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Abstract— Scientific computing often requires the availability 
of a massive number of computers for performing large scale 
experiments. Traditionally, these needs have been addressed 
by using high-performance computing solutions and installed 
facilities such as clusters and super computers, which are 
difficult to setup, maintain, and operate. Cloud computing 
provides scientists with a completely new model of utilizing the 
computing infrastructure. Compute resources, storage 
resources, as well as applications, can be dynamically 
provisioned (and integrated within the existing infrastructure) 
on a pay per use basis. These resources can be released when 
they are no more needed. Such services are often offered 
within the context of a Service Level Agreement (SLA), which 
ensure the desired Quality of Service (QoS). Aneka, an 
enterprise Cloud computing solution, harnesses the power of 
compute resources by relying on private and public Clouds 
and delivers to users the desired QoS. Its flexible and service 
based infrastructure supports multiple programming 
paradigms that make Aneka address a variety of different 
scenarios: from finance applications to computational science. 
As examples of scientific computing in the Cloud, we present a 
preliminary case study on using Aneka for the classification of 
gene expression data and the execution of fMRI brain imaging 
workflow. 

Keywords: Scientific computing, computational science, 
Cloud computing, high-performance computing. 

I.  INTRODUCTION 

Scientific computing involves the construction of 
mathematical models and numerical solution techniques to 
solve scientific, social scientific and engineering problems. 
These models often require a huge number of computing 
resources to perform large scale experiments or to cut down 
the computational complexity into a reasonable time frame. 
These needs have been initially addressed with dedicated 
high-performance computing (HPC) infrastructures such as 
clusters or with a pool of networked machines in the same 
department, managed by some “CPU cycle scavenger” 
software such as Condor [1]. With the advent of Grid 
computing [2] new opportunities became available to 
scientists: in a complete analogy with the power Grid [3], the 
computing Grid could offer on demand the horse power 
required to perform large experiments, by relying on a 
network of machines, potentially extended all over the world. 
Computing Grids introduced new capabilities such as 

dynamic discovery of services, the ability of relying on a 
larger number of resources belonging to different 
administrative domains and of finding the best set of 
machines meeting the requirements of applications. The use 
of Grids for scientific computing [4] has become so 
successful that many international projects led to the 
establishment of world-wide infrastructures available for 
computational science. The Open Science Grid [5], 
originally conceived for facilitating data analysis for the 
Large Hadron Collider, actually hosts 25000 machines and 
provides support for data intensive research for different 
disciplines such as biology, chemistry, particle physics, and 
geographic information systems. Enabling Grid for E-
SciencE (EGEE) [6] is an initiative funded by the European 
Commission that connects more than 91 institutions in 
Europe, Asia, and United States of America, to construct the 
largest multi-science computing Grid infrastructure of the 
world. TeraGRID [7] is an NSF funded project that provides 
scientists with a large computing infrastructure built on top 
of resources at nine resource provider partner sites. It is used 
by 4000 users at over 200 universities that advance research 
in molecular bioscience, ocean science, earth science, 
mathematics, neuroscience, design and manufacturing, and 
other disciplines. These are only the most representative 
examples of scientific Grid computing. 

Even though the widespread use of Grid technologies in 
scientific computing is demonstrated by the huge amount of 
projects served by the aforementioned computing Grids, 
some issues still make the access to this technology not as 
easy as depicted. Some issues are bureaucratic: being these 
Grids shared worldwide, research groups have to submit a 
proposal describing the type of research they want to carry 
out. This approach leads to a competitive use of scientific 
Grids, and minor research projects could not get access to 
them. Other issues are technical and more important: in most 
of the cases scientific Grids feature a pre-packaged 
environment in which applications will be executed, 
sometimes specific tools and APIs have to be used and there 
could be limitations on the hosting operating systems or on 
the services offered by the runtime environment. Even 
though Grid computing fosters the dynamic discovery of 
services and a wide variety of runtime environments for 
applications, in practice a limited set of options is available 
for scientists, and sometimes they could not be elastic 
enough to cover their needs. A practical example, involves 
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the use of specific software that could not be available in the 
runtime environment were applications are executed. In 
general, applications that run on scientific Grids are 
implemented as bag of tasks applications, workflows, and 
MPI (Message Passing Interface) [8] parallel processes. 
Some scientific experiments could not fit into these models 
and have to be reorganized or redesigned to make use of 
scientific Grids. Whereas the bureaucratic issues can be a 
minor problem, the technical ones could constitute a 
fundamental obstacle for scientific computing. In this sense, 
the approach based on virtualized technologies proposed by 
the PlanetLab [9] could be of great help. PlanetLab is an 
open platform for developing, deploying, and accessing 
planetary-scale services. Users are given a slice that is virtual 
machine access on a set of nodes in the PlanetLab 
infrastructure. Hence, a slice can be fully customizable for 
the specific use. At present, PlanetLab is mostly used as a 
testbed for computer networking and distributed system 
research and it is only accessible to the infrastructure is 
granted only to persons affiliated with corporations and 
universities that host PlanetLab node. This makes its use for 
computational science quite limited. 

