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Training machine learning based interatomic potentials often requires thousands of first principles
calculations, severely limiting their practical application. We present an adaptive Bayesian inference
method for automating and accelerating the on-the-fly construction of accurate interatomic force
fields from a single molecular dynamics simulation. Within an online active learning algorithm, the
internal uncertainty of a Gaussian process regression model is used to decide whether to accept the
model prediction or to perform a first principles calculation. This approach provides several orders of
magnitude acceleration of molecular dynamics simulations dominated by rare events, using minimal
amounts of first-principles data to rapidly and automatically train highly accurate multi-body force
fields that are competitive with state-of-the-art classical and machine learned potentials.

Recent machine learning (ML) approaches to modeling
the Born-Oppenheimer potential energy surface (PES)
have been shown to approach first principles accuracy
for a number of molecular and solid-state systems [1–
4]. These methods provide a promising path toward
fast, accurate, and large-scale materials simulations with
the accuracy of density functional theory (DFT) and the
computational efficiency of classical molecular dynamics
(MD). However, most ML potentials return point esti-
mates of the quantities of interest (typically energies,
forces, and stresses) rather than a predictive distribution
that reflects model uncertainty. Without uncertainty es-
timates, a laborious fitting procedure is required, which
usually involves selecting thousands of reference struc-
tures from a database of first principles calculations. At
test time, lack of predictive uncertainty makes it difficult
to determine when the fitted model is trustworthy, lead-
ing to unreliable results and lack of guidance on how to
update the model in the presence of new data.

Here, we show that active learning based on Gaussian
process (GP) regression can accelerate the training of
high-quality force fields by making use of accurate inter-
nal estimates of model error. By combining DFT with
GP regression in a single molecular dynamics simulation,
an accurate multi-phase force field for bulk aluminum is
obtained with fewer than 100 DFT calls. Moreover, we
demonstrate that the model can be flexibly and automat-
ically updated when the system deviates from previous
training data. Such a reduction in the computational
cost of training and updating potentials promises to ex-
tend ML modeling to a much wider class of materials
than has been possible to date. The method is shown to
successfully model rapid crystal melts and rare diffusive
events, and so we call our method FLARE: Fast Learning
of Atomistic Rare Events, and make the software freely

available online [5].

The key contribution of this work is the development of
a fully interpretable low-dimensional and non-parametric
regression model of the PES that provides trustworthy
estimates of model uncertainty. Typical ML schemes
for modeling the PES involve regression over a high-
dimensional descriptor space chosen either on physical
grounds [6, 7] or learned directly from ab initio data [4, 8].
These approaches require building highly flexible mod-
els with many physically non-interpretable parameters,
complicating the task of inferring a posterior distribution
over possible models. We instead bypass the need for a
high dimensional descriptor by imposing a physical prior
that constrains the model to two- and three-body inter-
actions. Because the low-dimensional descriptor space
of our models can be sampled with a small amount of
training data, our method avoids sparsification, a proce-
dure that is used in Gaussian approximation potentials
(GAP) to make inference tractable with many-body de-
scriptors like SOAP [7, 9, 10], but that is also known to
degrade the quality of GP variance estimates [11]. The
learning task is simplified as a result, making it possible
to automatically tune the model’s hyperparameters in a
data-driven fashion and derive trustworthy estimates of
model uncertainty. This opens the door to a practical
uncertainty-driven scheme for selecting training points
“on-the-fly” [12], allowing an accurate potential to be
learned with a minimal number of relatively expensive
first principles calculations.

To reason about model uncertainty, we use ab ini-
tio force data to construct GP models, an established
Bayesian approach to describing prior and posterior dis-
tributions over unknown functions [11]. The training
database of the GP is populated with individual atomic
environments by expressing the total energy of the sys-
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FIG. 1. The two- and three-body cutoffs used in this work.
The atomic environment of the central atom (gold) consists of
all position vectors of atoms within the two- and three-body
cutoff spheres (dashed and dotted, respectively), including
images of atoms in the primary periodic cell (solid square).

