality,

assuming that b2 is at least as large as b1 and letting c1, . . . , c2d

be the child-boxes of b2, then recursively decide interaction-
pairs by calling interaction-pair(b1,ci) for all 1 ≤ i ≤ 2d.

• Else, if one of b1 and b2 is a leaf-box, without loss of generality,
assuming that b1 is a leaf box and letting c1, . . . , c2d be the
child-boxes of b2, then recursively decide interaction pairs by
calling interaction-pair(b1,ci) for all 1 ≤ i ≤ 2d.

Let c1, . . . , c2d be the set of child-boxes of the root-box of the hierarchical tree.
Then the set of all interaction-pairs can be generated as the union of refined interaction-
pair(ci, cj) for all 1 ≤ i < j ≤ 2d.

The refined FMM for far-field calculation can then be defined as follows: for
each bidirectional interaction pair (b1, b2), letting Φpi () (i = 1, 2) be the multipole
expansion of bi, FLIP Φp1() to b2 and add to b2’s potential local expansion. Similarly,
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FLIP Φp2() to b1 and add to b1’s potential local expansion. Then traverse down the
hierarchical tree in a pre-ordering, shift, and add the potential local expansion of the
parent-box of a box to its own local expansion. For each unidirectional interaction
pair (b1, b2) from b2 to b1, letting Φp2() be the multipole expansion of b2, evaluate
Φp2() directly for each particle in b1 and add its potential.

In section 4.3, we will show that the degree of each box in this set of interaction-
pairs is “small.” Hence the new set of interaction-pairs is more suitable for parallel
implementation.

Remark 3.1. Several heuristics have been proposed in the literature to reduce
the number of operations in N-body simulations. The commonly used ones include
collapsing boxes when a box has only one nonempty child-box, and avoiding trans-
lation of particle expansion coefficients to multipole expansions and avoiding FLIPs
whenever such operations are inefficient. See Nabors et al. [22] for an example of
exploiting these heuristics and the heuristics used in [7]. Moreover, almost all N-body
codes have their own set of heuristics based on various intuitions. These heuristics
may be used in our formulation to further reduce the number of operations and the
amount of communication; conversely, our analysis or some variants of it could be
used in the evaluation of formulations that have been proposed and implemented.

3.2. Hierarchical neighboring graphs. Hierarchical methods explicitly use
two graphs: the hierarchical tree which connects each box to its parent box and each
particle to its leaf-box, and the near-field graph which connects each box with its near-
field boxes. The hierarchical tree is generated and used in the first step to compute
the multipole expansion induced by each box. We can use a bottom-up procedure to
compute these multipole expansions: first compute the multipole expansions at leaf-
boxes and then SHIFT the expansion to the parent boxes and then up the hierarchical
tree until multipole expansions for all boxes in the hierarchical tree are computed.

The near-field graph can also be generated by Procedure Refined Interaction-Pair.
In section 3.4, we will formally define the near-field graph.

We now define the hierarchical-neighboring graph, which is closely related to the
near-field graph. This class of graphs is much simpler than both far-field and near-
field graphs and will be used as examples in the illustration of our geometric structure
lemmas in the next section.

The hierarchical-neighboring graph represents the neighboring relation among
leaf-boxes. Give a hierarchical tree T , let V be the set of all leaf-boxes of T . The
tree T defines a graph, the hierarchical-neighboring graph, on V , where two boxes
are joint by an edge if and only if the two boxes share a common point (i.e., they
are neighboring boxes). This graph is the nine-point stencil grid for a completely
balanced tree, i.e., each leaf-box is connected with its eight neighbors.

3.3. Far-field graphs. We now define the communication graphs used in BH
and in the refined FMM.

Fast multipole graphs (FM). The fast multipole graph, FMβ , models the
communication pattern of the refined FMM. It is a graph defined on the set of boxes
and particles in the hierarchical tree. Two boxes b1 and b2 are connected in FMβ

if and only if (1) b1 is the parent-box of b2 or, vice versa, in the hierarchical tree;
or (2) (b1, b2) is an interaction-pair generated by Procedure Refined Interaction-Pair
defined in section 3.1. The edge is bidirectional for a bidirectional interaction-pair
and unidirectional for a unidirectional interaction-pair. Furthermore, each particle is
connected with the box that contains the particle.
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The following lemma will be useful in the next section.
LEMMA 3.2. The refined FMM flips the multipole expansion of b2 to b1 if and

only if
1. b2 is well separated from b1, and
2. the parent of b2 is not well separated from b1, and b2 is not well separated

from the parent of b1.
Proof. The lemma follows from the analysis of [13] and Procedure Refined Inter-

action-Pair: if b1 and b2 are not well separated, then clearly they do not form an
interaction-pair. On the other hand, if the parent of b1 is well separated from b2,
then FMM flips the multipole expansion of b2 to the parent of b1, and hence there is
no need to flip b2 to b1. Similarly, if b1 is well separated from the parent of b2, then
FMM flips the parent of b2 to b1.