Cloud computing [10][11], the current emerging trend in 
delivering IT services, can address many of the 
aforementioned problems. By means of virtualization 
technologies, Cloud computing offers to end users a variety 
of services covering the entire computing stack, from the 
hardware to the application level, by charging them on a pay 
per use basis. Another important feature, from which 
scientists can benefit, is the ability to scale up and down the 
computing infrastructure according to the application 
requirements and the budget of users. By using Cloud based 
technologies scientists can have easy access to large 
distributed infrastructures and completely customize their 
execution environment, thus providing the perfect setup for 
their experiments. Moreover, by renting the infrastructure on 
a pay per use basis, they can have immediate access to 
required resources without any capacity planning and they 
are free to release them when resources are no longer 
needed. Cloud computing provides a flexible mechanism for 
delivering IT services at each level of the computing stack: 
from the hardware level to the application level. Hardware 
appliances and applications are provisioned by means of 
hardware virtualization and software-as-a-service solutions, 
respectively. This makes the spectrum of options available to 
scientists wide enough to cover any specific need for their 
research.  

The interest towards Cloud computing solutions is rapid 
growing. As a result, they have already been adopted in 
different scenarios such as social networking, business 
applications, and content delivery networks. At present, the 
use of Cloud computing in computational science is still 
limited, but the first steps towards this goal have been 
already done. This year the Department of Energy (DOE) 
National Laboratories started exploring the use of cloud 
services for scientific computing. On April 2009, Yahoo Inc. 
announced that it has extended its partnership with the major 
top universities in United States of America to advance 
Cloud computing research and applications to computational 

science and engineering. One of the first cloud-based 
infrastructures for computational science, Science Cloud 
[12], has been already deployed by the joint efforts of the 
University of Chicago, the University of Illinois, Purdue 
University, and Masaryk University. From a research point 
of view, initial studies have been conducted on the feasibility 
of using computing clouds for scientific computing. Some 
studies investigated the benefit of using Cloud computing 
technologies by analyzing the performances of HPC 
scientific applications [13] or the cost of performing 
scientific experiments [14] on the Amazon Cloud 
infrastructure. 

Different solutions are available to move from the 
traditional science Grids and embrace the Cloud computing 
paradigm. Some vendors, such as Amazon Web Services and 
VMWare base their offering on hardware level virtualization 
and provide bare compute and storage resources on demand. 
Google AppEngine and Microsoft Azure are more focused 
on application level virtualization by enforcing a specific 
application model that leverage their large infrastructure and 
scale up and down on demand. Other solutions provide end 
users with a platform for developing Cloud computing 
applications that can rely on, or compose, some of the 
existing solutions thus providing a better Quality of Service 
to the end user. Aneka [15] is a Cloud computing platform 
for developing applications that can scale on demand by 
harnessing the CPU cycles of virtual resources, desktop PCs, 
and clusters. Its support for multiple programming models 
provides scientists with different options for expressing the 
logic of their applications: bag of tasks, distributed threads, 
dataflow, or MapReduce [16]. Its service oriented 
architecture provides users with an extremely customizable 
infrastructure that can meet the desired Quality of Service for 
applications. 

The rest of the paper is organized as follows: first, we 
provide an overview of Cloud computing by defining the 
reference model and the key elements of this paradigm. 
Then, we will introduce Aneka and provide a detailed 
discussion of its features by highlighting how it can support 
computational science. As case studies, we will present the 
classification of gene expression data and the execution of 
scientific workflows on the Amazon EC2 public cloud. Final 
thoughts and key observations about the future directions of 
Cloud computing, as a valid support for scientific 
computing, are discussed at the end. 

II. THE RISE OF THE CLOUDS 

The term Cloud computing encompasses many aspects 
that range from the experience that end users have with the 
new opportunities offered by this technology to the 
implementation of systems that actually make these 
opportunities a reality. In this section, we will provide a 
characterization of what Cloud computing is, introduce a 
reference model for Cloud computing, and identify the key 
services that this new technology offers. 