tem as a sum over two- and three-body terms,

E =
∑
il

εil +
∑
ijk

εijk, (1)

where the sums range over all unique pairs and triplets
of atoms that contain at least one atom from the pri-
mary periodic cell. In practice, the sums are trun-
cated by considering local atom-centered environments
ρ = {~r1, ..., ~rN}, defined as the set of position vectors of
all atoms within a chosen cutoff distance rcut from the
central atom (see Fig. 1). As in [13], the covariance be-
tween pair and triplet energies is defined by a kernel that
directly compares interatomic distances in a rotationally
invariant fashion, so that the local energy kernel between
two atomic environments ρ1, ρ2 takes the form

k(ρ1, ρ2) =
∑
i∈ρ1
j∈ρ2

k2(di, dj) +
∑

i1,i2∈ρ1
j1,j2∈ρ2

k3(di1,i2 ,dj1,j2), (2)

where k2 and k3 are the two- and three-body kernel
contributions, di is the distance from atom i to the
central atom of atomic environment ρ1 and di1,i2 =
(ri1 , ri2 , ri1,i2) is a vector of interatomic distances of
atoms i1, i2, and the central atom of environment ρ1. The
resulting force kernel is obtained by differentiating with
respect to the Cartesian coordinates α, β of the central
atoms of ρ1 and ρ2,

kα,β(ρ1, ρ2) =
∂2k(ρ1, ρ2)

∂~r1α∂~r2β
, (3)

giving an exactly rotationally covariant and energy con-
serving model [3, 13, 14]. While in this work we restrict

our attention to two- and three-body models, which are
sufficiently expressive to describe both the solid and liq-
uid phases of aluminum with high accuracy, it is straight-
forward to extend the kernel to capture interactions of
arbitrary order, but at a computational cost that grows
combinatorially with the order of the kernel.

For the pair and triplet kernels k(2,3), we choose
the squared exponential kernel multiplied by a smooth
quadratic cutoff function that ensures the potential is
continuous as atoms enter and exit the cutoff sphere,

k2 = σ2
s,2 exp

(
− (di − dj)2

2`2(2,3)

)
fcut(di, dj),

k3 = σ2
s,3 exp

(
−||di1,i2 − dj1,j2 ||2

2`2(2,3)

)
fcut(di1,i2 ,dj1,j2),

(4)

where σs,(2,3) is the signal variance related to the maxi-
mum uncertainty of points far from the training set, `(2,3)
is a hyperparameter that sets the length scale of the two-
and three-body kernel contributions, and ||.|| denotes the
vector 2-norm. The three-body kernel is summed over
all permutations of the elements of the second descriptor
vector ~d2 in order to guarantee permutational invariance
of the force model. The force ~fi on each atom i and
its corresponding predictive variance V[~fi] are computed
using the standard GP relations [11],

fiα = k̄Tiα
(
K + σ2

nI
)−1

ȳ

V[fiα] = kα,α(ρi, ρi)− k̄Tiα
(
K + σ2

nI
)−1

k̄iα,
(5)

where k̄iα is the vector of force kernels between ρi
and the atomic environments in the training set, i.e.
k̄iα,jβ = kα,β(ρi, ρj), K is covariance matrix Kmα,nβ =
kα,β(ρm, ρn) of the training points, ȳ is the vector of
forces acting on the atoms in the training set, and σn is
a hyperparameter that characterizes observation noise.

To justify an on-the-fly learning algorithm, we first
characterize the uncertainty and noise estimates of the
GP models and compare them against test errors on out-
of-sample structures. In all models in this work, the hy-
perparameters σ2, σ3, `2, `3, and σn are optimized with
the BFGS algorithm by maximizing the likelihood of the
training data. Computation of the likelihood in GP re-
gression involves inverting the covariance matrix K and
is efficient if the model is trained on fewer than ∼ 1000
points. It is worth noting that this data-driven optimiza-
tion approach stands in contrast to other GP models of
the PES, in which hyperparameters are chosen heuris-
tically [2]. Remarkably, the optimized noise parameter
σn and the predictive variance V are found to provide a
sensitive probe of model error. We test the relationship
between internal GP error and true error by performing a
set of plane-wave DFT calculations on a 32-atom super-
cell of FCC aluminum with atomic positions randomly
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FIG. 2. Correlation of optimized Gaussian process noise σn and predictive variance V with the root mean square error on
independent test structures. (a) The optimized noise parameter σn (solid) and root mean squared error (dotted) as a function
of the cutoff radius rcut of the atomic environment. (b) Combined model error

√
σ2
n + Vmean as a function of the number of

training atoms. (c) Mean predictive variance Vmean (solid) and RMSE (dotted) on test structures with atomic coordinates
perturbed from δ = 1% to 9% of the lattice parameter.