In section 4.3 we will show that both in- and out-degrees of FMβ are small.

BH graphs. BH defines two classes of communication graphs: BHβ
S and BHβ

P .
BHβ

S models the sequential communication pattern and BHβ
P is more suitable for

parallel implementation. The letters S and P , in BHβ
S and BHβ

P , respectively, stand
for “sequential” and “parallel.”

We first define BHβ
S and show why parallel computing requires a different com-

munication graph BHβ
P to reduce total communication cost.

The graph BHβ
S of a set of particles P contains two sets of vertices: P, the

particles, and B, the set of boxes in the hierarchical tree. The edge set of the graph
BHβ

S is defined by the communication pattern of the sequential BH. A particle p is
connected with a box b if in BH, we need to evaluate p against b to compute the
force or potential exerted on p. So the edge is directed from b to p. Notice that if p
is connected with b, then b must be well separated from p. Moreover, the parent of
b is not well separated from p. Therefore, if p is connected with b in BHβ

S , then p is
not connected to any box in the subtree of b nor to any ancestor of b.

In addition, each box is connected directly with its parent-box in the hierarchical
tree and each point p is connected to its leaf-box. Both types of edges are bidirectional.

LEMMA 3.3. Each particle is connected to at most O(logn+ µ) number of boxes.
So the in-degree of BHβ

S is bounded by O(logn+ µ).
Proof. It directly follows from the analysis of BH for uniformly distributed parti-

cles [3].
Notice, however, that BHβ

S is not suitable for parallel implementation. It has
a large out-degree. This major drawback can be illustrated by the example of n
uniformly distributed particles in two dimensions. Assume we have four processors.
Then the “best” way to partition the problem is to divide the root-box into four boxes
and map each box onto a processor. Notice that in the direct parallel implementation
of BH, as modeled by BHβ

S , each particle needs to access the information of at least
Ω(1) boxes in each of the other processors. Because each processor has n/4 particles,
the total communication overhead is Ω(n), which is very expensive.

The main problem with BHβ
S is that many particles from a processor need to

access the information of the same box in some other processors (which contributes
to the large out-degree). We show that a combination technique can be used to reduce
the out-degree. The idea is to combine the “same” information from a box and send
the information as one unit to another box on a processor that needs the information.
We will show, as a consequence of our main result, that this combination technique
reduces the total communication cost to O(

√
n logn) for the four-processor example,
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and to O(
√
pn logn) for p processors. Similarly, in three dimensions, the combination

technique reduces the volume of messages from Ω(n logn) to O(p1/3n2/3(logn)1/3).
We can define a graph BHβ

P to model the communication and computation pat-
tern that uses this combination technique. Our definition of BHβ

P is inspired by the
communication pattern of the refined FMM. We will show that the communication
pattern of the refined FMM can be used to guide the message combination for the
parallel implementation of the BH method!

The combination technique is based on the following observation: suppose p is
well separated from b1 but not from the parent of b1. Let b be the largest box that
contains p such that b is well separated from b1, using the well-separation definition
in section 3.1. If b is not a leaf-box, then (b, b1) is a bidirectional interaction-pair in
the refined FMM. If b is a leaf-box, then (b, b1) is a unidirectional interaction-pair
from b1 to b. Hence (b, b1) is an edge of FMβ . Then, any other particle q contained
in b is well separated from b1 as well. Hence we can combine the information from b1
to p and q and all other particles in b as follows: b1 sends its information (just one
copy) to b and b forwards the information down the hierarchical tree, to both p and q
and all other particles in b. This combination-based communication scheme defines a
new communication graph BHβ

P for parallel BH: the nodes of the graph are the union
of particles and boxes, i.e., P ∪ B(P ). Each particle is connected to the leaf-box it
belongs to. Two boxes are connected if and only if they are connected in the FM
graph. However, to model the communication cost, we must introduce a weight on
each edge along the hierarchical tree embedded in BHβ

P , to be equal to the number
of data units needed to be sent along that edge. We will show the following.

LEMMA 3.4. The weight on each edge in BHβ
P is at most O(logn+ µ).

Proof. See Lemma 4.9 of the next section.
It is worthwhile to point out the difference between the comparison and commu-

nication patterns in BH. In the sequential version of BH, if p is connected with b, then
we have to compare p against all ancestors of b in the computation. The procedure
is to first compare p with the root of the hierarchical tree, and then recursively move
the comparison down the tree: if the current box compared is not well separated from
p, then we will compare p against all its child-boxes. However, in terms of force and
potential calculation, we only evaluate a particle against the first box down a path
that is well separated from the particle. The graphs BHβ

S and BHβ
P capture the com-

munication pattern rather than the comparison pattern. The communication is more
essential to force or potential calculation. In section 5, we will give an efficient par-
allel algorithm for finding the communication graph directly without going through
the comparison phase. The construction of the communication graph has been one of
the bottlenecks in load balancing BH and FMM on a parallel machine.

