Bane

/

I\

=y

Using sketch-map coordinates to analyze and
bias molecular dynamics simulations

Gareth A. Tribello?, Michele Ceriotti®', and Michele Parrinello*’

2Department of Chemistry and Applied Biosciences, Eidgendssische Technische Hochschule Zurich, and Facolta di Informatica, Istituto di Scienze
Computazionali, Universita della Svizzera Italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland; and "Physical and Theoretical Chemistry Laboratory,

University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom

Contributed by Michele Parrinello, January 24, 2012 (sent for review December 16, 2011)

When examining complex problems, such as the folding of pro-
teins, coarse grained descriptions of the system drive our investi-
gation and help us to rationalize the results. Oftentimes collective
variables (CVs), derived through some chemical intuition about the
process of interest, serve this purpose. Because finding these CVs is
the most difficult part of any investigation, we recently developed
a dimensionality reduction algorithm, sketch-map, that can be used
to build a low-dimensional map of a phase space of high-dimen-
sionality. In this paper we discuss how these machine-generated
CVs can be used to accelerate the exploration of phase space and
to reconstruct free-energy landscapes. To do so, we develop a
formalism in which high-dimensional configurations are no longer
represented by low-dimensional position vectors. Instead, for each
configuration we calculate a probability distribution, which has a
domain that encompasses the entirety of the low-dimensional
space. To construct a biasing potential, we exploit an analogy with
metadynamics and use the trajectory to adaptively construct a re-
pulsive, history-dependent bias from the distributions that corre-
spond to the previously visited configurations. This potential forces
the system to explore more of phase space by making it desirable
to adopt configurations whose distributions do not overlap with
the bias. We apply this algorithm to a small model protein and
succeed in reproducing the free-energy surface that we obtain
from a parallel tempering calculation.

Statistical mechanics connects the micro and macro scales by
showing how thermodynamic state functions, such as free
energy, can be calculated from the classical Hamiltonians that
govern the motions of atoms and molecules. These equations
allow us to calculate ensemble averages, the relative stabilities of
structures, and in some cases reaction mechanisms. At first glance
the 3N-dimensional integrals over configuration space make the
equations of statistical mechanics appear unsolvable. However,
all of them involve integrals over distributions in which the prob-
ability of a microstate is related to its energy. Therefore, because
the vast majority of phase space is energetically inaccessible, only
a relatively small number of configurations make nonnegligible
contributions (1-4). Hence, the problem is not so much the
integrals, but rather it is determining which are the low energy
states that significantly contribute to them.

Molecular dynamics (MD)—using Newton’s equations to cal-
culate a trajectory for the system—is a technique that we can use
to find the energetically accessible portions of phase space. The
configurations visited during an MD simulation are distributed
according to the canonical ensemble so ensemble averages can be
calculated by just averaging over the trajectory. However, to do
so, one has to assume ergodicity, i.e., that all relevant configura-
tions have been visited during the simulation. This assumption is
problematic whenever the energy landscape contains long-lived
stable/metastable minima separated by high barriers (5). These
features dramatically decrease the rate at which phase space is
sampled and so introduce a characteristic timescale for phenom-
ena, which, for protein folding and phase transitions, is typically
on the order of milliseconds or more. Studying these processes
using unbiased MD is difficult because when using this technique
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it is only possible to simulate the system for very short (=1 ps)
periods of time. Admittedly, this limit can be extended (to ~1 ms)
by using specialized hardware, but doing so forces one to limit the
form of the Hamiltonian (6).

It is possible to increase the frequency with which the barriers
separating metastable basins are crossed by introducing a bias
potential that makes the energies in the basins comparable with
the energies at the transition states (7). Furthermore, because we
know the form of the bias function, we can reweight the biased
trajectory and obtain the unbiased free-energy surface (8-11).
These so-called enhanced sampling methods are now common-
place and applying them to simple chemical problems is relatively
straightforward (12-14). The problem comes when the chemistry
is more complex, in large part because it is then not obvious how to
construct the biasing potential using chemical/physical intuition.