A. Cloud Definition 

Although, the term Cloud computing is too broad to be 
captured into a single definition it is possible to identify 
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some key elements that characterize this trend. Armbrust et 
al. [10] observe that “Cloud computing refers to both the 
applications delivered as services over the Internet and the 
hardware and system software in the datacenters that 
provide those services”. They then identify the Cloud with 
both the hardware and the software components of a 
datacenter. A more structured definition is given by Buyya 
et al. [17] who define a Cloud as a “type of parallel and 
distributed system consisting of a collection of 
interconnected and virtualized computers that are 
dynamically provisioned and presented as one or more 
unified computing resources based on service-level 
agreement”. One of the key features characterizing Cloud 
computing is the ability of delivering both infrastructure and 
software as services. More precisely, it is a technology 
aiming to deliver on demand IT resources on a pay per use 
basis. Previous trends were limited to a specific class of 
users, or specific kinds of IT resources. Cloud computing 
aims to be global: it provides the aforementioned services to 
the mass, ranging from the end user that hosts its personal 
documents on the Internet, to enterprises outsourcing their 
entire IT infrastructure to external datacenters. 

B. Cloud Computing Reference Model 

Figure 1 gives an overview of the scenario envisioned by 
Cloud computing. It provides a layered view of the IT 
infrastructure, services, and applications that compose the 
Cloud computing stack. It is possible to distinguish four 
different layers that progressively shift the point of view 
from the system to the end user. 

The lowest level of the stack is characterized by the 
physical resources on top of which the infrastructure is 
deployed. These resources can be of different nature: 
clusters, datacenters, and spare desktop machines. 
Infrastructures supporting commercial Cloud deployments 
are more likely to be constituted by datacenters hosting 
hundreds or thousands of machines, while private Clouds 
can provide a more heterogeneous environment, in which 
even the idle CPU cycles of spare desktop machines are 
used to leverage the compute workload. This level provides 
the “horse power” of the Cloud. 
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Figure 1.  Cloud computing layered architecture. 

The physical infrastructure is managed by the core 
middleware layer whose objectives are to provide an 
appropriate runtime environment for applications and to 
exploit the physical resources at best. In order to provide 
advanced services, such as application isolation, quality of 
service, and sandboxing, the core middleware can rely on 
virtualization technologies. Among the different solutions 
for virtualization, hardware level virtualization and 
programming language level virtualization are the most 
popular. Hardware level virtualization guarantees complete 
isolation of applications and a fine partitioning of the 
physical resources, such as memory and CPU, by means of 
virtual machines. Programming level virtualization provides 
sandboxing and managed execution for applications 
developed with a specific technology or programming 
language (i.e. Java, .NET, and Python). On top of this, the 
core middleware provides a wide set of services that assist 
service providers in delivering a professional and 
commercial service to end users. These services include: 
negotiation of the quality of service, admission control, 
execution management and monitoring, accounting, and 
billing. Together with the physical infrastructure, the core 
middleware represents the platform on top of which the 
applications are deployed in the Cloud. It is very rare to 
have direct user level access to this layer. More commonly, 
the services delivered by the core middleware are accessed 
through a user level middleware. This provides 
environments and tools simplifying the development and the 
deployment of applications in the Cloud. They are: web 2.0 
interfaces, command line tools, libraries, and programming 
languages. The user-level middleware constitutes the access 
point of applications to the Cloud. 

C. Cloud Computing Services Offering 

The wide variety of services exposed by the Cloud 
computing stack can be classified and organized into three 
major offerings that are available to end users, scientific 
institutions, and enterprises. These are: Infrastructure as a 
Service (IaaS), Platform as a Service (PaaS), and Software 
as a Service (SaaS). Figure 2 provides such categorization. 
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Figure 2.  Cloud computing offerings by services. 
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Infrastructure as a Service or Hardware as a Service 
(HaaS) are terms that refer to the practice of delivering IT 
infrastructure based on virtual or physical resources as a 
commodity to customers. These resources meet the end user 
requirements in terms of memory, CPU type and power, 
storage, and, in most of the cases, operating system. Users 
are billed on a pay per use basis and have to set up their 
system on top of these resources that are hosted and 
managed in datacenters owned by the vendor. Amazon is 
one of the major players in providing IaaS solutions. 
Amazon Elastic Compute Cloud (EC2) provides a large 
computing infrastructure and a service based on hardware 
virtualization. By using Amazon Web Services, users can 
create Amazon Machine Images (AMIs) and save them as 
templates from which multiple instances can be run. It is 
possible to run either Windows or Linux virtual machines 
and the user is charged per hour for each of the instances 
running. Amazon also provides storage services with the 
Amazon Simple Storage Service (S3), users can use 
Amazon S3 to host large amount of data accessible from 
anywhere. 

Platform as a Service solutions provide an application or 
development platform in which users can create their own 
application that will run on the Cloud. PaaS 
implementations provide users with an application 
framework and a set of API that can be used by developers 
to program or compose applications for the Cloud. In some 
cases, PaaS solutions are generally delivered as an 
integrated system offering both a development platform and 
an IT infrastructure on top of which applications will be 
executed. The two major players adopting this strategy are 
Google and Microsoft. 