3.4. Near-field graphs. The near-field graph, denoted NF β , is defined over
all leaf-boxes. A leaf-box b1 is a near-field neighbor of a leaf-box b if b1 is not
well separated from some particles of b. Thus, FMM and BH directly compute the
potential at particles in b induced by particles of b1.

There are two basic cases: (1) if size(b1) ≤ size(b), then we call b1 a geometric
near-field neighbor of b; (2) if size(b1) > size(b), then we call b1 a hierarchical
near-field neighbor of b. In the example of section 3.1, A, B, and C are hierarchical
near-field neighbors of all leaf-boxes in D, while A, B, and C have some geometric
near-field neighbors in D.

We introduce some notation. The geometric in-degree of a box b is the number of
its geometric near-field neighbors. The geometric out-degree of a box b is the number
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of boxes to which b is the geometric near-field neighbor. The hierarchical in-degree
of a box b is the number of its hierarchical near-field neighbors. We will define the
hierarchical out-degree of a box shortly.

In section 4.3, we will show that the geometric in-degree, geometric out-degree,
and hierarchical in-degree are small. However, in the example of section 3.1, A, B,
and C are hierarchical near-field neighbors for all leaf-boxes in D. Hence the number
of leaf-boxes to which a box is a hierarchical near-field neighbor could be very large.
So the near-field graph defined above can have a very large out-degree.

We can use the combination technique to reduce the degree when a box b is a
hierarchical near-field neighbor of a box b1. Let b2 be the ancestor of b1 of the same
size as b. Instead of b sending its information directly to b1, b sends it to b2 and b2
then forwards the information down the hierarchical tree. Notice that b and b2 are
not well separated. We will refer to this modified near-field graph as the near-field
graph, denoted by NF β . We also define the hierarchical out-degree of a box b to be
the number of edges from b to the set of non-leaf-boxes constructed above. In section
4.3, we will show that the hierarchical out-degree is also small.

To model the near-field communication, similar to our approach for BH, we intro-
duce a weight on the edges of the hierarchical tree. We will also show the following.

LEMMA 3.5. The weight on each edge in NF β is at most O(logn+ µ).
Proof. See Lemma 4.9 in the next section.

3.5. N-body communication graphs. By abusing notation, let FMβ = FMβ

∪ NF β and BHβ
P = BHβ

P ∪ NF β . So the communication graph we defined simul-
taneously supports near-field and far-field communication, as well as communication
up and down the hierarchical tree. Hence by partitioning and load balancing FMβ

and BHβ
P , we automatically partition and balance the hierarchical tree, the near-field

graph, and the far-field graph.

4. The geometry of the N-body graph and its partitioning. In this sec-
tion, we prove our main partitioning theorem.

THEOREM 4.1 (main). Let G be an N-body communication graph (either for BH
or FMM) of a set of particles located at P = {p1, . . . ,pn} in Rd (d = 2 or 3). If P is
µ-nonuniform, then G can be partitioned into two equal sized subgraphs by removing
at most O(n1−1/d(logn+µ)1/d) nodes. Moreover, such a partitioning can be computed
in linear time sequentially and in parallel O(n/p) time with p processors.

We will use the following notation in the remainder of the paper: if α > 0 and B
is a box of size r, we define α ·B to be the box with the same center as B but size αr.

4.1. Box-graphs. In order to prove Theorem 4.1, we introduce a class of ge-
ometric graphs that contain BHβ

P and FMβ as special cases. This class of graphs,
called the box-graph, is defined on boxes in two or three dimensions.

A box-system in Rd is a set B = {B1, . . . , Bn} of boxes. Let P = {p1, . . . ,pn}
be the centers of the boxes, respectively. For each integer k, the set B is a k-ply
box-system if no point p ∈ Rd is contained in more than k of int(B1), . . . , int(Bn).

For example, the set of all leaf-boxes of a hierarchical tree forms a 1-ply box-
system. The box-system is a variant of the neighborhood system of Miller et al.
[19], where a neighborhood system is a collection of Euclidean balls in Rd. Miller et
al. used the neighborhood system to model unstructured finite-element meshes. In
this section, we will show that box-systems can be used to model the communication
graphs for parallel adaptive N-body simulation.

Given a box-system, it is possible to define the overlap graph associated with the
system.
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DEFINITION 4.2. Let α ≥ 1 be given, and let {B1, . . . , Bn} be a k-ply box-system.
The α-overlap graph for this box-system is the undirected graph with vertices V =
{1, . . . , n} and edges

E = {(Bi, Bj) : Bi ∩ (α ·Bj) 6= ∅ and (α ·Bi) ∩Bj 6= ∅}.

The edge condition is equivalent to: (Bi, Bj) ∈ E if and only if the α dilation of
the smaller box touches the larger box.