Bias potentials are typically constructed as a function of a small
number of collective variables (CVs). Selecting these CVs is the
most difficult part of any investigation, so we have recently begun
to develop an automated strategy based on machine learning.
The first step in this strategy is to obtain a very thorough sampling
of the accessible portion of phase space using an algorithm, which
adaptively constructs a bias as a function of a large number (D) of
collective variables (15). By applying dimensionality reduction—
in particular our recently developed sketch-map algorithm (16)—
to the trajectory obtained from this calculation, one can obtain a
lower, d-dimensional, representation of the accessible portion of
phase space. Herein we present the final step of the process in
which we adaptively construct a bias potential as a function of
the sketch-map coordinates and thereby obtain a thorough sam-
pling of phase space from which we can extract free energies
through reweighting. In what follows, we present the mathema-
tical concepts and demonstrate the application of the algorithm
on a simple model potential. We then apply it to the alanine 12
system that we examined in our two previous articles (15, 16) and
show that we can use our metadynamics algorithm to reproduce
the free-energy surface (FES) obtained via parallel tempering.

Background

In all chemical systems the shape of the potential energy surface
makes large portions of phase space inaccessible by placing en-
ergetic constraints on the geometry of the system (5). In many of
the commonly used biasing methods we assume that this acces-
sible portion of phase space lies on a low-dimensionality manifold
that is embedded in the full dimensionality space. For many
methods, vectors (CVs) that describe this manifold are selected
through chemical/physical intuition. However, this process of
finding appropriate CVs is often far from straightforward (17)
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and so there is a strong temptation to look to see whether an
automated process can be devised.

An ideal CV for biased dynamics should produce a map of
phase space in which all the significant basins in the free-energy
surface are well-separated. In addition the CVs should be con-
structed so that, during the biased dynamics, the system will be
pushed along the lowest-lying transition pathways. Dimensional-
ity reduction and manifold learning algorithms are tools that, at
least in theory, allow us to develop such CVs. These algorithms
construct a d-dimensional representation of a set of data points
distributed in a D-dimensional space, by projecting points in the
low-dimensionality space in a way that reproduces the pairwise
distances between the points in the high-dimensionality space. In
the high-dimensionality space, these pairwise distances can be the
Pythagorean distance (multidimensional scaling) (18), the geode-
sic distance (isomap) (19, 20), a nonlinear transformation of the
Pythagorean distance (kernel principal component analysis) (21,
22) or the diffusion distance (diffusion maps) (23-27). In con-
trast, in the low-dimensional space, the Pythagorean metric is
used and points are distributed so that the distances between
them are approximately equal to their corresponding high-dimen-
sional value. Additionally, in the vast majority of applications, this
process of distance matching is not done by iteratively minimizing
the discrepancies between the distances in the high- and low-
dimensional spaces. Instead some algebra is performed on the
matrix of D-dimensional distances which makes the optimization
process deterministic (18).

The problem with these methods is that it is difficult to come
up with general D-dimensional metrics that will by necessity pro-
duce a set of distances that can be reproduced in a low-dimen-
sional, linear space (28, 29). As an example, consider mapping the
surface of a sphere in two dimensions, as one has to do to draw a
map of the world. The resulting representation will inevitably
provide a distorted view of the original. Furthermore, discontinu-
ities can only be avoided if one incorporates a nonlinear feature
—the periodicity—in the low-dimensional representation. Worse
still, and more relevant to the problem at hand, is the fact that in
our previous paper we provided evidence that certain features in
typical trajectory data are characteristic of a distribution of points
in the full-dimensionality space (16). These realizations led us to
develop an algorithm, sketch-map, for performing dimensionality
reduction on trajectory data. In developing this algorithm we
imagine that the free-energy surface is composed of a network
of energetic basins, connected by a spider’s web of narrow transi-
tion pathways. Points distributed on this surface display high-
dimensionality features because the fluctuations within each basin
take place in the full-dimensional space, and because the basins
are scattered across the D dimensions. Thus, in sketch-map we try
to qualitatively reproduce the spider’s web of connections by
transforming the distances in both the D-dimensional and d-di-
mensional spaces. This transformation ensures that the algorithm
focuses on reproducing the distances that lie within a particular
range—the length scale that corresponds to the transition path-
ways between basins. For the remainder of the distances we only
insist that if the points are close together in the high-dimension-
ality space they should be projected close together, and if they are
far apart they should be projected far apart.