Google AppEngine is a platform for developing scalable 
web applications that will be run on top of server 
infrastructure of Google. It provides a set of APIs and an 
application model that allow developers to take advantage 
of additional services provided by Google such as Mail, 
Datastore, Memcache, and others. By following the 
provided application model, developers can create 
applications in Java, Python, and JRuby. These applications 
will be run within a sandbox and AppEngine will take care 
of automatically scaling when needed. Google provides a 

free but limited service while utilizes daily and per minute 
quotas to meter and price applications requiring a 
professional service. Azure is the solution provided by 
Microsoft for developing scalable applications for the 
Cloud. It is a cloud service operating system that serves as 
the development, run-time, and control environment for the 
Azure Services Platform. By using the Microsoft Azure 
SDK, developers can create services that leverage the .NET 
Framework. These services have to be uploaded through the 
Microsoft Azure portal in order to be executed on top of 
Windows Azure. Additional services, such as workflow 
execution and management, web services orchestration, and 
access to SQL data stores, are provided to build enterprise 
applications. 

Aneka [15], commercialized by Manjrasoft, is a pure 
PaaS implementation and provides end users and developers 
with a platform for developing distributed applications for 
the Cloud by using the .NET technology. The core value of 
Aneka is a service oriented runtime environment – the 
Aneka container – that is deployed on both physical and 
virtual infrastructures and allows the execution of 
applications developed by means of different programming 
models. Aneka provides a Software Development Kit 
(SDK) helping developers to create cloud applications on 
any language supported by the .NET runtime and a set of 
tools for setting up and deploying clouds on Windows and 
Linux based systems. Being a pure PaaS solution, Aneka 
does not provide an IT hardware infrastructure to build 
computing Clouds, but system administrator can easily set 
up Aneka Clouds by deploying the Aneka containers on 
clusters, datacenters, simple desktop PCs, or even bundled 
within Amazon Machine Images.  

Software as a Service solutions are at the top end of the 
Cloud computing stack and they provide end users with an 
integrated service comprising hardware, development 
platforms, and applications. Users are not allowed to 
customize the service but get access to a specific application 
hosted in the Cloud. Examples of the SaaS implementations 
are the services provided by Google for office automation, 
such as Google Document and Google Calendar, which are 
delivered for free to the Internet users and charged for 
professional quality services. 

 

TABLE I.  CLOUD COMPUTING SOLUTIONS FEATURE COMPARISON 

Properties Amazon EC2 Google AppEngine Microsoft Azure Manjrasoft Aneka 
Service Type IaaS IaaS – PaaS IaaS – PaaS PaaS 

Support for (value offer) Compute/Storage Compute(web applications) Compute/Storage Compute 

Value Added Provider Yes Yes Yes Yes 

User access Interface 
Web APIs and 

Command Line Tools 
Web APIs and Command Line 

Tools 
Azure Web Portal Web APIs, Custom GUI 

Virtualization OS on Xen Hypervisor Application Container Service Container Service Container 

Platform (OS & runtime) Linux, Windows Linux .NET on Windows 
.NET/Mono on Windows, Linux, 

MacOS X 

Deployment Model Customizable VM Web apps (Python, Java, JRuby) Azure Services Applications (C#, C++, VB, ….) 

If PaaS, ability to deploy 
on 3rd party IaaS 

N.A. No No Yes 
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Examples of commercial solutions are Salesforce.com and 
Clarizen.com, which respectively provide on line CRM and 
project management services.  

Table I gives a feature comparison of some of the most 
representative players in delivering IaaS/PaaS solution for 
Cloud computing. In the rest of the paper we will mostly 
concentrate on Aneka and how it can be used to support 
scientific computing in the Cloud. 

III. ANEKA 

Aneka 1  is a software platform and a framework for 
developing distributed applications on the Cloud. It 
harnesses the computing resources of a heterogeneous 
network of desktop PCs and servers or datacenters on 
demand. Aneka provides developers with a rich set of APIs 
for transparently exploiting such resources and expressing 
the logic of applications by using a variety of programming 
abstractions. System administrators can leverage a collection 
of tools to monitor and control the deployed infrastructure. 
This can be a public cloud available to anyone through the 
Internet, or a private cloud constituted by a set of nodes with 
restricted access within an enterprise. 

