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ABSTRACT
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
replication transcription complex (RTC) is a multi-domain protein
responsible for replicating and transcribing the viral mRNA inside
a human cell. Attacking RTC function with pharmaceutical com-
pounds is a pathway to treating COVID-19. Conventional tools,
e.g., cryo-electron microscopy and all-atom molecular dynamics
(AAMD), do not provide su�ciently high resolution or timescale
to capture important dynamics of this molecular machine. Con-
sequently, we develop an innovative work�ow that bridges the
gap between these resolutions, using mesoscale �uctuating �nite
element analysis (FFEA) continuum simulations and a hierarchy
of AI-methods that continually learn and infer features for main-
taining consistency between AAMD and FFEA simulations. We
leverage a multi-site distributed work�ow manager to orchestrate
AI, FFEA, and AAMD jobs, providing optimal resource utilization
across HPC centers. Our study provides unprecedented access to
study the SARS-CoV-2 RTC machinery, while providing general
capability for AI-enabled multi-resolution simulations at scale.
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1 JUSTIFICATION
We developed an AI-enabled multi-resolution simulation frame-
work for studying complex biomolecular machines by directly inte-
grating experimental data. Our framework sets high-water marks
for AI-driven multi-resolution simulations and achieving high uti-
lization of resources across diverse supercomputing platforms at
multiple sites.

2 PERFORMANCE ATTRIBUTES
Performance Attribute Our Submission

Category of achievement Scalability, Time-to-solution
Type of method used Explicit, Deep Learning

Results reported on the basis of Whole application including I/O
Precision reported Mixed Precision

System scale Measured on full system
Measurement mechanism Hardware performance counters,

Application timers,
Performance Modeling
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Figure 1: An integrative biology framework for re�ning
low resolution cryo-EM structures with multi-resolution
simulations. (1) Representing the cryo-EM density map as
a continuum visco-elastic solid. (2) Finite element analy-
sis simulations are then used to generate new conforma-
tions. AI techniques identify interesting events in the land-
scape (global conformational changes), while (3) simultane-
ously constraining them with all-atom simulations derived
protein-protein interface potentials. (4) AI methods are also
used to learn local conformational changes across themolec-
ular machine, such that they can be used to (5) re�ne do-
main orientations in the entire biomolecular complex. (6)
The output represents a set of atomistically re�ned ensem-
ble of structures that captures the conformational �uctua-
tions embodied in the cryo-EM data.

3 OVERVIEW OF THE PROBLEM
The novel coronavirus 2019 (COVID-19) pandemic has led to a
massive acceleration in the pace of development in experimental
structural biology. Multiple research teams have invested their
best resources towards the common goal of characterizing viral
components and their biological functions, thereby providing a
sign-post for the future direction of the �eld (Alam and Higgins,
2020, Bárcena et al., 2021, Barrantes, 2021, Kim and Jung, 2021).
Structural biology data, which provides the basis for rational design
of all new medicines against human and animal disease, is now
inherently multi-modal and multi-scale, requiring novel integrative
approaches (AlQuraishi, 2019, Arantes et al., 2020, Jumper et al.,
2021, Minkyung et al., 2021, Muratov et al., 2021, Padhi et al., 2021,
Tunyasuvunakool et al., 2021, Zimmerman et al., 2020).

While the mechanism of human host cell entry and infection
by SARS-CoV-2 via the spike glycoprotein is now relatively well
characterized (Barros et al., 2020, Shang et al., 2020, Sztain et al.,

2021, Zhang et al., 2021), how the SARS-CoV-2 replicates inside the
host cell is still unclear (Romano et al., 2020). The viral-RNA replica-
tion mechanism is complex, involving RNA synthesis, proofreading,
and capping and is mainly carried out by the mini-replication tran-
scription complex plus error correction machinery (mRTC+ECM
from here on referred to as RTC), having to survive against the
human immune response. Cryo-EM techniques and computational
methods have been immensely helpful in elucidating the overall
structural organization of the RTC (Chen et al., 2020, Perry et al.,
2021, Yan et al., 2020, 2021a), but the high intrinsic �exibility, size
and complexity of the nsp arrangement entails that the overall res-
olution of the data is inherently poor. Consequently, the structure
re�nement work�ows discard 30-40% of collected images from the
existing RTC complex datasets (Chen et al., 2020, Yan et al., 2020,
2021a), leaving signi�cant gaps in our understanding.

Although several studies have focused on disrupting the func-
tion of the individual non-structural proteins (nsps) with small
molecules, key insights into the overall structural organization,
dynamics and function of the RTC machinery are more di�cult to
obtain. This is crucial, because the ability to target protein-protein
interactions between subunits of the RTC complex o�ers far more
possibilities for drug development. Moreover, the arrangement of
individual protein components of the RTC+ECM protein is itself
dynamic during the viral life-cycle. The computational capability to
model these interactions would provide further insight of relevance
to drug development, but is currently impossible without novel
multi-scale models and the work�ows that connect them.

The primary challenge of experimental imaging is elucidating
diverse structural dynamics. This stems from the averaging process
of the imaging data: cryo-EM, in particular, and other experimental
techniques capture only the most sampled conformational states
as static, snapshot-like representations, but the intermediates or
transitional states are less represented (Lyumkis, 2019, Merk et al.,
2016). The details of motions within �exible domains can be en-
riched using complimentary tools such as molecular dynamics (MD)
simulations and Bayesian inference techniques (Bowerman et al.,
2017, Bratholm et al., 2015, Cavalli et al., 2007, Grishaev and Llinás,
2005, Scheres, 2012); however, the timescales accessible to these
atomistic simulations can be a limiting factor. In addition, advances
in 4D imaging modalities (Earnest et al., 2017, Engel et al., 2015,
Mahamid et al., 2016, Villa and Lasker, 2014) and the volume of data
generated from such experimental datasets can be overwhelming.