perturbed from their equilibrium sites. In Fig. 2(a), all
atomic coordinates are randomly perturbed by up to 5%
of the lattice parameter, which was set to the experi-
mental value of 4.046 Å. Two- and two-plus-three body
GP models are trained on all forces in a single structure
and tested on an independently generated structure, with
the cutoff radius swept from 3.5 to 8 Å. For the two-body
models, only the first term of Eq. (2) was kept, and the
three body contribution was discarded. For the two-plus-
three body models (lower left), the 2-body cutoff was held
fixed at 6 Å and the 3-body cutoff was swept from 3 to
4.5 Å. The optimized noise parameter σn plotted in Fig.
2(a) closely tracks the root mean squared error (RMSE)
on the test structure for the range of examined cutoff
values. This provides a principled tool for selecting the
cutoff radius of the GP model, showing that the expected
error of the model at a given cutoff can be directly esti-
mated from the noise hyperparameter σn.

When the GP model is trained on insufficient data,
we find that the predictive variance V rises above the
baseline noise level σn of the model, indicating that the
model requires additional training data to make accurate
force estimates. The utility of the predictive variance is
illustrated in Fig. 2(b). Using the same training and
test structures as Fig. 2(a), a GP model is constructed
by adding forces on specific atoms to the training set and
evaluating the RMSE and GP error after each atomic en-
vironment is added. The average GP error

√
σ2
n + Vmean

is found to closely track the RMSE, where Vmean is the
mean predictive variance over all atoms in the test set.
We also demonstrate in Fig. 2(c) that the GP variance
provides an indicator of model error when the model is
forced to extrapolate on structures far from the training

set. To show this, a model was trained on a single struc-
ture with atomic coordinates perturbed by δ = 5% of
the lattice parameter and tested on structures generated
with values of δ ranging from 1 to 9%. The mean vari-
ance Vmean is seen to correlate with the true error across
all values of δ.

The reliability of the internal GP error estimate is the
unique feature of our approach that enables us to imple-
ment FLARE, a fully adaptive active learning molecular
dynamics method, in which DFT is called only when the
internal error of the GP model rises above an adaptive
threshold based on the optimized noise parameter σn.
The algorithm takes an arbitrary structure as input and
begins with a call to DFT, which is used to initialize a
GP model. MD steps are proposed by the current GP
model, with calls to DFT made whenever the error of a
force prediction rises above the current noise parameter
σn of the model, in which case the training set is aug-
mented with the highest uncertainty atomic environment.
All hyperparameters, including the noise parameter σn,
are optimized whenever an atomic environment and its
force components are added to the training set, allow-
ing the error threshold to adapt to novel environments
encountered during the simulation.

The method is implemented by coupling the Quantum
ESPRESSO DFT code [15] to MD and GP code using
the FLARE package [5]. We demonstrate our method
by applying it to a 32-atom bulk aluminum system (Fig.
3). The simulation begins in the FCC phase at low tem-
perature. As shown in Fig. 3(a), DFT is called often at
the beginning of the simulation as the GP model learns
a force field suitable for FCC aluminum. After about
30 time steps, the model needs far fewer training points,
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FIG. 3. Active learning of a multi-phase aluminum force field.
(a) Instantaneous temperature during a 10 ps on-the-fly MD
trajectory generated with FLARE. The simulation begins in
the FCC phase at low temperature and is melted at t = 5 ps.
When the predicted error on a force component rises above the
current noise parameter σn of the model, DFT is called (black
dots). (b) The number of DFT calls (solid) and optimized
noise parameter (dotted) throughout the simulation. A sharp
increase is observed when the crystal is melted, illustrating
the model’s ability to actively learn the liquid phase. (c)
During the first 5 ps, the radial distribution is consistent with
a low temperature solid (solid line). In the final half of the
simulation, the system exhibits an RDF characteristic of the
liquid phase (dashed).

requiring fewer than 50 training atoms in the first 5 ps
of the simulation. To test the model’s ability to actively
learn and adapt to changing conditions, the crystal is
melted at time t = 5 ps by rescaling the velocities of
the atoms to give the system an instantaneous tempera-
ture of 104 K (well above the experimental melting point
of aluminum due to the strong finite size effects of the
2x2x2 supercell). As shown in Fig. 3(b), the GP model
requires a large number of DFT calls immediately after
the crystal melts, as the atomic environments in the liq-
uid phase of aluminum are significantly different from
the previous training data. The noise parameter σn of
the model sharply increases as the system enters the liq-
uid phase, reflecting the fact that it is more difficult to
model, involving more diverse atomic environments and
significantly larger force fluctuations. Because the error
threshold is set equal to σn, the threshold in the liquid