As shown in the author’s Ph.D. thesis [30], the partitioning algorithm and theorem
of Miller et al. can be extended to overlap graphs on box-systems. We include a high
level description of the algorithm and theorems of Miller et al. in Appendix A. More
detailed algorithms can be found in [19]. Practical implementation (and a pointer to
our Matlab tool-box) and experimental results can be found in [11].

THEOREM 4.3. Let G be an α-overlap graph over a k-ply box-system in Rd; then G
can be partitioned into two equal sized subgraphs by removing at most O(αk1/dn1−1/d)
vertices. Moreover, such a partitioning can be computed in linear time sequentially
and in parallel O(n/p) time with p processors.

Proof. See Theorem 7.1 of [30].

4.2. Partitioning N-body simulation graphs. In this section, we show that
if a set of n particles is µ-nonuniform, then its N-body communication graph is a
subgraph of an α-overlap of a (log2d n+ µ)-ply box-system. We then apply Theorem
4.3 to prove the main partitioning Theorem 4.1.

LEMMA 4.4. Let P = {p1, . . . ,pn} be a point set in Rd that is µ-nonuniform.
Then the set of boxes B(P ) of the hierarchical tree of P is a (log2d n + µ)-ply box-
system and FMβ(P ) is a subgraph of the 3β-overlap graph of B(P ).

Proof. Because the height of the hierarchical tree is bounded by log2d n+ µ, the
ply of B(P ) is bounded by log2d n+ µ.

First, notice that each particle can be viewed as a box of size 0. To prove that
FMβ(P ) is a subgraph of the α-overlap graph of B(P ), we need to show that for each
edge (b1, b2) of FMβ(P ), the 3β dilation of the smaller box touches the larger box.
Notice that (b1, b2) is an edge either in the hierarchical tree, in the near-field graph
NF β , or in the far-field graph.

If (b1, b2) is an edge of the hierarchical tree or b1 is a particle in b2, then b1∩b2 6=
∅, and hence (3β) ·b1∩b2 6= ∅. We now prove this statement for the case when (b1, b2)
is an edge in the near-field graph. There are two cases: (1) if b2 is a geometric near-
field neighbor of b1, then we have size(b2) ≤ size(b1) and b2 is not well separated
from b1. Hence there is a particle in b1 that is not β-well-separated from b2, implying
that β ·b2 contains the particle and hence touches b1; (2) otherwise, b2 is a hierarchical
near-field neighbor of some boxes in the subtree of b1, b1 has the same size as b2, and
further, b1 is not β-well-separated from b2. Therefore, the distance between b1 and
b2 is at most β · size(b1), implying β · b1 touches b2.

We now prove the statement when (b1, b2) is an edge of the far-field graph. As-
sume that b1 is the larger box of the two. There are two cases. (1) If b1 is not a
leaf-box, then we have size(b2) ≥ size(b1)/2. Hence size(b1) ≤ size(parent(b2)) ≤
2size(b1). Because parent(b2) and b1 are not β-well-separated, the distance between
parent(b2) and b1 is less than β · size(parent(b2)). Hence βparent(b2) ∩ b1 6= ∅.
Because parent(b2) is properly contained in 3 · b2, we have (3β) · b2 intersects b1. (2)
If b1 is a leaf-box, recall that the well-separation condition is that all particles of b1
are well-separated from b2 but some are not well separated from parent(b2). Thus,
there exists a particle p in b1 such that the distance between p and parent(b2) is less
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than β ·size(parent(b2)), implying that β ·parent(b2) contains p and hence intersects
b1. Because parent(b2) is properly contained in 3 · b2, we have (3β) · b2 intersects
b1.

LEMMA 4.5. Let P = {p1, . . . ,pn} be a point set in Rd that is µ-nonuniform.
Then BHβ

P (P ) is a subgraph of the 3β-overlap graph of B(P ).
Proof. In our definition of BHβ

P , there is no direct edge from a particle p to a
box b that does not contains p. If p needs information from b, in the combination
technique, b sends its information to a box b1 (not necessarily a leaf-box) that contains
p. The choice of b1 is that (b, b1) is an edge of FMβ .

The main difference between BHβ
P and FMβ is the edge-weight which we will

discuss in section 4.3. Their node partitions are the same. Hence the argument of
Lemma 4.5 also applies to this lemma.

Our main partitioning theorem (Theorem 4.1) then follows directly from Lemmas
4.4 and 4.5 and Theorem 4.3.

4.3. Edge-partitioning of N-body graphs. In an edge-partition of a graph,
we remove edges of the graph to divide the graph into two disjoint graphs of roughly
equal size. Formally, we use a notion of bisection. A bisection of a graph G is a division
of its vertices into two disjoint subsets A and B such that −1 ≤ |A| − |B| ≤ 1. The
cost of a bisection is the total weight of the edges that bridge A and B. Similarly, a
p-way partition of G is a division of its vertex set into p disjoint subsets of size n/p,
where n is the number of vertices in G. The cost of a p-way partition is the total
weight of the edges whose endpoints are in different subsets.