Therefore, in this paper we address the urgent, yet unmet need to
develop scalable computational tools that can aid the improvement
of resolution within cryo-EM datasets through multi-resolution
simulations. In an e�ort to bridge the gap between experimental
and purely all-atom molecular dynamics (AAMD), we leverage
a complementary mesoscale method of representing biophysical
systems, treating biomolecules as visco-elastic continuum solids
using �uctuating �nite element analysis (FFEA) (Oliver et al., 2013)
technique. These continuum-scale lower resolution FFEA simula-
tions provide a generative model for the cryo-EM data. However,
implementing an approach that directly models electron density
information from cryo-EM data requires a radically di�erent way
to model conformational ensembles, one that moves away from
atomistic-resolution towards a continuum-representation, where
by the intrinsic resolution of the data can be captured with nodes
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Figure 2: Hybrid structure of the FFEA mesh superimposed with the all-atom representation. The all-atom structure of the
RTC dimer is shown as a cartoon (blue) and the FFEA tetrahedral mesh structure determined from the experimental cryo-EM
map is shown as a wireframe. The top inset represents a 90� rotation of the RTC dimer capturing the range of protein-protein
interfaces in themachine. A close-up view of themesh at the interface between the RdRp (nsp12) and nsp13 reveals the surface
interface potentials inferred from AAMD simulations. Each mesh point is painted with the surface interface potentials, with
darker shades of red indicating higher and lighter shades indicating lower interaction energy in the protein-protein interface.

and meshes, allowing experimentally obtained cryo-EM data to
be used directly in simulations, at time and length-scale orders of
magnitude increased over traditional all-atom methodologies.

We present a radically innovative work�ow, providing the op-
portunity to accelerate conformational sampling (both AAMD and
FFEA) with AI, thus holding much promise in providing mechanis-
tic insights into the dynamics of large biomolecular complexes (Fig.
1). We leverage FFEA and AAMD simulations to iteratively �ll in
the gaps of cryo-EM data by re�ning the pairwise atomic/molecular
interactions while being automatically constrained by the degrees
of freedom embodied in the cryo-EM data. This iterative coarse-
graining approach maintains the �delity between experimentally
observed densities with the detailed potentials from rigorous physics-
based AAMD simulations to learn informative priors and e�ectively
guide the conformational search and can result in better �ts to
the experimental observations. We demonstrate our iterative ap-
proach in modeling the complex conformational transitions within
the SARS-CoV-2 RTC to observe how the various nsps coordinate
the proofreading process of the viral-RNA. These conformational
changes can aid in understanding and guiding the design of novel
therapeutics such as molnupiravir, which aim to target speci�c
nsps. (Agostini et al., 2019, Sheahan et al., 2020)

4 CURRENT STATE OF THE ART
4.1 Parallel molecular dynamics
NAMD (Phillips et al., 2005, 2020) has been one of the most utilized
parallel molecular dynamics engines for over two decades, being

cited once every ⇠70 minutes 1. NAMD uses adaptive, asynchro-
nous, message-driven execution based onCharm++ (Kalé et al., 2019,
Kalé and Zheng, 2013), while e�ciently utilizing GPUs (Phillips
et al., 2008). It contains advanced features giving scientists an exten-
sive set of tools to observe and/or bias their systems using state-of-
the-art simulationmethodologies such as collective variables (Fiorin
et al., 2013) and molecular dynamics �exible �tting (MDFF) (Tra-
buco et al., 2009, Vant et al., 2020) modules.

VMD and its psfgen plugin were used to build and analyze the
molecular complexes studied herein. Simulation preparation, visu-
alization, and conventional analysis approaches were performed
using VMD, with extensive use of GPU-accelerated remote visu-
alization resources (Humphrey et al., 1996a, Stone et al., 2013a,b,
2016). VMD incorporates features for processing cryo-EM density
maps to prepare and analyze md� hybrid �tting simulations as
required in this project (Stone et al., 2014). VMD incorporates a
custom GPU-accelerated ray tracing engine that exploits hardware
accelerated construction of ray tracing BVH acceleration structures,
BVH traversal, and ray-triangle intersections (Sener et al., 2021).

4.2 FFEA: continuum molecular simulations
Recent advances in cryo-EM, and -ET aided scientists to generate
structural and dynamic information of large biomolecules in 3D
volumetric data (Kühlbrandt, 2014). Expanding on this volumetric
shape, FFEA uses a 3D tetrahedral �nite element mesh providing
dynamic insight of the structure alone and in response to interac-
tions with other molecules (Solernou et al., 2018). FFEA is a new

1https://www.ks.uiuc.edu/Highlights/?section=2021&highlight=2021-09
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Figure 3: The atomistic representation of a functional RTCmonomer (A) with the RNA (red), extended to the active site of the
other nsp14-10 unit of the opposite monomer (nsp14B - orange), and the exit site on the helicase of the samemonomer (nsp13-
2A). The mechanism of RNA unwinding using non-equilibrium molecular dynamics simulations starting from the initial
structure as captured in 7EGQ (B-left), to the �nal structure (B-right). The RNA backbone is restrained with an md� grid,
represented in a grey mesh, while using colvars to pull the strands to the active sites on the protein. This is an unprecedented
simulation of the mechanism of RNA unwinding which can give signi�cant insight into the RTC function.

physics algorithm for simulation of mesoscale biological structures
obtained from cryo-EM and cryo-ET (Solernou et al., 2018). FFEA
treats biomolecules as continuum visco-elastic solids subject to
thermal noise, chosen so as to satisfy the �uctuation-dissipation
theorem (Oliver et al., 2013). To describe interacting proteins, FFEA
includes short-range van der Waals attractive forces and steric re-
pulsion. Therefore, FFEA uses a unique “top-down” rather than the
more conventional “bottom-up” coarse-graining strategy, by intro-
ducing nanoscale thermal �uctuations into macroscopic continuum
mechanics equations.

FFEA also includes functionality to exert external forces on pro-
teins, to connect proteins together with harmonic springs and to
represent conformational changes between distinct protein confor-
mational states, for example between the pre- and post-powerstroke
states of molecular motors (Richardson et al., 2020). FFEA has been
used to successfully model diverse biological systems, including the
rotary ATPase motor (Richardson et al., 2014), axonemal (Richard-
son et al., 2020) and cytoplasmic (Hanson et al., 2021) dynein motors,
and protein antibodies subjected to external forces (van der Heijden
et al., 2020).

