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recent years, and the study by Narasimhan 

et al. is the largest contribution to date, with 

more than 500 ancient human genomes se-

quenced (see the figure). This scale of ge-

nomic data enabled the authors to compare 

genomes across a large number of locations 

and time points and to home in on increas-

ingly specific questions that would have 

been unanswerable even a few years ago.

The human story revealed by Narasim-

han et al. in South Asia is similar to those 

from elsewhere in Eurasia: Successive waves 

of migration altered the genetic makeup of, 

but did not completely replace, preexisting 

groups (4–6). Modern South Asians appear 

to be a mixture of Iranian-like hunter-gather-

ers, a population ancestral to the Andaman 

Islands, and Eurasian steppe herders who 

first settled in Europe. Some South Asian 

populations later received immigrants from 

other outside groups. As more genomes be-

come available from previously unexamined 

historical cultures around the world, stories 

like this one will fill other middle chapters in 

the book of human history. j
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COMPUTER SCIENCE

Machine learning transforms 
how microstates are sampled
A deep neural network is trained to optimally explore 
rugged potential energy landscapes in simulations

By Mark E. Tuckerman

A
tomistic simulations of complex 

molecular systems can provide key 

microscopic insights not easily ac-

cessible to experiments, such as fold-

ing of proteins (see the first figure), 

binding of small-molecule drug can-

didates or peptide therapeutics to selected 

targets, and formation of different poly-

morphs of molecular crystals, provided that 

two major hurdles are overcome. First, an 

accurate description of the interatomic in-

teractions is needed, which is captured in a 

single potential energy function U(x), where 

x denotes the full set of atomic coordinates. 

Second, given U(x), predicting thermody-

namic and other equilibrium properties of 

the system or estimating kinetics requires 

sampling a statistically sufficient num-

ber of realizations of x from the so-called 

Boltzmann probability distribution P(x), 

which is proportional to exp[–U(x)/k
B
T], 

where T is the system temperature and k
B
 

is Boltzmann’s constant. On page 1001 of 

this issue, Noé et al. (1) introduce a machine 

learning–based approach to address the lat-

ter of these two challenges.

The primary difficulty in sampling physi-

cal realizations x of the system (also called 

“microstates”) from the Boltzmann distribu-

tion lies in the nature of U(x) itself. In large, 

complex systems, x holds the positions of 

hundreds of thousands to millions of atoms. 

Thus, U(x) should be viewed as a vast, rug-

ged “landscape” in this high-dimensional 

space characterized by an exponentially 

large number of low-energy regions or 

minima, all separated by ridges whose ener-

gies are typically several to many times k
B
T

above these minima at room temperature.

In a Boltzmann distribution, the minima 

and ridges represent microstates of high 

and low probability, respectively. It is gener-

ally not possible to sample the distribution 

directly, hence the challenge is to devise an 

efficient algorithm to explore the U(x) land-

scape in order to locate these low-energy re-

gions and identify the ridges that constitute 

the most likely transition pathways between 

the minima, much as a hiker tries to identify 

the easiest mountain pass to cross from one 

valley to another. Physically, minima largely 

determine thermodynamics, whereas kinet-

ics depend mostly on the ridges.

Numerous approaches have been proposed 

to perform an efficient exploration of U(x). 

Some methods bias the search (2); others tar-

get a few preselected functions of x, known 

as “reaction coordinates,” that are assumed 

to capture the most relevant features of the 

Boltzmann distribution (3–9). Such tech-

niques are often quite sensitive to how these 

biases or reaction coordinates are chosen, and 

poor choices can waste many hours of com-

putation searching irrelevant regions of U(x).

The ruggedness of U(x) that makes sam-

pling the Boltzmann distribution so chal-

lenging originates in the way that physical 

microstates (coordinates x) are represented. 

X Z
Fxz

Narasimhan et al. studied the DNA from 

more than 100 ancient humans unearthed from 

northernmost South Asia.
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Peptide folding as a search problem
Hypothetical peptide configurations that might arise in energy or example training. Images adapted from (13).
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However, because physics dictates that ob-

servable phenomena cannot depend on the 

choice of atomic coordinates, an advantage 

could be gained if an alternative coordinate 

choice, here denoted as z, could be identi-

fied, together with a transformation x  

z, such that the “image” of U(x) in the z-

representation gives a Boltzmann distribu-

tion that is easier to sample. An example of 

such a transformation would be one that 

brings the minima of U(x) closer together 

and simultaneously reduces the energy bar-

riers between them.