The flexible and service-oriented design of Aneka and its 
fully customizable architecture make Aneka Clouds able to 
support different scenarios. Aneka Clouds can provide the 
pure compute power required by legacy financial 
applications, can be a reference model for teaching 
distributed computing, or can constitute a more complex 
network of components able to support the needs of large 
scale scientific experiments. This is also accomplished by the 
variety of application programming patterns supported 
through an extensible set of programming models. These 
define the logic and the abstractions available to developers 
for expressing their distributed applications. As an example, 
in order to run scientific experiments it is possible to rely on 
a classic bag of tasks model, or to implement the application 
as a collection of interacting threads or MPI processes, a set 
of interrelated tasks defining a workflow, or a collection of 
MapReduce tasks. If the available options do not meet the 
requirements, it is possible to seamlessly extend the system 
with new programming abstractions. 

Aneka Clouds can be built on top of different physical 
infrastructures and integrated with other Cloud computing 
solutions such as Amazon EC2 in order to extend on demand 
their capabilities. In this particular scenario, Aneka acts as a 
middleman mitigating the access to public clouds from user 
applications. It operates as an application service provider 
that, by using fine and sophisticated pricing policies, 
maximizes the utilization of the rented virtual resources and 
shares the costs among users. Of a particular importance are 
then, the accounting and pricing services and how they 
operate when Aneka integrates public clouds. 

Figure 3 gives an architectural overview of Aneka. In 
order to develop cloud computing applications developers 
are provided with a framework that is composed by a 

                                                        
1 Originally Aneka began as a third generation enterprise Grid initiative 
[28] in 2006 and its goals were in line with what is promised by the Cloud 
computing paradigm. It then rapidly emerged as a PaaS for Clouds. 

software development kit for programming applications, a 
management kit for monitoring and managing Aneka Clouds 
and a configurable service based container that constitute the 
building blocks of Aneka Clouds. In this section we will 
mostly focus on three key features: the architecture of Aneka 
clouds, the application model, and the services available for 
integrating Aneka with public clouds. 
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Figure 3.  Aneka architecture. 

A. Aneka Clouds 

The Aneka cloud is a collection of software daemons – 
called containers – that can be hosted on either physical or 
virtual resources and that are connected through a network 
such as the Internet or a private intranet. The Aneka 
container is the building block of the entire system and 
exposes a collection of services that customize the runtime 
environment available for applications.  

It provides the basic management features for a single 
node and leverages the hosted services to perform all the 
other operations. We can identify fabric and foundation 
services. Fabric services directly interact with the node 
through the Platform Abstraction Layer (PAL) and perform 
hardware profiling and dynamic resource provisioning. 
Foundation services identify the core system of the Aneka 
infrastructure; they provide a set of basic features on top of 
which each of the Aneka containers can be specialized to 

8



perform a specific set of tasks. One of the key features of 
Aneka is the ability to provide multiple ways of expressing 
distributed applications by offering different programming 
models; execution services are mostly concerned with 
providing the middleware with an implementation for these 
models. Additional services such as persistence and security 
are transversal to the entire stack of services that are hosted 
by the container.  

The network of containers can be the result of different 
deployment scenarios: it can represent a private cloud 
completely composed by physical machines (desktop PCs 
and clusters) within the same administrative domain such as 
an enterprise or a university department. On the other hand, a 
totally virtual infrastructure is possible and the entire Aneka 
Cloud can be hosted on a public cloud such as Amazon EC2 
or a private datacenter managed by Eucalyptus [18]. Hybrid 
systems are also allowed and they are the most frequent 
ones. In this case, the local infrastructure is extended with 
additional virtual resources as depicted in Figure 4.  
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Figure 4.  Aneka deplyoment on hybrid clouds. 

Aneka Clouds can scale on demand and provision 
additional nodes or release some of them when they are no 
longer needed. These nodes can either be virtual or physical 
resources. Physical nodes can be released by the network by 
simply shutting down the container hosted in the node, while 
in the case of the virtual resources it is also necessary to 
terminate the virtual machine hosting the container. This 
process can be performed manually or by the scheduler as a 
result of the elastic and autonomic management of the status 
of the Cloud. Except for the provisioning policy, there is no 
difference between containers hosted within a virtual 
machine or a physical resource since all the hardware related 
tasks are encapsulated in the Platform Abstraction Layer 
(PAL). As described in Figure 3, the provisioning module 
belongs to the Fabric Services and exposes its services to the 
other components that operate indifferently. 

A set of services are always deployed within Aneka 
Clouds. Apart from the Fabric Services, the operative core of 
the container is represented by the Foundation Services, 
which perform the basic operations for managing the Aneka 

Cloud. Among these, the Membership Services play a key 
role in keeping track of all the nodes belonging to the Cloud 
and providing a registry that can be used for dynamically 
discovering the services available in the network or nodes 
with a specific configuration or operating system. For 
example, they can be used by scheduling services to locate 
all the nodes that can support the execution of a given 
programming model. Other components provide basic 
features such as support for file transfer and resource 
reservation for privileged execution. 