4.3 Multiscale biological simulations
Integrating data across diverse spatial, temporal, and functional
scales has played an important role in understanding the role of
molecular interactions in various diseases (Pak and Voth, 2018,
Tozzini, 2010, Walpole et al., 2013, Zhou, 2014). In order to bridge
information across multiple scales, a number of coarse-graining
approaches have been widely employed. These methods have been
used to study individual proteins from the SARS-CoV-2 proteome (De San-
cho et al., 2020, Garay et al., 2021), as well as more complex systems
such as the entire SARS-CoV-2 virion (Yu et al., 2021). We note that

compared to the state-of-the-art approaches, we choose a contin-
uum representation of molecules, one that is more conducible for
accessing much larger length- and time-scales using FFEA. While
�nite element methods are used to model biological systems (e.g.,
growth models, bone growth, etc.) (Dong and Skalak, 1992, Kenn-
away and Coen, 2019, Panagiotopoulou et al., 2017), we note that
our collective approach enables tight integration between all-atom
and continuum representations for large biomolecular complexes
such as the SARS-CoV-2 RTC.

While physics-based approaches for coarse-graining are usually
employed to overcome limitations of the space- and time-scales
accessed by traditional molecular simulations, machine learning
techniques are now being regularly employed to adaptive coarse-
grained simulations from all-atom simulations (Durumeric and
Voth, 2019, Husic et al., 2020, Noé, 2020).

4.4 AI enabled adaptive MD simulations
MD simulation provides atomistic details of molecular interactions
and ensued dynamics. It’s however computationally expensive, and
the sampling e�ciency can be severely hindered, when trapped by
local minima in the free energy landscape. Our group has developed
AI-enabled adaptive MD simulations, namely DeepDriveMD (Lee
et al., 2019), which records MD propagation in latent space via
convolutional variational autoencoder (CVAE) (Bhowmik et al.,
2018), and drives adaptive sampling in the high dimensional con-
formational landscape. The AI inference constantly observes the
simulation runs, prunes stagnant ones that are trapped in local
energy minima, and spawns new ones from less sampled conforma-
tions. We have shown that this approach can accelerate sampling
of rare events (for example, in the SARS-CoV-2 Spike opening sim-
ulations (Casalino et al., 2021), protein folding (Lee et al., 2019))
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by at least an order of magnitude. When integrated with special-
ized AI-hardware to accelerate the learning, it can provide nearly 4
orders of magnitude speedup (Brace et al., 2021).

4.5 Work�ow infrastructure
Distributed science work�ows must invariably handle data and
control �ow across networks spanning administrative domains.
Challenging barriers to work�ow management frameworks’ adop-
tion in multi-user HPC environments lie in deploying distributed
client/server infrastructures and establishing connectivity among
remote systems. For instance, Fireworks (Jain et al., 2015) and the
RADICAL-Pilot / Ensemble Toolkit (EnTK) (Balasubramanian et al.,
2016, Merzky et al., 2018) are three widely-used WMFs at super-
computing facilities that expose Python APIs to de�ne and submit
directed acyclic graphs (DAGs) of stateful tasks to a database. These
WMFs possess various implementations of a common pilot job de-
sign, whereby tasks are e�ciently executed on HPC resources by
a process that synchronizes state with the work�ow database. Be-
cause the database is directly written by user or pilot job clients,
users of these WMF typically deploy and manage their own data-
base servers such as MongoDB servers.2 These methods are non-
portable and depend on factors such as whether the compute facility
mandates multi-factor authentication (MFA).

In the context of REST interfaces to HPC resources, e�orts such
as the Superfacility concept (Enders et al., 2020) envisions a future
of automated experimental and observational science work�ows
linked to national computing resources through Web APIs. Imple-
mentations such as the NERSC Superfacility API3 and the Swiss
National Supercomputing Centre’s FirecREST API (Cruz and Mar-
tinasso, 2019) expose methods to submit and monitor batch jobs,
move data between remote �lesystems, and check system availabil-
ity. However, these facility services alone do not address work�ow
management or high-throughput execution; instead, they provide
web-interfaced abstractions of the underlying facility, analogous to
modern cloud storage and infrastructure services.

funcX (Chard et al., 2020) is an HPC-oriented instantiation of the
function-as-a-service (FaaS) paradigm, where users invoke Python
functions in remote containers via an API web service. funcX end-
points run on the login nodes of target HPC resources where Globus
Auth is used for authentication and user-endpoint association. The
funcX model is tightly focused on Python functions and therefore
advocates decomposing work�ows into functional building blocks.
Each function executes in a containerized worker process running
on one of the HPC compute nodes. This fails to support a general-
ized model of applications such as simulations with executables that
may or may not leverage containers, per-task remote data depen-
dencies, programmable error- and timeout-handling, and �exible
per-task resource requirements (e.g. tasks may occupy a single core
or specify a multi-node, distributed memory job with some number
of GPU accelerators per MPI rank).

Balsam (Salim et al., 2021) provides a uni�ed API for describ-
ing distributed work�ows, and the user site agents manage the
full lifecycle of data and control �ow. The Balsam service-oriented
architecture shifts administrative burdens away from individual

2https://www.mongodb.com/
3https://api.nersc.gov/api/v1.2/

researchers by routing all user, user agent, and pilot job client in-
teractions through a hosted, multi-tenant web service. As Balsam
execution sites communicate with the central service only as HTTP
clients, deployment involves a simple user-space pip package in-
stallation on any platform with a modern Python and outbound
internet access. Due to the ubiquity of HTTP data transport, Balsam
works “out of the box” on supercomputers spanning DOE and NSF
facilities against a cloud-hosted Balsam service.

5 INNOVATIONS REALIZED
Our innovations can be brie�y summarized as follows. (1) We imple-
ment an automated work�ow to seamlessly transition from AAMD
to FFEA via an AI-based approach. By optimizing the performance
of AAMD simulations (Sec. 5.1) we achieve optimal performance
on modern multi-GPU-based computing systems. (2) By clustering
the conformations from AAMD simulations using unsupervised
AI methods (Sec. 5.3), we learn the parameters for constraining
the FFEA simulations based on the implicit �uctuations between
protein-protein interfaces inferred from AAMD simulations. We de-
velop a novel AI-approach, namely Graph neural operators (GNO)
(Sec. 5.3.3) to summarize time-dependent conformational changes
observed from ensemble AAMD simulations. (3) To overcome the
bottleneck of training deep learning models on large volumes of
data generated by AAMD simulations, we scaled their performance
on emerging AI-hardware such as the Cerebras CS-2 accelerator as
well as on the Summit supercomputer.4 (4), Finally, to our knowl-
edge, this is the �rst attempt at executing a single coordinated
work�ow across multiple supercomputing facilities. We achieved
this through the Balsam multisite work�ow manager (Sec. 5.4). The
performance gains enabled by these innovations provide a gen-
eralized, multi-scale computational toolkit for exploring dynamic
biomolecular machines.