Bounds on node-partitions also imply bounds on edge-partitions. If a graph has
maximum degree D and maximum edge-weight W , then a node-partition of size f(n)
can be converted into an edge-partition of cost DWf(n).

In this subsection, we prove the following theorem.
THEOREM 4.6. Let G be an N-body communication graph (either for BH or

FMM) of a set of particles located at P = {p1, . . . ,pn} in Rd (d = 2 or 3). If P
is µ-nonuniform, then G has a bisection of cost O(n1−1/d(logn+ µ)2+1/d).

The basic idea to prove Theorem 4.6 is to show that the N-body communication
graph has degree and edge-weights bounded by O(logn+µ). We first give a geometric
lemma whose proof can be found in [30].

LEMMA 4.7. Let B = {b1, . . . , bn} be a set of (interiorly) disjoint boxes in Rd.
Let b be a box in Rd and α > 1 and β > 0 be two constants. Then the number of
boxes of B of size at least β · size(b) that intersect α · b is bounded by a constant C
that depends only on α, β, and d.

LEMMA 4.8. If P = {p1, . . . ,pn} in Rd is µ-nonuniform, then the degree of
FMβ(P ) is bounded by O(logn+ µ).

Proof. Let b be a vertex of FMβ . If b is a particle, then it is connected only to
its leaf-box. Hence its degree is 1. If b is a box, then its neighbors are defined in the
hierarchical tree (at most one), in the near-field graph, or in the far-field graph. We
need to prove that both in- and out-degrees are small. We first prove that a leaf-box
can not have too many neighbors in the near-field graph. There are four cases.

1. [Bound on the hierarchical in-degree]: Let b1, . . . , bk be the hierarchical near-
field neighbors of b. Because b is not well separated from bi, none of b’s
ancestors is well separated from bi’s. Notice that b has at most log2d n + µ
ancestors. By Lemma 4.7, each box can only have a constant number of other
boxes of the same size that are not well separated from the box. Because
b1, . . . , bk are at least as large as b, for each bi, there is an ancestor of b of
the same size as bi. Hence the hierarchical in-degree of b is O(log2d n+ µ).
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2. [Bound on the hierarchical out-degree]: Let b be a leaf-box and let b1, . . . , bk
be the set of boxes such that b is their hierarchical near-field neighbor. The
number k can be quite large as we have shown in section 3.4. However, in
NF β , b is not directly connected to b1, . . . , bk. Instead, b is connected to
their ancestors of the same size as b. These ancestors are interiorly disjoint
among themselves and are not well separated from b. Hence, they all intersect
β · b. By Lemma 4.7, there are only a constant number of them. Notice also,
by the same reason, that each ancestor of bi’s can be connected to only a
constant number of leaf-boxes in NF β .

3. [Bound on the geometric in-degree]: Let b be a leaf-box and let b1, . . . , bk be
the set of geometric near-field neighbors of b. We have size(bi) ≤ size(b)
and bi is not well separated from b. Hence there is a particle in b which is
contained in β · bi. We can divide b1, . . . , bk into at most O(log2d n+ µ) sets
according to their size. Notice that for each such set, there are at most a
constant number of boxes whose β dilation contains a particular point. Thus,
there are at most O(log2d n + µ) leaf-boxes whose β dilation can contain a
particular point of b. Because there are a constant number of particles in b,
we have k ≤ O(log2d n+ µ).

4. [Bound on the geometric out-degree]: Let b be a leaf-box and let b1, . . . , bk
be the set of boxes of whom b is the geometric near-field neighbor. We have
size(bi) ≥ size(b) and β · b intersects bi. By Lemma 4.7, k is bounded by a
constant.

We now prove that a box cannot have too many neighbors in the far-field graph.
First we show that a box b is connected with a constant number of boxes in

bidirectional interaction-pairs. Let b1, . . . , bk be the set of boxes such that (b, bi) is
a bidirectional interaction-pair. We have size(b)/2 ≤ size(bi) ≤ 2size(b). Moreover,
parent(bi) is not well separated from b. Each box has at most 2d child-boxes. The set
of parent-boxes is interiorly disjointed. By Lemma 4.7, k is bounded by a constant.

Let b be a leaf-box. We now bound the number of boxes b1, . . . , bk such that
(b, bi) is a unidirectional interaction-pair from bi to b. It follows from the analysis
of BH [3] that each particle is involved with at most O(logn + µ) well-separation
boxes. In our new definition of well-separation condition for the case when b is a
leaf-box, box bi is well separated from b only if bi is well separated from all particles
in b. Because b has a constant number of particles, there are at most O(logn +
µ) well-separated boxes that are involved in unidirectional interaction-pairs with a
leaf-box b.