The customization of the Aneka container takes place on 
top of the Foundation Services. Even though, the Aneka 
container is configurable and customizable at any layer, 
Execution Services are the one that more commonly 
differentiate the purpose of a node. A classic configuration, 
which is depicted in Figure 4, features a deployment where 
scheduling services are installed on a limited number of 
nodes and the majority of the containers are configured to be 
compute resources. This scenario identifies a master slave 
topology and it is only one of the possible options with 
Aneka, which could be suitable only for some programming 
models. A hierarchical topology based on schedulers and 
meta- schedulers can provide a better solution for large 
infrastructures and heavy load conditions. 

This brief overview provides a general idea of the design 
principles that characterize the Aneka Cloud and its internal 
architecture. In the following, we will describe how these 
features are exploited by the Aneka application model for 
providing a customized runtime environment able to support 
different application programming patterns. 

B. Aneka Application Model 

The Aneka Application Model defines the fundamental 
abstractions that constitute a distributed application hosted in 
the Aneka Cloud. It identifies the requirements that every 
specific implementation has to meet in order to be 
seamlessly integrated into Aneka and take advantage of all 
the available services hosted in the Cloud. The application 
model also specifies what the general requirements for the 
runtime environment that is expected to run applications that 
are built on top of a specific model. 

Differently from other middleware implementations 
Aneka does not support single task execution, but any unit of 
user code is executed within the context of a distributed 
application. An application in Aneka is constituted by a 
collection of execution units whose nature depends on the 
specific programming model used. An application is the unit 
of deployment in Aneka and configuration and security 
operates at application level. Execution units constitute the 
logic of the applications. The way in which units are 
scheduled and executed is specific to the programming 
model they belong to. By using this generic model, the 
framework provides a set of services that work across all 
programming models supported: storage, persistence, file 
management, monitoring, accounting, and security. 

In order to implement a specific programming model on 
top of Aneka developers have to: 
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• define the abstractions that will be used by software 
engineers to structure the distributed application and 
define its execution logic; 

• provide the implementation of execution services 
that are required to manage the execution of the 
abstractions within the Aneka Cloud; 

• implement a client component coordinating with the 
execution services that manages the execution from 
the client machine. 

These are the components that are common to any 
different implementation of the programming model. The 
current release of Aneka supports four different 
programming models. These are: Task Model, Thread 
Model, MapReduce Model, and Parameter Sweep Model 
(PSM). Others, such as the Actor Model, the MPI Model, 
and Workflow are under development.  

Table II, provides a feature comparison of these models 
and demonstrates the flexibility of the Aneka Application 
Model. For each of these models, the application type or 
scenario that naturally fit in that model are briefly described. 
The table provides a concise description of each model, 
which is represented in terms of application, execution units, 
and execution services within Aneka. It also provides a user 
and a system point of view.  

C. Accouting, Pricing, and Integration with Public Clouds 

Aneka provides an infrastructure that allows setting up 
private, public, and hybrid clouds. In a cloud environment, 
especially in the case of public and hybrid clouds, it is 
important to implement mechanisms for controlling 
resources and pricing their usage in order to charge users and 
maximize the utilization of the system while trying to 
minimize the costs. Accounting and pricing are the tasks that 
collectively implement a pricing mechanism for applications 
in Aneka.  

The accounting service is responsible of keeping track of 
usage statistics of the systems and classifying them per user 

and application. This information is fundamental in order to 
estimate the cost that has to be charged to each user and to 
determinate how the applications are responsible of the user 
expenses. The current implementation of the accounting 
service is able to keep track of time spent by each execution 
unit of each application and to maintain the history of the 
execution of each unit. These data are then used by the 
selected pricing strategy to define the amount that has to be 
charged by the user. For example, a simple policy could be 
assigning a price to each resource and determinate the cost 
generated by each application by simply doing the weighted 
sum of all the execution units of the application. Other 
policies can take into account the specific services used by 
one application. 

The role of these two components becomes even more 
important when Aneka Clouds are completely deployed or 
integrate with public clouds. In this case the use of virtual 
public resources incurs costs that have to be taken into 
account while determining the bill for users. Hybrid clouds 
constitute a challenging scenario: here, virtual resources are 
provisioned in order to meet the Service Level Agreement 
(SLA) signed with users. In order to face this challenge, 
Aneka provides an object model allowing third parties to 
seamlessly integrate different scheduling algorithms that can 
coordinate their activity with the resource provisioning 
service. The current implementation is still at an early stage 
and devises a model where the scheduler can access multiple 
resource pools keeping track in real time of the cost currently 
spent for each active instance. The basic strategy of the pool 
is trying to reuse as much as possible the instances already 
active in order to minimize the costs of the public virtual 
resources. Different scheduling algorithms can be plugged 
into this model; therefore, developers can provide multiple 
policies for deciding when to grow or shrink the set of nodes 
that constitute the Aneka Cloud. 