5.1 NAMD all-atom MD simulations
5.1.1 GPU-resident NAMD3 for GPU-accelerated MD simulations.
To achieve previously unrealized performance levels for MD simu-
lations on GPU-accelerated HPC platforms, we have developed a
major new “GPU-resident” computing approach, implemented in
NAMD3. The GPU-resident computing mode in NAMD3 employs
GPU acceleration for the most common molecular dynamics force
and energy calculations together with time integration and rigid
bond constraints, allowing sequences of timesteps to be simulated
entirely on the GPU without any signi�cant host–GPU data trans-
fers, thereby exploiting a signi�cantly higher fraction of theoretical
peak GPU performance (Phillips et al., 2020). Most recently, we have
further extended the GPU-resident capabilities of NAMD3 to enable
strong-scaling of a simulation across multiple GPUs, with partic-
ular emphasis on hardware platforms that incorporate NVLink
connectivity among peer GPUs. NVLink facilitates direct load/store
memory access among peered GPUs with low latency and high
bandwidth data exchange performance levels far beyond what is
currently possible with a conventional HPC network interconnect,
or even host-internal PCIe transfers among GPUs.

The multi-GPU simulation algorithm generally mirrors the tech-
niques used in the conventional distributed-memory builds of NAMD,
4https://www.olcf.ornl.gov/summit/
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Figure 4: Root-mean squared �uctuations (RMSF) of the SARS-CoV-2 RTC provide insights are helpful in determining the in-
trinsic concertedmotions in the RTC that are implicitly encoded in the experimental data. The structure of the RTC is painted
using the RMSF determined from the ensemble AAMD simulations labeled pre-RNA-unwinding and post-RNA-unwinding
states, the cryo-EM structure (PDB id: 7EGQ; where we use the experimental B-factors to approximate the RMSF) and FFEA
simulations.While the FFEA simulations show larger�uctuations at the interface of nsp10-14 as it interactswith the twonsp13
subunits, both the AAMD simulations capture larger �uctuations in the two nsp13 subunits across each monomer. While this
embodies slightly di�erent rearrangements between the FFEA and AAMD simulations, the relative �uctuations across these
subunits are high within the cryo-EM data indicating the dynamic nature of this assembly.

Table 1: Summary of AAMD simulations.

Simulation Non-equillibrium Sampling Methods GFLOPs/step Total sampling (`s)
Equilibration (pre-unwinding) None 24.9 2.107
RNA unwinding Extrabonds, Distance colvar, MDFF grid 25.9 0.004
RNA post-unwinding Atom restraint, MDFF 11.04 1.904
RNA post-unwinding None 11.04 3.916

except that it is designed to leverage the completely uni�ed vir-
tual memory address space of the GPUs to exchange data directly
through �ne-grained memory load/store operations. NVLink sup-
port for direct �ne-grained memory loads/stores in concert with
atomic increment and atomic compare-swap operations permit e�-
cient implementation of performance-critical multi-GPU reductions
and synchronization of GPUs within algorithm phases. Platforms
providing GPUs with a fully connected topology permit strong
scaling of molecular systems ⇠1M atoms on up to 8 GPUs with
acceptable e�ciency, limited primarily by poor scalability of the
PME full electrostatics algorithm.

While running a simulation per GPU avoids these scaling chal-
lenges, multi-GPU scaling enables simulation over longer timescales.
For systems of ⇠1M atoms, the timescale is typically a limiting
factor to study conformational changes that a protein undergoes,
essential in understanding how a complex functions. Performance
considerations dictate that any advanced sampling method imple-
mented for GPU-resident must avoid frequent data transfers to and
from the host. Many of these features are contributed by external
methodological contributors and have not yet been implemented
to run on GPUs. As such, NAMD2 and CPU-based resources still
play an important role in the work�ow.

5.1.2 VMD full-time interactive ray tracing. To facilitate creation of
high-�delity visualizations with high interactivity, VMD has been
extended with a new real-time ray tracing (RTRT) rendering mode
that uses full-time interactive progressive re�nement ray tracing
for rendering of the molecular scenes instead of OpenGL rasteriza-
tion and includes ambient occlusion lighting, shadows, high-quality

transparency, and depth of �eld focal blur. The new RTRT rendering
mode provides substantially more visually informative visualiza-
tions of complex molecular scenes as compared with conventional
OpenGL rasterization, by bringing o�ine-quality rendering fea-
tures to the interactive VMD display window for the �rst time.
When the RTRT rendering mode is active, advanced visualization
features that were formerly only usable for o�ine rendering, or
for static structures, can now be applied to simulation trajectories
while maintaining full interactivity.

5.1.3 RTC System Preparation for all-atom simulations with NAMD.
The SARS-CoV-2 RTC is a multi-subunit structure composed of sev-
eral nsps, including the RNA-dependent RNA polymerase (RdRp,
nsp12), Zinc-bound helicase (HEL, nsp13), the RNA-capping en-
zymes such as the nsp14 (N7-methyltransferase/MTase) and nsp16
(O2-MTase), the proofreading enzyme, namely nsp14, and uridylate-
speci�c endoribonuclease activity (NendoU, nsp15)(Fig. 3A) (Chen
et al., 2020, Perry et al., 2021, Yan et al., 2020, 2021a). Together they
participate in the process of reproducing the viral genome (Wu
et al., 2020). This complex plays an important role in the viral life
cycle, and is therefore an important drug target (Gao et al., 2020,
Wang et al., 2020). Revealing the atomistic details of this complex
is essential for understanding how the viral RNA is processed.