Previously, my group and collaborators 

devised such a transformation tailored to 

linear polymers (which we termed a “spatial 

warping” transformation) that effectively 

eliminated barriers in the space of the back-

bone dihedral angles while simultaneously 

compressing the distances between con-

formational minima (10, 11). We reported 

gains in sampling efficiency of the resulting 

Boltzmann distribution that were orders of 

magnitude over those of standard sampling 

algorithms. The mathematical intricacies of 

this approach, however, made it difficult to 

adapt the transformation to other classes of 

complex systems.

Noé et al. now show that the idea of us-

ing coordinate transformations can be made 

fully general and applicable to broad classes 

of systems by leveraging the power of ma-

chine learning (a subset of artificial intel-

ligence). Specifically, they trained a deep 

neural network to learn a transformation x  

z such that when z is sampled from a simple 

probability distribution [p(z), for example, a 

Gaussian normal distribution], it maps back, 

through the inverse transformation z  x, 

onto a high-probability region of P(x) (see the 

second figure). They refer to this approach as 

“Boltzmann generators.”

The training phase requires that the neu-

ral network be presented with both high- and 

low-probability states as “good” and “bad” 

examples, respectively, so that the network 

can distinguish between the two. Noé et al. 

accomplish this by randomly sampling z 

from the desired p(z) and using the result-

ing wide range of U(x(z)) values as part of 

the training set. They call this “training by 

energy.” If some of the interesting microstates 

x are already known for the system, such as 

the folded state of a protein or some other 

experimentally determined structures, these 

microstates can be mapped onto the z-space 

and used to “train by example” without hav-

ing to know the associated probabilities of 

these example states a priori.

Throughout the training, the x  z and z  x 

maps are continually refined so that once 

fully trained, high-probability states can each 

be generated in “one shot” simply by sam-

pling directly from the z-distribution p(z) 

and mapping back to x through the neural 

network. The breakthrough of this approach 

is that these transformations can be learned 

with only minimal knowledge of the system, 

and no arbitrary reaction coordinates need to 

be introduced. As a benchmark demonstra-

tion of their approach, Noé et al. considered 

the challenging case of the bovine pancreatic 

trypsin inhibitor (BPTI) protein. Not only 

could the Boltzmann generators sample with 

impressive efficiency key metastable confor-

mation states and pathways linking them, 

which were not included in the training, they 

also yielded accurate free energy differences 

between these states. Obtaining these states 

and their associated free energies using ordi-

nary methods would have required extremely 

long and costly simulations.

With their new development, Noé et al. 

have opened a promising direction in the 

computational exploration of complex mo-

lecular systems. Nonetheless, additional chal-

lenges remain. In the reported applications, 

the dimension of x ranged from two to several 

thousand; for BPTI, the dimensionality is kept 

low by simulating the protein in an implicit 

solvent rather than in a bath of explicit water 

molecules. If large systems (such as explicitly 

solvated biomolecules or defects in materials) 

are to be treated, scaling up to hundreds of 

thousands or millions of dimensions becomes 

necessary—which, as the authors admit, will 

require further development of the meth-

odology. This could include exploring how 

Boltzmann generators can be combined with 

other widely used and powerful enhanced 

sampling methods (3–9, 12) to improve their 

performance. These challenges will likely be 

solved soon, whereupon the Boltzmann gen-

erator approach may well constitute one of 

the highest-performing techniques for sam-

pling equilibrium distributions. j
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Rough landscapes
A typical rugged energy surface U(x) can be represented 
in terms of  microstates that have a Boltzmann 

distribution P(x). The product of kB  (Boltzmann’s 
constant) and T (temperature) is the thermal energy.

Training transformation
During the training phase, a deep neural network learns a 
function Fxz mapping P(x) to a smoother distribution p(z) 
using sample confgurations, such as those shown on the 
previous page, to achieve training by energy or by example.

Smoother surfaces

The transformation to z creates a smoother surface 
expressed as a Gaussian distribution p(z). 

–kBT log P(x) = U(x)

–kBT log p(z)

X Z
Fxz
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Transforming a rugged landscape
Algorithms that perform searches along a rugged 

potential energy landscape U(x) can get trapped in 

local minima. Noé et al. used machine learning to 

identify transformations to a new coordinate z that 

create a smoother search surface.
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