Sketch-map produces a low-dimensional map of phase space in
which the various basins in the high-dimensionality free-energy
surface are well-separated (16). As such sketch-map coordinates
satisfy one of the conditions we require for a good collective
variable, and free-energy surfaces projected as a function of them
are highly revealing. Where they fall short somewhat is in their
description of the transition pathways between basins. These fail-
ures are to a certain extent unavoidable—representing complex
features in a lower dimensionality space introduces distortions,
which inevitably concentrate in poorly sampled regions such as
the transition states. To clarify this issue a potential pitfall is illu-
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strated in Fig. 1. This figure shows a three-dimensional potential
energy surface with periodic boundary conditions that contains
eight energetic basins and twenty-four transition pathways. In pro-
jecting this landscape we must map a three-dimensional, toroidal
space into a two-dimensional plane. It is impossible to do this map-
ping without introducing distortions much as it is impossible to
map the surface of the Earth on a flat surface rather than on the
surface of a globe. Fig. 1 also shows the two-dimensional represen-
tation of the surface generated by sketch-map. This projection is
nevertheless revealing as it nicely separates the basins while map-
ping out most of the transition pathways in this free-energy surface.
However, the mapping is imperfect, four of the transition pathways
are distorted to the extent that points which are adjacent in the
three-dimensional representation are projected at opposite ends
of the two-dimensional representation. Consequentially, certain
portions of the high-dimensionality space are not mapped out
properly and will present a problem when this projection is used
inside an enhanced sampling algorithm. As we will discuss in the
next section we have remedied this problem by developing a more
versatile framework for enhanced sampling, which exploits more
of the information we obtain when we perform projections from
the D-dimensional to the d-dimensional space.

Enhanced Sampling Algorithm

To enhance the sampling along the sketch-map coordinates using
metadynamics we must be able to calculate the projection (x) of
any arbitrary point (X) in the D-dimensional space. Using a set of
N landmark points X; and their projections x; one could compute
a weight for each landmark based on the distance |X — X;| and
then compute x as a weighted average. This idea is the basis of
path collective variables (30) and a recently proposed method
based on Isomap (31). It assumes that the X;s represent a dense
sampling of the high-dimensionality manifold and that the mani-
fold is quasilinear in the neighborhood of each landmark point.
These assumptions are not valid for sketch-map coordinates,
which endeavor to describe poorly sampled, highly noneuclidean
space. Hence, as discussed in our previous paper (16), a better
approach for finding out-of-sample projections is to minimize
the stress function
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Fig. 1. A complex free-energy surface that is periodic in three directions (A)
and its sketch-map projection (B). B shows how one can use functions of the
sketch-map coordinates to describe the position in the three-dimensional
space. The fields generated for the three marked points are shown. Where
sketch-map reproduces the topology (point 1) the field is sharply peaked and
is roughly Gaussian shaped. Where sketch-map provides a less good descrip-
tion the field has multiple peaks because there are multiple points where it is
reasonable to project (point 3).
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where w; is the weight of the ith landmark point, and F(x) and
f(x) are the sigmoid functions that were used to construct the
sketch-map projection. Minimizing this function is problematic
because in the vicinity of transition states where the sketch-
map projection is poor there may be multiple nearly degenerate
minima in the above. Consequentially, the d-dimensional projec-
tion of a trajectory in the D-dimensional space contains disconti-
nuities and poor descriptions of some of the conformational
transitions. We thus require an alternative approach that incor-
porates a better description of these problematic regions and in
which any discontinuities are smoothed out. In our solution to
this problem each high-dimensional configuration X is associated
with a d-dimensional field, ¢ (x), which is given by

prte) = P
T Jewl-
This field replaces the usual representation based on d-dimen-
sional points x. The overlap between fields, which measures their
similarity, replaces the distance. The smearing parameter, o, can
be set by ensuring that the overlap between fields corresponding
to structurally distinct landmark points is negligible. Then, with
this machinery in place, we can create an algorithm that is ana-
logous to metadynamics (32) and use a history-dependent bias to
discourage the system from returning to previously visited config-
urations. Now, though, this biast is calculated from the overlap
between the instantaneous field, ¢y (x), and a bias field v(x,t),
constructed from previously visited configurations:

1(X.x) = (1]

(2]

V(X.1) = / $x (0)v(x, 1)dx, 31
where
i) = Yoo - g
t'=0

When y? has a well-defined global minimum, this field is
strongly concentrated about the minimum, with a shape that is
nearly Gaussian. Consequentially, the algorithm described above
reduces to well-tempered metadynamics (33) in this limit (S/
Text). The pleasing thing though is that, as shown in Fig. 1, when
the minimization is not straightforward the probability distribu-
tion splits itself between the various degenerate minima in Eq. 1.
Therefore, these fields give a better description of the trajectory
in regions where the sketch-map projection is poor. Furthermore,
the field changes smoothly even when the out-of-sample projec-
tion changes discontinuously. A slight problem is that there is no
longer a simple mathematical relationship between the final bias
and the free-energy surface. However, one can always reconstruct
the free-energy surface using on-the-fly reweighting (8-11). In
fact, calculating the free energy in this way is advantageous as
the converged FES will not be affected if the fields are broader
than the features in the free-energy landscape. Hence, a poorly
chosen ¢ will not adversely affect the accuracy of the method.