We prepared the structure of the Cryo-EM dimeric form of the
complex 7EGQ.pdb (Yan et al., 2021b). Cations have functional sig-
ni�cance for the RTC, therefore the linking HIS and CYS residues
were mutated to HSE/HSD and CYM respectively, to have the cor-
rect ionization state to coordinate the present 3 Mg2+ ions and 26
Zn2+ ions. A complementary CYT base was added to the end of two
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incomplete RNA strands. Missing loop residues ARG ALA ARG
corresponding to residue numbers 314-316 in the nsp13 subunits
were modeled using �������� tool in OpenMM (Eastman et al.,
2017). The protein subunits were capped with an NTER and CTER
patches. The ������ package from VMD (Visual Molecular Dy-
namics) (Humphrey et al., 1996b) was used to assemble the system,
which was then solvated using the SOLVATE plugin and neutral-
ized with K+ and Cl� ions for a concentration of 150mM KCl using
AUTOIONIZE. The resulting systems consist of ⇠1.1M atoms and
box size of ⇠ 168 ⇥ 220 ⇥ 312Å3. The systems were energy mini-
mized using steepest descent method for 500 steps, followed by a
3 ns equilibration protocol restraining all but the water molecules
using a constant k = 3 kcal mol�1 Å�2. The system was further
equilibrated restraining only the protein backbone alpha carbon
atoms and nucleic backbone phosphate atoms with a constant of k
= 0.05 kcal mol�1 Å�2 with NAMD2.14 (Phillips et al., 2005) NVT
ensemble using CHARMM36 force�elds for proteins and nucleic
acids (Vanommeslaeghe et al., 2010).

5.1.4 Grid-steered Molecular Dynamics Simulation of RNA Unwind-
ing. One of the crucial functions of the RTC complex is to proofread
the RNA, which is a process that requires a major conformational
change of the protein complex and unzipping of the RNA. To mimic
this operation, we performed extensive preliminary studies using an
isolated RNA double-helical structure from the aforementioned pre-
pared structure in order to optimize the combination of grid-steered
molecular dynamics (GMD) (Wells et al., 2007) and collective vari-
ables (colvars) (Fiorin et al., 2013) and their respective optimal force
constants to mimic the corkscrewmotion of the RNA unwinding. To
speed up these empirical studies, instead of the all-atom representa-
tion, the protein was represented by a molecular dynamics �exible
�tting md� grid map exerting a repulsive gridForce (Trabuco et al.,
2009). A variety of colvars were employed to drive the extension
of the RNA structure, including distanceZ to pull on the strands to
the nsp14-10 active site and the exit point on the nsp13 helicase, as
proposed in previous studies (Yan et al., 2021b). We applied a rota-
tional force by using the orientationAngle colvar, while also pulling
on the center of mass using distance colvar. The �nal conformation
used for the simulations are a hybrid of the initial double-helical
structure of the RNA strands, with the extended single strands
which have reached their target points within the complex (Fig. 3B).
This structure was obtained by building an attractive 3 dimensional
electron density map manually constructed from the backbone of
the initial RNA position with the �nal extended strands obtained
from the non-equilibrium simulations.

The all-atom simulations to mimic this process were started from
the equilibrated structure described in section 5.1.3. We performed
an initial system minimization for 2000 steps and then simulated
the system for 0.05 ns to allow the RNA to settle into the grid. After
this initial equilibration, the process of unwinding was simulated
by pulling on the strands through this grid, which acts as a tunnel,
using the distance colvars, with a harmonic force. A soft restraining
force was applied on the backbone of the nucleic acids. To avoid
distortion of the double-helical shape of the RNA during pulling,
the hydrogen bonds formed by the bases were enforced by virtual
springs through the NAMD extraBonds feature, with a force of 20
kcal/mol/Å2.

5.2 FFEA simulations
5.2.1 Meshing and construction of the RTC dimer for FFEA. Two
representative meshes were constructed which correspond to the
experimental data available; the cryo-EM density map from EMD-
31138, a dimer form of the biologically active RTC, and the atomistic
structure 7EGQ.pdb, which was used in the above NAMD atom-
istic molecular dynamics simulations. In the latter, the monomer
RTC complex was formed from two separate meshes, one from
the cryo-EM density map EMD-23008, corresponding to 7KRO.pdb,
and the other from 7EGQ.pdb for the nsp14-10 complex atomistic
information. These structures were used to generate 4 four inter-
acting meshes; two in each monomer (Fig. 2). Meshes were con-
structed by �rst removing the dust and smoothing the mask using
ChimeraX (Pettersen et al., 2021) . The non-manifold elements
within the surface were corrected with "MeshLab" (Cignoni et al.,
2008), and course-grained with "MeshMixer" (Sommer et al., 2017).
The 3D meshes were then generated by "Gmsh" (Geuzaine and
Remacle, 2009) and made compatible for FFEA simulations with
NetGen (Schöberl, 1997).

Following dust-removal and smoothing in ChimeraX, density for
the single-stranded RNA was clearly visible in EMD-23008. How-
ever, this extremely thin structure is likely to cause instabilities in
FFEA due to the small volumetric elements required to represent it.
Therefore, the surface elements corresponding to RNA density were
deleted, and the resulting surface repaired by �lling with additional
triangular elements in MeshMixer. The physical presence of the
single-stranded RNA was then represented in the FFEA simulations
using a harmonic spring.

5.2.2 Visualizing FFEA trajectories using VMD. In order to create
informative visualizations that contain multiple simulation modal-
ities VMD was extended with new plugins to enable reading key
FFEA simulation data. The new plugins enable VMD to read FFEA
simulation and modeling data including tetrahedral mesh nodes,
edges, faces, and topology information, as well as information about
surface and interior faces and their properties, springs, and time-
varying mesh node coordinates. The plugin extensions permit VMD
to create visualizations showing the all-atom and FFEA simulations
aligned and superimposed, with physical properties associated with
the atoms, and FFEA nodes and faces available for use in assigning
surface colors for graphical representations of the simulations.

5.3 AI-enabled multi-resolution simulations
We developed a hierarchy of AI methods that would facilitate
embedding the high-dimensional (FFEA and AAMD) simulations
into a low-dimensional manifold capturing both local (e.g., protein
chain/subunit level) and global (e.g., mRTCmonomer or dimer level)
�uctuations. This required us to carefully consider the balance of
simulation workloads and AI tools. We discuss the AI methods �rst,
and then address the workload balance aspects in Sec. 5.4.