Finally, for each box b we give a bound on the number of leaf-boxes b1, . . . , bk
such that (bi, b) is a unidirectional interaction pair from b to bi. From Procedure
Refined Interaction-Pair, we have size(b) ≤ size(bi) and the parent of b is not well
separated from bi. Hence β · parent(b) intersects bi. By Lemma 4.7, k is bounded by
a constant.

Therefore, the degree of FMβ and hence BHβ
P is bounded by O(logn+µ).

The proof above, in fact, shows that all non-leaf-boxes of FMβ and BHβ
P have

in-degree bounded by a constant.
LEMMA 4.9. If P = {p1, . . . ,pn} in Rd is µ-nonuniform, then the edge-weight of

FMβ(P ) and BHβ
P (P ) is bounded by O(logn+ µ).

Proof. It follows from the proof of Lemma 4.8 that all non-leaf-boxes of FMβ

and BHβ
P have in-degree bounded by a constant. The in-degree gives a bound on the

number of message units that are sent to a box during the hierarchical method. A
non-leaf-box needs to forward some of these messages down the hierarchical tree.
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The lemma follows from the following observation: suppose T is a tree of height
D. Each internal node of T needs to send at most C (which is a constant) number of
data units down the tree. Then the number of data units that pass any tree edge is
bounded by CD.

Theorem 4.6 then follows directly from Lemmas 4.8 and 4.9 and Theorem 4.1.

5. Load balancing parallel adaptive N-body simulation. Partitioning the
communication graph FMβ and BHβ

P into a given number of subgraphs of roughly
equal size does not necessarily balance the load of computation in parallel N-body
simulation because the amount of computation at a particle or a box is different from
that at another. Using FMβ and BHβ

P for modeling a hierarchical method, we need
to map computations onto these communication graphs. To model the load at each
particle and box, we introduce a weight to each vertex of graphs FMβ and BHβ

P .
The weight is equal to the number of operations that are performed at the vertex.
We will show how to compute these weights in the next section.

The load balancing problem for parallel N-body simulation can now be described
as follows: given a parallel machine with p processors, partition the weighted FMβ

or BHβ
P into p subgraphs with roughly equally total weights while minimizing the

communication overhead.
Load balancing for N-body simulation is more difficult than that for unstructured

finite-element computation, partially because the computation load of each vertex in
the N-body communication graph is not uniform and the N-body communication
graph is not given (explicitly) in advance. We have to either compute such a graph
explicitly or devise a partitioning algorithm that does not require the combinatorial
structure of the communication graph.

Our partitioning theorem can be extended to weighted N-body graphs. In the
next section, we will use the nonweighted partitioning algorithm to efficiently compute
the N-body communication graph in parallel. Putting these together, we develop an
efficient load balancing scheme for parallel adaptive N-body simulation.

Teng, Pramono, and Ruppert [32, 31, 11] showed that the partitioning theorem
of Miller et al. [20] (Theorem 4.3) can be naturally extended to the weighted case.
Applying their weighted version result to our main partitioning Theorem 4.1 we have
the following weighted partitioning theorem.

THEOREM 5.1. Let G be a weighted N-body communication graph (for either
BH or FMM) of a set of particles at P = {p1, . . . ,pn} in Rd (d = 2 or 3). If P
is µ-nonuniform, then G can be partitioned into two equally weighted subgraphs by
removing at most O(n1−1/d(logn + µ)1/d) nodes, or by removing edges of at most
O(n1−1/d(logn+ µ)2+1/d) total edge weights.

Recursively applying our partitioning theorem, we can analyze the quality of
the recursive bisection scheme for p-way partitioning. (See Simon and Teng [27] for
unstructured meshes.)

COROLLARY 5.2. If G is a (weighted) N-body communication graph for particles
that are µ-nonuniform, then G can be partitioned into p equally weighted subgraphs
such that the total weight of the removed edges is bounded by O(p1/dn1−1/d(logn +
µ)2+1/d).

Proof. By Lemma 4.1 of [27], the total weight of removed edges of the recursive
bisection scheme is

log p−1∑
i

2if(n/2i),
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where f(x) = x1−1/d(log x + µ)2+1/d. Summing up, we can bound the formula by
O(p1/dn1−1/d(logn+µ)2+1/d). See section 4 of [27] for the bound on general recursive
bisection schemes.

Therefore, computation and total communication volume is equal to, respectively,
O(n/p) and O(p1/dn1−1/d(logn + µ)2+1/d) for FMM and, respectively, O(n logn/p)
and O(p1/dn1−1/d(logn+ µ)2+1/d) for BH. These ratios of computation to communi-
cation imply that parallel N-body simulation can be made as scalable as computation
on regular grids and as efficient as N-body simulations for uniformly distributed par-
ticles.

6. Constructing N-body computation graphs in parallel. The first step of
N-body simulation is to construct the hierarchical tree. Theoretically, Bern, Eppstein,
and Teng [4] showed that the hierarchical tree can be computed from the set of
particles in O(n/p) time using p processors. Several efficient parallel implementations
have been developed [15, 16, 23, 24, 34]. In practice, the hierarchical tree construction
takes a very small fraction of the total simulation time.