Results

Model Potential. To test our algorithm we first examined the model
potential shown in Fig. 1. As we have explained here and in our
previous paper (16), it is difficult to produce a two-dimensional,

"The corresponding force is equal to

_ov(X.D)

X, x)
X :

2
aoz [ @sprbten) - vix o 250

5198 | www.pnas.org/cgi/doi/10.1073/pnas.1201152109

geometry-preserving map of the low energy portions of this
potential. The sketch-map projection nicely separates the eight
basins but only by introducing severe distortions in four of the
transition pathways. These four discontinuities make the machin-
ery discussed above absolutely critical. The results in Fig. 2 show
that our algorithm performs admirably. We are able to quickly
explore the entirety of the space, we see many recrossing events
and the bias converges by the end of our simulations (SI 7ext).
Together these factors make it so that we can safely extract the
free energies surfaces shown in Fig. 2 by reweighting the histo-
gram of visited configurations. In Fig. 2 we compare the re-
weighted free energies with those obtained by integrating out
explicitly one of the three degrees of freedom in Fig. 2. Also
shown is the free energy computed as a function of the sketch-
map coordinates, which is perhaps more revealing as in this re-
presentation the complex topology of the free-energy surface with
its eight identical basins can be clearly seen. This representation
also demonstrates that there are six escape routes from each
basin and that every pathway that is not broken by the projection
(i.e., every pathway that we can examine using these CVs) is
energetically equivalent.

Polyalanine-12. Having demonstrated our algorithm on a relatively
simple energy landscape we now turn our attention to a more
complex system; namely, the landscape of polyalanine-12 in
implicit solvent. This system has been extensively studied and
it has been shown that the potential energy surface, although very
rough, is overall funnel-shaped with an alpha-helical global mini-
mum (5, 34). However, in spite of this structure, local minima in
the potential energy surface (35) prevent the system from forming
the helix during long, unbiased MD simulations (15), which sug-
gests that MD alone is not a suitable tool for exploring this land-
scape. In contrast, reconnaissance metadynamics can find the
global minimum so we have thus used this technique to collect
the data (15) we used to construct sketch-map projections (16).

An
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Fig. 2. Free-energy surfaces for the model potential shown in Fig. 1 calcu-
lated by reweighting the trajectories obtained from the field-overlap meta-
dynamics simulations. A shows the free energy as a function of the modulus
of two of the three degrees of freedom. In this panel we compare the free
energies obtained by reweighting the trajectory with those calculated by ex-
plicitly integrating the free energy using the known Hamiltonian. B shows
the free-energy surface as a function of the sketch-map coordinates, which
was calculated by reweighting the metadynamics trajectories and using the
out-of-sample extension from ref. 16 to define the instantaneous position in
sketch-map space. Insets show the free energy in the vicinity of one of the
basins and along a pair of transition pathways.
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To asses the quality of our metadynamics simulations we first
computed free-energy surfaces for alal2 using parallel tempering
(36, 37). In and of themselves these results are interesting as they
demonstrate that, when free energies are displayed as a function
of a set of simple collective coordinates, the resulting pictures
can give a myopic view of the underlying physics. Fig. 3 shows the
free-energy surface as a function of the gyration radius and the
mean square displacement from an alpha helix configuration.
This surface is very smooth, and has just two prominent features,
one peaked basin and one very broad basin, which can be asso-
ciated with the folded and unfolded states. This smoothness is in
sharp contrast to the picture in Fig. 4, which shows the free energy
in terms of the sketch-map coordinates. In this representation the
free-energy surface appears to be very rough with a large number
of very well-localized basins. This result is more in line with what
one would expect given the results from potential energy methods
(34) and given that the system does not fold during a 1-ps MD
simulation (15). Nevertheless, the CVs used in Fig. 3 can differ-
entiate between the folded and unfolded states. Hence, they can
safely be used to compare the relative populations of these states
in unbiased MD simulations so that comparisons can be made
with experiment. The problem though is that the description of
the free-energy landscape that these CVs provide is incomplete—
these simple collective coordinates can distinguish folded config-
urations from the sea of unfolded states but are unable to detect
the sometimes marked differences between the various unfolded
configurations.