5.3.1 Capturing global conformational transitions with anharmonic
conformational analysis enabled autoencoders (ANCA-AE). We have
previously developed a hybrid machine learning approach that com-
bines linear dimensionality reduction methods (Ramanathan et al.,
2011) with a non-linear autoencoder. By minimizing the higher
order (linear) correlations in the atomistic �uctuations and then
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Figure 5: AI methods learn to summarize the time-dependent conformational changes in the FFEA and AAMD simulations.
(A) The latent dimensional representation of the FFEA simulations summarized using the ANCA-AE method shows a clear
separation between low-RMSD (deeper blue shades) and high-RMSD (yellow) states. (B) t-SNE visualization of the latent man-
ifold learned using the graph neural operator (GNO) model on the entire RTC, painted by the system’s overall RMSD value.
This model was trained on the entire 7egq system, comprised of 6650 total residues, with a window size of 10 frames. To o�set
the computational cost in the vast size of system, the model was trained on a small subset of the trajectory containing 2000
frames in order to investigate the method’s viability. The GNO has articulated the time-dependent conformational changes at
the shorter timescales. (C) depicts the conformational changes between a low-RMSD and high-RMSD state learned from the
GNO, capturing the relative motions of the nsp13 domains across the dimer interface.

examining non-linear correlations, we can obtain a succinct de-
scription of how global conformational changes are embodied in a
simulation. This method, titled ANCA-AE (Clyde et al., 2021), can
e�ciently handle large dimensions (e.g., in the case of the mRTC,
the 6,650 CU -atoms lead to approximately 20,000 dimensions) and
can e�ciently run on CPUs. We have shown that ANCA-AE can
identify conformational states that share structural and energetic
similarities, while characterizing transitional points in the high
dimensional landscape. As shown in Fig. 5, we observed (for both
FFEA and AAMD, although we only show results from FFEA sim-
ulations) that ANCA-AE extracts biophysically meaningful latent
coordinates. The ANCA-AE method reveals conformational transi-
tions from the FFEA trajectories, capturing the �uctuations in the
interfaces between the nsp10-nsp14 complex and the rest of the
RTC subcomponents.

5.3.2 Describing localized conformational transitions with convolu-
tional variational autoencoders (CVAE). We also leveraged a deep
learning algorithm, namely CVAE (Bhowmik et al., 2018) to de-
scribe localized conformational changes. The CVAE provides a
compact representation of the high dimensional conformational
landscape and can also capture intermediate/metastable states from
long timescale MD simulations (Bhowmik et al., 2018). It can also be
combined with outlier detection algorithms such as Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) (Ester
et al., 1996) and the Local outlier factor (LOF) (Breunig et al., 2000)
method to identify time points corresponding to rare transition
events in the simulation trajectories. We note that both ANCA-AE
and CVAE can utilize outlier detection algorithms for this pur-
pose. Since we have previously discussed the CVAE model, we only
present scaling results for this model.

However, CVAE is quadratic in time and space complexity (Casalino
et al., 2021) and can be prohibitive to train for the entire mRTC. This
makes the CVAE ideal to examine protein sub-unit �uctuations,
which can be signi�cantly smaller and more tractable for training.
To optimize its performance, we implemented a distributed data

parallel version of CVAE on the Summit supercomputer as well as
a version within a single Cerebras CS-2 deep learning accelerator.
By keeping all compute and memory resources on-silicon, the CS-2
provides, in a single system, orders of magnitude more compute
power, on-chip memory, memory bandwidth, and communication
bandwidth than traditional small-scale processors. This makes it
particularly well-suited for accelerating ML models like the CVAE.

5.3.3 Graph neural operator (GNO) networks for characterizing
time-dependent conformational changes from AAMD simulations.
Additionally, we also implemented the graph neural operator (GNO)
as a fast surrogate model to simulate and predict the molecule
movements from the AAMD simulation. The applications of deep
learning for MD trajectory analysis, prediction and generation have
recently exploded (Hoseini et al., 2021). The GNO model (Li et al.,
2020) can solve partial di�erential equations (PDEs) by generaliz-
ing �nite-dimensional neural networks to the in�nite-dimensional
operator-learning setting. In this work, we apply the GNO for the
�rst time to capture the time dependent conformational changes
governed by the system of equations in a traditional molecular
dynamics simulation. As a �rst step, we show that we can rea-
sonably predict protein backbone conformations up to 5 ps (250
MD simulation timesteps of 2 fs) into the future based on a 50 ps
trajectory. This allows us to extract the time-dependent conforma-
tional changes of the molecule and analyze the connection between
AAMD and FFEA simulation. This approach is capable of achieving
an even longer prediction horizon of 500 ps on smaller test systems,
and will be described in a separate manuscript. As shown in Fig. 5B,
the ability to predict the time-dependent conformational changes in
the entire RTC at short time-scales provides a means to accelerate
sampling. The structure of the latent space following the RMSD
transitions, provides insights into the large conformational changes
captured in 5C.
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Figure 6: Cross-site BalsamWork�ow architecture. Users ex-
ecute scienti�c workloads by �rst creating Job resources at
a speci�c execution site through the Balsam REST API. Pi-
lot jobs at Balsam sites on the ALCF-ThetaGPU, and NERSC-
Perlmutter supercomputers fetch the appropriate Jobs for
execution. TheMD Simulation and AI applications can span
one or more sites based on the resource needs.

5.4 Balsam work�ow
Balsam (Salim et al., 2021) (Figure 6) provides a centralized service
allowing users to register execution sites from any laptop, cluster,
or supercomputer on which they wish to invoke computation. The
sites run user agents that orchestrate work�ows locally and peri-
odically synchronize state with the central service. Users trigger
remote computations by submitting jobs to the REST API, specify-
ing the Balsam execution site and location(s) of data to be ingested.

The ability to develop a uni�ed work�ow infrastructure that
can span multiple computing sites by coupling traditional HPC
simulation tasks with AI tasks is a key contribution of this paper.
Further, the ability to steer a set of computational simulations based
on AI and automatically switch simulation resolution (between all-
atom and continuum) is a further jump in capabilities.

A key development is the introduction of a central Balsam ser-
vice that manages job distribution. Clients of this service use an
API to inject and monitor jobs from anywhere. A second key devel-
opment is the Balsam site, which consumes jobs from the Balsam
service and interacts directly with the scheduling infrastructure
of a cluster. By relying on a well-de�ned set of platform interfaces
that adapt to machine-speci�c schedulers, node con�gurations, and
pilot job launch paradigms, the Sites are easily portable across new
and heterogeneous systems with minimal implementation e�ort.
Together, the uniform Balsam API and portable Balsam Sites form a
distributed, multi-resource execution landscape. The power of this
approach was demonstrated using the Balsam API to inject simu-
lation and AI jobs to the Balsam service, targeting simultaneous

execution on multiple supercomputers. By strategically combin-
ing data transfer bundling and controlled job execution, Balsam
achieves higher throughput than direct-scheduled local jobs and
e�ectively balances job distribution across sites to simultaneously
utilize multiple remote supercomputers.