Test Set EAM [16] AGNI [17] FLARE
FCC Solid 46.1 41.2 32.9

Liquid 157.0 128.0 90.2

TABLE I. Comparison of the FLARE model of Fig. 3 against
other recent aluminum potentials. Test structures were drawn
from ab initio molecular dynamics trajectories of a 2x2x2 su-
percell of bulk aluminum in the solid and liquid phases. Er-
rors are reported in meV/Å, with lowest errors highlighted in
bold.

phase is higher, and as a result the GP model requires a
roughly similar number of DFT calls for both the solid
and liquid phases. As shown in Fig. 3(b), fewer than 100
calls are needed in total during the 10 ps of dynamics,
with the majority of DFT calls made at the beginning of
the simulation and immediately after melting.

The performance of the obtained potential is validated
by testing the model on two independent 10 ps ab initio
molecular dynamics (AIMD) simulations of the solid and
liquid phases of aluminum. 100 structures were sampled
from the AIMD trajectories with 0.1 ps spacing between
structures. Force predictions on all test structures were
obtained with the GP potential of Fig. 3 and compared
against the corresponding DFT values, with the mean
absolute error in meV/Å recorded in Table I. For refer-
ence, the models are compared against a state-of-the-art
aluminum EAM potential [16] and a recent aluminum
ML potential [17]. Each potential is tested on the same
structures, with the FLARE potential reaching the low-
est force errors for both trajectories. This is partly due
to the fact that the FLARE method optimizes the force
field specifically for the system of interest.

Finally, we demonstrate that FLARE can be used to
analyze and dramatically accelerate simulations of rare-
event dynamics over timescales spanning hundreds of pi-
coseconds by studying vacancy diffusion in a 32-atom
bulk aluminum system during a 1 ns simulation. The
GP model was constructed with a two-body kernel with
cutoff rcut = 5.4 Å. The system is initialized by removing
one atom from an equilibrium FCC structure and setting
the instantaneous initial temperature to 1500 K, giving
a mean temperature of ≈ 734 K across the simulation.
As shown in Fig. 4(a), most DFT calls are made early
on in the simulation. After the first ∼ 400 ps, no addi-
tional DFT calls are required, and the model is shown
to predict vacancy hopping every few hundred picosec-
onds. To check the accuracy of the underlying energy
model of the GP, DFT energies were computed along the
high symmetry transition path shown in Fig. 4(b). The
GP force predictions along the transition path were inte-
grated to give an estimate of the energy barrier, showing
close agreement to the ab initio DFT values. The entire
FLARE run, including DFT calculations, GP training,
force evaluations and MD updates, were performed on a
32-core machine in 68.8 hours of wall time. Individual
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FIG. 4. Active learning of vacancy diffusion in bulk alu-
minum. Left: Mean squared displacement during a FLARE
run of duration 1 ns. The majority of DFT calls occur at
the beginning of the run, with no additional calls required
after the first 400 ps. Right: the energy model of the result-
ing FLARE potential is tested on a high symmetry transition
path, in close agreement with the ab initio barrier.

DFT calls required over a minute of wall time on aver-
age, making FLARE more than 300 times faster than an
equivalent AIMD run.

In summary, we have presented a method for rapidly
training Gaussian process models that provide highly
accurate force estimates and reliable internal estimates
of model uncertainty. The model’s noise hyperparame-
ter and predictive variance are shown to correlate well
with the true out-of-sample error, providing a principled
basis for active learning of a force field model during
molecular dynamics. The FLARE non-parameteric in-
teratomic potential model described here requires a much
smaller number of atomic environments to converge the
model than other state-of-the-art machine learning ap-
proaches, and is therefore well-suited to settings where
large databases of ab initio data are too expensive to
compute. Our models have a simple, accurate, and phys-
ically interpretable underlying energy model, which can
be used to map the potential to a faster regression model
approaching the efficiency of a classical force field [13].
This provides a path toward potentials with the accuracy
of DFT at several orders of magnitude lower computa-
tional cost, which we expect to considerably expand the
range of material systems that can be accurately stud-
ied with atomistic simulation. Particularly promising is
the application of the FLARE engine to dynamical sys-
tems dominated by rare diffusion or reaction events, that
are very difficult to treat with existing ab initio, classical

force field or machine learning models.
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Physical review letters 104, 136403 (2010).
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