Given the set of particles and its hierarchical tree, we need to efficiently construct
the N-body communication graphs FMβ or BHβ

P and determine the computational
load at each particle and box. The key is to compute such a communication graph
without going through the comparison phase. In this section, we show that our
partitioning algorithm and theorem enable us to use the separator-based geometric
divide-and-conquer scheme of Frieze, Miller, and Teng [10] to construct FMβ and
BHβ

P efficiently in parallel.
The basic idea is divide-and-conquer. We exploit the following important property

of our partitioning scheme: because FMβ and BHβ
P are subgraphs of a 3β-overlap

graph of a (log2d n+µ)-ply box system, we can efficiently find a provably good partition
of FMβ and BHβ

P directly from particles and their hierarchical tree. See Appendix
A. The partitioning algorithm does not directly use the combinatorial structure of
FMβ and BHβ

P . Hence, we can apply our partitioning scheme first to divide FMβ or
BHβ

P evenly into a given number of subgraphs of roughly equal size and recursively
construct each subgraph in parallel.

6.1. The construction algorithm. Let B be the set of boxes and particles in
the hierarchical tree of P that is µ-nonuniform in Rd.

1. Find a top level separating sphere S that divides B into three sets BI , BE ,
and BO, where BI , BE , and BO are the set of boxes in B that, respectively,
are in the interior, are in the exterior, and are the vertex partition of FMβ

induced by S. (See Appendix A for the construction of BO.) Our partition
theorem implies that |BI | and |BE | are a constant fraction (1/2 < γ < 1) of
|B| and |BO| ≤ O(n1−1/d(logn+ µ)1/d).

2. Recursively (in parallel) construct the N-body communication graphs GI for
BI ∪BO and GE for BE ∪BO.

3. Merge GI and GE (by deleting multiple edges) to obtain the communication
graph for the N-body simulation.

This class of divide-and-conquer schemes has been carefully proven and analyzed
in [10, 21, 30]. We refer interested readers to these references. We conclude this
subsection with the following theorem, which follows directly from the results of [10,
21, 30].

THEOREM 6.1. Let P be a µ-nonuniform point set in Rd. Given the hierarchical
tree of P , FMβ and BHβ

P can be constructed in random parallel O(n log p/p) time,
using p processors.



652 SHANG-HUA TENG

Proof. A detailed proof of this class of separator-based divide-and-conquer algo-
rithms can be found in [10] for a parallel implementation and [21, 30] for a sequential
implementation. Here we just give a high level argument. Let T (N,Q) be the time
used by the above algorithm to construct FMβ for N boxes using Q processors. To
eliminate the trivial case when N is a very small constant, we assume that N is large
enough so that N1−1/d ≤ εN for ε� 1− γ. Then, recursively,

T (N,Q) ≤
{
O(N) if Q = 1,
T (γN +N1−1/d, γQ) + logQ otherwise.

(1)

Because N1−1/d ≤ εN � γN , as shown in [10, 21], T (γN+N1−1/d, γQ)+logQ =
O(T (γN, γQ) + logQ) = O(N logQ/Q).

Given FMβ , we can determine the set of all interaction-pairs and the pattern for
the combination technique. From interaction-pairs, we can determine the number of
operations that a box or a particle needs to perform. Therefore, we can efficiently
compute the weights for nodes in FMβ and BHβ

P .

7. Final remarks and open questions. In this paper, we develop an efficient
partitioning and load balancing algorithm for parallel adaptive N-body simulation.
We provide a rigorous theoretical analysis of its quality. Our theoretical result pro-
vides a “quality standard” for practical partitioning and load balancing schemes for
adaptive N-body problems. We show how to apply the idea of BH to improve parallel
adaptive FMM and how to use FMM communication patterns to support parallel BH
implementation. These connections bring together the two “competing” methods and
provide a new understanding of N-body problems. In addition, our results can be
directly extended to Appel’s adaptive N-body solver.

We demonstrate how methods and structures from computational geometry can
be used to solve scientific computing problems. Our theoretical result has a potential
impact on practical N-body computations. On one hand, it guides the development of
provably good load balancing algorithms and software for dealing with adaptive and
nonuniform N-body problems. On the other hand, practitioners who have been devel-
oping the state-of-the-art N-body codes can use our theoretical result as a quality-and-
performance standard and a “theoretical benchmark” for experimentally evaluating
their schemes and software. Even if a practical scheme or a code has not been analyzed
theoretically, our result provides a strong theoretical confidence for the quality and
applicability of the code for a large class of natural practical particle distributions.
We also hope that our work will motivate new investigations that help close the gap
between numerical experiments and a theoretical guarantee for untested data. Such
an investigation, we hope and believe, will ultimately advance our understanding of
this very important problem and produce more efficient and robust parallel N-body
solvers.