The work�ow driver agent comprised a lightweight Python pro-
cess that used the Balsam SDK to track and dispatch NAMD3
simulations on ThetaGPU5 and Perlmutter.6 A Python wrapper of
a NAMD3 replica’s execution enables the agent to seamlessly con-
�gure simulation parameters, dispatch runs, monitor data transfers,
and send shutdown signals to simulations through a Python API.
As simulation conformations arrive at the AI Site, the agent triggers
model training and inference runs, whereby the outlier conform-
ers are determined and used to initialize new simulations. In this
scheme, a single Python agent exercises complete control over the
geographically distributed simulation campaign. The work�ow is
robust to individual task- and batch job-level faults: a user monitor-
ing the work�ow with Balsam can reset failed jobs and provision
additional resources by triggering new pilot jobs in the middle of
a single agent’s running experiment. Experiments are launched
with a simple YAML con�guration format that �exibly supports
arbitrarily many “simulation pools” on remote HPC systems: these
pools comprise a particular simulation ensemble with data transfer
settings (e.g. Globus transfer destination) which are passed through
the Balsam Site’s Transfer module.

6 HOW PERFORMANCEWAS MEASURED
6.1 NAMD all-atom MD simulations
Production NAMD simulation performance is reported at runtime,
directly yielding an achieved ns/day simulation rate. In order to
report performance in terms of underlying machine FLOP rates,
the marginal FLOPs per step are computed using hardware perfor-
mance counters. Per-step FLOP performance metrics for NAMD
2.14 were collected on TACC Frontera7, using the Intel msr-tools
utilities8, and the “TACC stats” system9. FLOP counts were mea-
sured for each NAMD simulation with runs of two di�erent step
counts. The results of the two di�erent simulation lengths were sub-
tracted to eliminate counting of startup-associated operations, to
provide an accurate estimate of the FLOPs per step for a continuing
simulation (Phillips et al., 2002).

6.2 AI methods
As outlined in Sec. 5.3, the ANCA-AE method is quite e�cient
and for the purposes of this paper, we did not need to optimize
its performance. Further, we also note that the hybrid nature of
combining linear- and non-linear dimensionality reduction opens
up new avenues to assess scaling requirements from large datasets
(which is beyond the scope of this paper). Similarly, the newly
developed model, GNOwas also not optimized for performance. We
compared the performance of the GNO model with other baseline

5https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
6https://www.nersc.gov/systems/perlmutter/
7https://www.tacc.utexas.edu/systems/frontera
8https://github.com/intel/msr-tools
9https://github.com/TACC/tacc_stats
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Table 2: NAMD“RNApost-unwinding” performance results.

System # of nodes per replica ns/day
TACC Frontera 128 46.37

NVIDIA DGX A100 320GB 1/8 20.33
NVIDIA DGX A100 320GB 1 75.37

neural networks on a 28-node graph with 10,000 time frames. We
report the total L2 error on a single GPU trained with 10 epochs.

We measure the throughput performance (samples/s) of the dis-
tributed training of CVAEmodel on the Summit supercomputer. The
code is implemented in TensorFlow and parallelized with Horovod
library in a data-parallel scheme. We then report the aggregated
training throughput from 1 node up to 256 nodes (1536 GPUs). The
scaling e�ciency is determined by the ratio of ideal throughput (lin-
ear scaling) over the measured throughput. For results on the CS-2,
we measured the throughput performance (samples/s) of training
the CVAE model on a single Cerebras CS-2 system.

6.3 Balsam work�ow
Balsam records each Job state transition (e.g. RUNNING! RUN_DONE)
with timestamps and metadata that can be queried to produce
work�ow-level reports of task throughput and utilization (nodes
occupied by running Balsam tasks, as a fraction of the currently
provisioned resources). We then quantify the scienti�c throughput
by measuring the cumulative MD simulation time, aggregated over
all ensemble pools within an experiment). The Globus data transfer
time is captured and recorded as part of the telemetry.

7 PERFORMANCE RESULTS
7.1 NAMD all-atom MD simulations
The performance of the NAMD production runs for the “RNA post-
unwinding” are shown in Table 2, reporting CPU-based Frontera
running NAMD2 and two di�erent DGX A100 320GB systems run-
ning GPU-resident NAMD3. The �rst reported result was run on
ThetaGPU, con�gured with one replica per GPU. The second re-
ported result was run on NVIDIA Base Command,10 con�gured
with one replica per node to simulate longer timescales. The Fron-
tera and ThetaGPU measurements are averages. The median was
used for NVIDIA Base Command jobs due to outliers; 3 of the 15
nodes achieved around 64ns/day, likely due to system I/O tra�c.

NAMD3 was benchmarked on the “RNA post-unwinding” sys-
tem from Table 1 to characterize multi-GPU scaling performance.
The equilibrated structure was run on a DGX A100 640GB node for
80000 timesteps using 8 CPU cores per GPU, and these simulations
included the same parameters (e.g., 8Å cuto�) and �le I/O as per-
formed by the production runs, with trajectory output every 5000
steps. The results with estimated TFLOPS performance is reported
in Table 3.

The short-range non-bonded interaction calculations, which
constitute most of the computational work per step, have long been
optimized in NAMDby interpolating from a lookup table, e�ectively
trading L1 cache reads for FLOPs. Doing this avoids expensive

10https://www.nvidia.com/en-us/data-center/base-command-platform/

Table 3: NAMD3 GPU-resident scaling on DGXA100 640GB.

# of GPUs ns/day Scaling e�ciency Estimated TFLOPS
1 20.7767 100% 1.3274
2 36.1360 87% 2.3087
4 56.3996 68% 3.6033
8 75.2359 45% 4.8067

calculation of the error function erf() within the inner loop, as
required by the particle-mesh Ewald (PME) method for calculating
long-range electrostatics (Essmann et al., 1995). Use of a lookup
table together with the CPU-based count of FLOPs per step leads to
a very conservative estimate of TFLOPS for GPU-resident NAMD.
GPU-based kernels actually produce a greater number of FLOPs
per step than CPU-based kernels due to the need to accommodate a
wider vector width. In NAMD3, the non-bonded kernel computes
interactions between tiles of 32 atoms, which allows for a high level
of data reuse from on-chip memory while avoiding collisions and
atomic operations. However, within a tile–tile calculation, a higher
number of atom pairs will be outside of the cuto� radius, producing
more GPU FLOPs than predicted by the CPU-based FLOP count.