When CVs do not discriminate well between states interesting
features in the landscape get blurred out. This fact explains why
the many basins, which are visible in Fig. 4, become blurred into a
broad, featureless valley in which there are no well-defined mini-
ma in Fig. 3. A direct consequence of this blurring is that, when
these simple collective coordinates are used in a metadynamics
simulation, the estimate of the free energy will converge very
slowly. In fact, in all probability, it will only be possible to con-
verge the free energy by combining metadynamics with parallel

MSD [nm?]

rg [nm]

tempering (38) so as to ensure that barriers in the transverse de-
grees of freedom can be crossed. Using multiple replicas of the
system in this way is expensive and limits the sizes of the systems
that can be studied. Furthermore, one is left feeling that, were the
collective coordinates better able to describe the various barriers
to motion, much of this computational expense could be avoided.

In Figs. 3 and 4 we show the free-energy surfaces obtained
through on-the-fly reweighting of field-overlap metadynamics
simulations performed using sketch-map coordinates in tandem
with the field formalism laid out previously. These free-energy
surfaces were calculated at 525 K, which is the unfolding tem-
perature for this system. Reproducing the free-energy surface at
this temperature is particularly challenging because, unlike at
300 K, there is significant occupancy of the unfolded state. Even
so the surfaces obtained from metadynamics are very close to the
results from the parallel tempering (see SI Text for a more quan-
titative analysis). This result is particularly impressive given the
complexity of the free-energy surface when it is projected as a
function of the sketch-map coordinates (Fig. 4).

Conclusions

Enhanced sampling and free-energy methods have been used to
understand a wide variety of chemical and physical phenomena.
In producing these successful applications, choosing collective
variables that describe the problem of interest is critical. Making
this choice is enormously difficult and it is perhaps this problem,
more than any other, which prevents these methods being used
even more widely. This choice will always be challenging, how-
ever, as we perform simulations to understand the properties of
complex Hamiltonians that describe enormous numbers of inter-
related energetic constraints. We should thus not be surprised
when the results cannot be explained using a simple function of
the atomic positions.

When using collective variables in any approach, it is critical
to remember that low-dimensional descriptions of complex
chemical processes are inherently limited. Invariably certain
features of the intrinsically high-dimensional process will be left
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Fig. 3. The free-energy landscape for ala12 in implicit solvent calculated from parallel tempering (A) and field-overlap metadynamics (B, using sketch-map
coordinates) simulations. Here the free energy is shown as a function of the radius of gyration and the mean square displacement from the native state
configuration. These CVs project radically different structures close together and thus many of the energetic barriers between structures disappear. In
the highlighted structures the red and blue balls indicate the positions of the N and C termini, respectively.
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Fig.4. The free-energy landscape for ala12 in implicit solvent calculated from parallel tempering (A) and field-overlap metadynamics (B) simulations. Here the

free energy is shown as a function of the sketch-map coordinates and is seen to be very rough. In contrast to Fig. 3 each of the highlighted structures lies in a
separate basin in the free-energy surface. In these structures the red and blue balls indicate the positions of the N and C termini, respectively.