We now conclude the paper with some discussions of future projects and open
questions.

• Implement and experiment with our partitioning and load balancing algo-
rithm and incorporate it into existing N-body solvers.3

• Apply this load balancing algorithm to dynamic N-body simulation.
• Apply our results and techniques to the other load balancing schemes (such

as k-d trees and recursive coordinate bisection) and show that they or their

3We are currently implementing this geometry-based partitioning algorithm for N-body simula-
tion. Experimental results of this and related partitioning algorithms will appear in a subsequent
paper [18].
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variants also give provably good partitioning. Some extensions will be given
in [18].
• Investigate new applications of our parallel N-body-communication-graph

construction algorithm.
• Theoretical investigation of the sequential BHβ

S . We conjecture it does not
have a sublinear-sized partition. Such a result will illustrate the importance
of our definition of BHβ

P for parallel implementation.
• Theoretical improvement of the partition theorem of this paper. We con-

jecture that FMβ can be partitioned into two subgraphs by removing only
O(n1−1/d) nodes (d = 1, 2).

Appendix A. Geometric partitioning: algorithm and theory. We now
briefly review Miller et al. geometric graph partitioning technique. For details and
proofs, see their papers [20, 19]. To relate their approach to our paper, we illustrate
their work in the context of box-systems.

The partitioning algorithm maps the d-dimensional box-system into a (d + 1)-
dimensional space.

The central theorem about overlap graphs is that they have good separators, that
is, small sets of vertices whose removal divides them approximately in half. A regular
cubic grid in d-space, with n vertices in an array n1/d on a side, can be divided in half
by removing the n(d−1)/d vertices on a (d − 1)-dimensional slice through the middle
of the array. Up to a constant factor that depends on α, k, and d, an overlap graph
in d dimensions has as good a separator as the cubic grid.

THEOREM A.1 (geometric separators [19]). Let G be an n-vertex α-overlap graph
of a k-ply box-system in d dimensions. Then the vertices of G can be partitioned into
three sets A, B, and C, such that

• no edge joins A and B,
• A and B each have at most (d+ 1)/(d+ 2) vertices,
• C has only O(αk1/dn(d−1)/d) vertices.

Miller et al. gave a randomized algorithm to find the separator in the theorem,
which runs in linear time on a sequential machine or in parallel O(n/p) time with
p processors. The separator is defined by a sphere in Rd. The algorithm chooses
the separating sphere at random, from a distribution that is carefully constructed so
that the separator will satisfy the conclusions of Theorem A.1 with high probability.
The distribution is described in terms of a stereographic projection and conformal
mapping on the surface of a sphere one dimension higher, in Rd+1.

Here is an outline of the algorithm.
• Project up. Project the centers of the input boxes stereographically from Rd

to the unit sphere centered at the origin in Rd+1. Point p ∈ Rd is projected
to the sphere along the line through p and the “north pole” (0, . . . , 0, 1).

• Find centerpoint. Compute a centerpoint of the projected points in Rd+1.
This is a special point in the interior of the unit sphere, as described below.
• Conformal map: Rotate and dilate. Move the projected points in Rd+1 on

the surface of the unit sphere in two steps. First, rotate the projected points
about the origin in Rd+1 so that the centerpoint becomes a point (0, . . . , 0, r)
on the (d + 1)st axis. Second, dilate the points on the surface of the sphere
so that the centerpoint becomes the origin. The dilation can be described
as a scaling in Rd: project the rotated points stereographically down to Rd;
scale the points in Rd by a factor of

√
(1− r)/(1 + r); and project the scaled

points up to the unit sphere in Rd+1 again.
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• Find great circle. Choose a random great circle (i.e., d-dimensional unit
sphere) on the unit sphere in Rd+1.

• Unmap and project down. Transform the great circle to a circle in Rd by
undoing the dilation, rotation, and stereographic projection.
• Convert circle to separator. The vertex separator C is the vertices whose

boxes (in Rd) either (i) intersect the separating circle, or (ii) are smaller than
the separating circle and would intersect it if magnified by a factor of α. The
two sets A and B are the remaining vertices whose boxes lie inside and outside
the circle, respectively.

A centerpoint of a given set of points is a point (not necessarily one of the given
points) such that every (hyper)plane through the centerpoint divides the given points
approximately evenly (in the ratio d : 1 or better, in Rd). Every finite point set in Rd
has a centerpoint, which can be found efficiently in random constant time [8]. After
the projection and conformal mapping, the origin of Rd+1 is a centerpoint for the
mesh points. Therefore the mapped points are divided approximately evenly by every
plane through the origin, that is, by every great circle on the unit sphere in Rd+1.

Every great circle determines a separator C that satisfies all the conclusions of
Theorem A.1 except the last one, on the size of the separator. Miller et al. show that
the average size of the separators determined by all the great circles is as stated in the
theorem, and therefore that a randomly chosen great circle probably gives a separator
within a constant factor of the desired size.
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