As mentioned earlier, GPU scaling is primarily limited by the
PME calculation. PME summation in reciprocal space requires com-
puting 3D FFTs which cannot be decomposed e�ciently across
multiple GPUs, thus, the calculation is performed on a single GPU.
Pro�ling the 8-GPU case shows that the GPU doing PME is over-
loaded at 80% utilization, while the rest of the GPUs are at 50%
utilization. Strategies to mitigate this load imbalance include reduc-
ing the workload of the current PME implementation by distribut-
ing those parts of PME that are, in fact, scalable (in particular, the
charge-spreading and force-interpolation procedures) and then em-
ploying task-based parallelism to reduce the amount of additional
work assigned to the GPU doing the truly non-scalable PME work.

7.2 AI methods
As shown in Fig. 7, we achieved about 87% scaling e�ciency in the
distributed training of CVAE model with input size (512, 512) and
(1024, 1024) on the Summit supercomputer. Equivalently, for an in-
put size of 512 ⇥ 512, the CS-2 delivers out-of-the-box performance
of 24,000 samples/s, or about the equivalent of 110-120 GPUs. For a
larger input size of 1024 ⇥ 1024, CS-2 delivers 4,700 samples/s, also
the equivalent of over 100 GPUs.

For these experiments, we measured performance as-is – with-
out taking time to optimize the model or input functions for the
Cerebras architecture. With additional time, we believe the per-
formance from CS-2 would be much higher. Unlike with a typical
distributed GPU setup, where hyperparameters need tuning as one
scales from a single device to a large cluster of GPUs, the CS-2 is
a single, powerful node. This means that we were able to run the
CVAE model with the same experimental con�guration as for a
single GPU, without needing any hyperparameter changes.

Because a single CS-2 here delivers the performance of over 100
GPUs, it is a practical alternative for organizations interested in
this work�ow who do not have extremely large GPU clusters. By
providing focused AI acceleration for the neural network portion of
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Figure 7: Scaling the CVAE model on Summit super-
computer (with increasing total GPUs) and the Cerebras
CS-2 deep-learning accelerator. Chain H was cropped to
a 512x512 contact map, and chain A was padded to a
1024x1024 contact map.

this application, the CS-2 also allows us to fully dedicate our GPU
resources towards the more graphics-oriented simulation task.

7.3 Balsam work�ow
We evaluate Balsam’s e�cacy utilizing multiple HPC supercomput-
ing sites to distribute the workloads and reduce the overall time
to solution. In this experiment, the AAMD NAMD3 simulations
were run on both the Perlmutter and ThetaGPU systems. The AI
training and inference models, in this case the ANCA-AE, were
run on a dedicated ThetaGPU node. The trajectory information
from the simulations is transferred via Globus from Perlmutter to
ThetaGPU. This data together with the data from the local sim-
ulations at ThetaGPU are used to both re-train as well as to run
inference. Based on the inference, promising simulation con�g-
urations are queued up with the Balsam service for launch and
con�gurations that need to be stopped are terminated. We observe
that balsam is able to sustain close to 100% utilization on Perlmut-
ter (Fig. 8). The time taken by the AI models in this case can be
completely overlapped with the simulations. We are also able to
overlap the data transfer from Perlmutter to ThetaGPU. For wide-
area Globus data transfers, we achieve a 44MB/sec mean e�ective
bandwidth, with a wide distribution due to a standard deviation of
71MB/sec. We attribute this to the shared network. However, we
are able to overlap this data-movement and hide the latency. We
are thus able to fully exploit distributed HPC resources spanning
Perlmutter and ThetaGPU and able to accelerate the overall time
to solution in comparison to executing at a single site.

8 IMPLICATIONS
Our major scienti�c achievements include:

• Our studies reveal the inner workings of a large biomolecular
machine, such as the SARS-CoV-2 RTC. By analyzing the
�uctuations within the individual sub-components of this
nano-machine, we were able to visualize how the viral-RNA
is displaced to the respective active sites of the two key nsps.

• Although preliminary, our study reveals the concerted mo-
tions across the individual RTC monomers, which is coordi-
nated by the interface proteins (nsp8, nsp9, nsp10). One of
the nsp13 subunits on either side of the dimer also undergoes
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Figure 8: Cross-site BalsamWork�ow spanningNERSCPerl-
mutter andALCF ThetaGPU.We are able to achieve extreme
utilization close to 100% on Perlmutter. Quick training and
inference jobs, shown as stars on the timeline, are launched
asynchronously on ThetaGPU upon receiving preprocessed
training data from Perlmutter. The agent signals simula-
tions to shutdown and restart from outlier conformations
which leads to brief periods of inactivity on Perlmutter.

large �uctuations, displacing the bound RNA. This particular
insight qualitatively agrees with the experimental data (Chen
et al., 2020, Yan et al., 2020, 2021a); however provides a more
detailed resolution of how such concerted motions are medi-
ated across the entire RTC via protein-protein interfaces.

• The implicit coupling between AAMD and FFEA simula-
tions by using our AI methods to learn interface potentials
(that keep the protein-protein interfaces intact within the
RTC simulations) reveal the dynamic nature of how large
biomolecular assemblies.

• The capability to perform multi-site data analysis and simu-
lations for integrative biology will be invaluable for making
use of large experimental data that are di�cult to transfer.

• We demonstrated the work�ow across heterogeneous com-
putational architectures, diverse HPC sites – two supercom-
puters, namely ThetaGPU (ALCF) and Perlmutter (NERSC).
With the balkanization of heterogenous architecture and
software platforms, the work�ow represents a necessary ca-
pability that can be leveraged across domains where hetero-
geneous tasks and hardware platforms are the norm (for e.g.,
climate modeling, materials simulation, etc.). Further, our
resource utilization is near 100% and optimally distributed
for AI vs. HPC (simulation) jobs.

• The work�ow infrastructure also illustrates some limitations
in coordinating large �le transfers across supercomputing
sites that are required for both visualization and analysis.

• Our hierarchy of AI-methods – capturing local to global con-
formational changes, including the ability to predict time-
dependent conformational changes can be extremely helpful
in using AI to propagate MD / continuum simulations with-
out having to resort to costly integration steps.
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