out. Therefore, any decision as to what CV to use should be based
on what information can be safely discarded. For example, if one
wants to examine the folding equilibrium by analyzing an un-
biased MD simulation, the CVs used in Fig. 3 are sufficient as
these coordinates ably distinguish between folded and unfolded
configurations. In contrast, where more detailed descriptions of
the unfolded landscape are required these CVs fail because they
cannot describe the subtleties in regions of phase space that are not
in the immediate vicinity of the minimum-energy, folded state.
In biased MD choosing CVs is particularly critical as, for these
methods, barriers to motion in orthogonal degrees of freedom
can prevent free-energy estimates from converging. Furthermore,
given that in many applications one is endeavoring to accelerate
rare events a thousandfold or even a millionfold times, even bar-
riers that are small compared to that of the rare event represent
significant hurdles. Consequentially, using CVs that, like those
used in Fig. 3, only distinguish the folded state from the sea of
unfolded configurations in algorithms such as umbrella sampling
or metadynamics will always be problematic. In these cases
sketch-map CVs are a better approach as the data-driven strategy
used to derive these coordinates ensures that distinct energetic
basins are mapped to different parts of the low-dimensional
space. The downside is that the sketch-map representation can
contain discontinuities. However, as we have shown herein, this
problem can be resolved by using fields to describe the instanta-
neous state. Admittedly, calculating the overlap integrals in this
approach is considerably more computationally expensive than
calculating the value of a CV. However, it is straightforward
to parallelize these calculations on cheap GPU processors and,
more importantly, unlike parallel tempering, the cost of this
method is independent of system size. Hence, it can be used
to calculate the free energies in very large systems or in ab initio
calculations, where multiple replicas are less feasible. Further-
more, because the free energy is extracted by reweighting, it can
be calculated as a function of any collective coordinate or exam-
ined using the collective variable free approaches that have been
applied to the analysis of unbiased MD trajectories (27, 39, 40).
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Dimensionality reduction is a generic tool that is used in fields
of science ranging from chemistry and physics to social sciences
and psychology. In all these fields this technique serves to identify
low-dimensional trends in easy-to-measure, high-dimensionality
data so that diverse features in the underlying phenomena can
be classified. This understanding can then be used to classify
points from outside the fitting set so that their likely behavior can
be inferred. If these inferences are made by minimizing Eq. 1, one
is forced to assume that the fitting set describes every possibility
and that the low-dimensional representation is a sensible topo-
logical description of the high-dimensionality data. In contrast,
representing a configuration by a field like that in Eq. 2 allows
one to perform these out-of-sample classifications more tenta-
tively and to identify regions of the high-dimensional space
where the low-dimensional representation is perhaps lacking.
This approach is generic and builds on the notion that the overlap
between normalized fields gives a measure of their similarity. In
some cases, where it is natural to represent the high-dimension-
ality data using a normalized histogram (41), it may even be pos-
sible to use the overlap between these probability distributions
directly, and to avoid the dimensionality reduction step com-
pletely.

Materials and Methods
Reweighting. All the free-energy surface obtained from metadynamics simu-
lations were calculated using on-the-fly reweighting of multiple trajectories.
The free energies as a function of a collective coordinate, s, were calculated
based on a single trajectory using

]

) . [8]

where the sum runs over the entirety of the trajectory. The free energies
shown in the paper were then calculated by averaging the free energies
obtained from a number of statistically uncorrelated simulations.

' dls(t’) =] exp[+ LX)
_kBT10g<Z' =1 k5T

i expl+ AR

t'=1

F(s) =
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Model Potential. The model potential shown in Fig. 1 is given by
V(6, ¢, w) = exp(3[3 — sin*(9) —sin*(¢) — sin*(y)]) — 1. We study the thermo-
dynamics of a particle of mass m at temperature T. Hence, if one defines the
unit of length as /*, then the characteristic time unit, t*, is equal to , /;77/*. To

integrate the equation of motion we used the velocity Verlet algorithm with
a timestep of 0.01 t*. Temperature was kept fixed using a Langevin thermo-
stat that had a relaxation time of 0.1 t*. The sketch-map projection of this
landscape that was described in ref. 16 was used throughout. The integrals in
Eq. 3 and the equations for the forces were evaluated numerically on a 250 x
250 grid of points. However, because evaluating the value of Eq. 1 at every
one of these points would be prohibitively expensive, we chose instead to
only evaluate this function on a 15 x 15 grid of points. The function was then
interpolated onto the remaining grid points using a bicubic interpolation
algorithm (42). The bias field was augmented with a new function every
100 steps, while the initial height, o, and the well-tempered factor, AT, were
set equal to 0.44 kT and 4 kgT, respectively. To collect adequate statistics
the free-energy surfaces shown in Fig. 2 were calculated from sixteen statis-
tically uncorrelated runs, which each ran for a total time of 52,800 t*.

Alanine 12. All simulations of polyalanine were run using gromacs-4.5.1 (43),
the amber96 force field (44), and a distance dependent dielectric (34). A time-
step of 1 fs was used throughout, all bonds were kept rigid using the LINCS
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algorithm, and the van der Waals and electrostatic interactions were calcu-
lated without any cutoff. The temperature was maintained using an optimal-
sampling, colored noise thermostat (45). Once again the sketch-map projec-
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of points that was constructed by performing a bicubic interpolation from a
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runs—a total of 800 ns of simulation time. For comparison we also calculated
the free-energy surface for this system from a single, 800 ns parallel temper-
ing calculation with five replicas in which swapping moves were attempted
every 100 steps. The temperatures of the replicas in this calculation were
525.00 K, 601.86 K, 688.23 K, 785.17 K, and 886.17 K. The radius of gyration
and distance from the alpha-helical configuration were calculated using
PLUMED (13).
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