 

TABLE II.  PROGRAMMING MODELS FEATURE COMPARISON 

Name Scenario Applications Execution Units Execution Services 

Task Model 
Independent bag of 
tasks applications 

A collection of independent 
tasks. 

Task interface, execute 
method. 

Task scheduling service and task 
execution service. 

Thread Model 
Multithreaded 
applications 

A collection of threads 
executed concurrently. 

Any instance, any method. 
Thread scheduling service and 

thread execution service 

MapReduce Model 
Data intensive 
applications 

A map and a reduce functions 
and a large collection of data. 

Map and Reduce Tasks 
MapReduce scheduling and 

execution services, MapReduce 
storage service 

PSM 
Parameter sweeping 

applications 
Task template with a collection 

of parameters. 
Task template instance with a 
given set of parameter values 

Built on top of the Task Model, 
no additional requirements 

Workflow 
Workflow 

applications 
A collection of interrelated 
tasks composing a DAG. 

Task instance 
Built on top of the Task Model 
with additional requirements 

MPI 

Message passing 
applications A collection of MPI processes 

that exchange messages. 
MPI processes 

MPI scheduling service, MPI 
execution service 

Actors 
Distributed active 

objects / agents 
A collection of Actor instances 

interacting each other via 
message passing 

Actor instances 
Actor scheduling service, Naming 
service, Actor execution service 

hosting the actor theater 
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IV. CASE STUDIES  

In this section, we will discuss two practical applications 
of scientific computing in the Cloud. Both the case studies 
have been implemented on top of the Amazon EC2 
infrastructure. The first case study features the 
classification of gene expression datasets by using an 
Aneka Cloud while the second case presents the execution 
of an fMRI brain imaging workflow and compares its 
performance with the same experiment carried out on 
traditional Grids. In both of the two cases, a cost analysis 
on the usage of the Cloud is presented. 

A. Classification of Gene Expression Data 

Gene expression profiling is then measurement of the 
activity – the expression – of thousands of genes at once, 
to create a global picture of cellular function. The analysis 
of profiles, which is the measurement of the activity of 
genes, helps researchers to identify the relationships 
between genes and diseases and how cells react to a 
particular treatment. One of the most promising techniques 
supporting the analysis of gene profiles is the DNA 
microarray technology [19], which can be particularly 
helpful in cancer prediction. One of the disadvantages of 
this technique is the huge amount of data produced: the 
DNA profile for each patient where thousands of genes are 
organized as an array and whose state (active or not) is 
indicated by specific color or a black spot in the array. For 
these reasons, the classification of these profiles for cancer 
diagnosis cannot be performed without the aid of 
computerized techniques. 

Among the different classification methods, the 
CoXCS classifier [20] has demonstrated to be particularly 
effective in classifying gene expression data sets. CoXCS 
is a co-evolutionary learning classifier based on feature 
space partitioning. It extends the XCS model [21] by 
introducing a co-evolutionary approach. Figure 5 provides 
a schematic example of the internal logic of CoXCS: a 
collection of independent populations of classifiers are 
trained by using different partitions of the feature space 
within the training datasets. After a fixed number of 
iterations, selected classifiers from each of the independent 
populations are transferred to a different population 
according to some migration strategy. The evolution 
process is then repeated until a specific threshold is 
reached. 

 

 
Figure 5.  CoXCS architecture. 

The internal architecture of CoXCS, based on feature 
space partitioning, not only outperforms the original XCS 
in classifying gene expression datasets, but also all the 

classic methods. Table III shows a performance 
comparison of different classification methods when 
applied to two sample gene expression datasets. As it can 
be noticed by the results obtained for the test phase the 
accuracy of CoXCS is definitely better than the ones 
achieved by other classifiers.  

TABLE III.  AREA UNDER COVER BASED ACCURACY COMPARISON 

 
The only disadvantage of using CoXCS is the long 

computation time required to evolve the classifier into a 
stable form. The intrinsic parallelism of CoXCS allows for 
a distributed, and faster, implementation. Cloud-CoXCS is 
a Cloud-based implementation of CoXCS that leverage the 
Aneka Computing cloud to distribute the evolution of the 
independent populations of classifiers at each of the 
iterations. In order to quickly have a working prototype of 
Cloud-CoXCS, we implemented it as a strategy for the 
Offspring toolkit [22]. Offspring is a software environment 
allowing the rapid prototyping of strategies. These are 
client-based workflows that can be executed over Aneka 
and other middleware implementations.  

The algorithm implemented in Cloud-CoXCS is the 
same as CoXCS; therefore, we expect to have the same 
accuracy and to obtain an almost linear speedup in the 
execution of the training sessions. In order to validate out 
assumptions, we deployed an Aneka Cloud on top of the 
Amazon EC2 infrastructure and performed some 
preliminary tests. These experiments allowed us to 
investigate the impact of the different setups on the 
execution time and the performance of Cloud-CoXCS. We 
performed two experiments: one varies the gene 
expression datasets; the other the type of instance of 
compute nodes deployed in Amazon EC2. 

We did not change the parameter of CoXCS that have 
been fixed to the following values: 5000 individuals for 
each independent population; exploration/exploitation rate 
set to 0.3; 20 partitions for all datasets; migration rate set 
to 10% of the population size; 5 separate migration stages 
with 100 independent iterations for the evolutions of 
populations between migration stages. 

Regarding the deployed infrastructure, two different 
Amazon images have been used: a master image and a 

Classifier Mode BRCA Prostate 

J48 
Train 
Test 

0.92 ± 0.06 
0.35 ± 0.01 

1.00 
0.60 ± 0.10 

NBTree 
Train 
Test 

1.00 
0.65 ± 0.12 

1.00 
0.46 ± 0.04 

Random Forest 
Train 
Test 

1.00 
0.51 ± 0.01 

1.00 
0.60 ± 0.09 

Logistic 
Regression 

Train 
Test 

1.00 
0.85 ± 0.17 

0.50 
0.50 

Naïve Bayes 
Classifier 

Train 
Test 

0.99 ± 0.01 
0.90 ± 0.05 

1.00 
0.35 ± 0.04 

SVM 
Train 
Test 

1.00 
0.53 ± 0.04 

1.00 
0.51 ± 0.07 

XCS 
Train 
Test 

0.50 
0.50 

0.50 
0.50 

CoXCS 
Train 
Test 

1.00 
0.98 ± 0.02 

1.00 
0.70 ± 0.02 

11



slave image. The master image features an instance of the 
Aneka container hosting the scheduling and file staging 
services for the Task Model on a Windows Server 2003 
operating system. The slave image hosts a container 
configured with the execution services deployed on a Red 
Hat Linux 4.1.2 (kernel: 2.6.1.7). The Cloud deployed for 
the experiments is composed by one master node and 
multiple slave nodes that have been added to the cloud on 
demand. Experiments have been done to compare different 
cloud setups. Two different image types have been tested 
for slave instances: m1.small and c1.medium. For the 
master node we used the m1.small instance type. 

TABLE IV.  ANEKA EC2 CLOUD SETUPS 

 
Table IV describes the characteristics of the two 

different cloud setups used for the experiments. It can be 
noticed that c1.medium instances are modeled as dual core 
machines and provide a computational power that is 
double compared to the one provided by m1.small. The 
computing power is expressed in EC2 Compute Units2. In 
both cases a complete parallelism at each stage is obtained 
because Aneka scheduler dispatches one task per core. 
Hence, c1.medium instances will receive two tasks to 
process each time. 

In order to validate the experiments, we used the cross-
validation technique. To support cross validation, the 
BRCA dataset has been configured with two folds, while 
the Prostate dataset has been divided into four folds. Table 
V reports the execution times recorded for the two setups. 

TABLE V.  EXECUTION TIMES (MINUTES) 

 
The experiments performed on the two different setups 

show that in both of the two cases the execution times 
recorded for the Prostate dataset are approximately four 
times longer that the execution times recorded for the 
BRCA dataset. This is quite reasonable, since the number 

                                                        
2  An EC2 Compute Unit is a virtual metric used to express the 
computational power of an instance. One EC2 Compute Unit (ECU) 
provides the equivalent CPU capacity of 1.0-1.2 GHz 2007 Opteron or 
2007 Xeon processor. 

of genes BRCA samples is four times smaller than the 
number of samples in the Prostate dataset. 

Another interesting aspect is the fact that execution 
with the c1.medium setup requires a major amount of time 
to complete. On average, about 32% more of the 
corresponding runs with the m1.small setup. Since the 
single CoXCS task that is executed is designed as a single 
threaded process, it does not take benefit from having the 
two cores. Moreover, the increase in execution time of the 
entire learning process can be explained by the fact that 
both tasks are competing for the shared resources such as 
cache, bus, memory, and file system. Another issue that 
has to be taken into account is the fact that CoXCS tasks 
are executed within the runtime environment provided by 
Aneka that is shared even on a dual core machine. For this 
reason, some small operations at the very basic level of the 
infrastructure are performed sequentially. Finally, CoXCS 
tasks are compute tasks that use a considerable amount of 
memory to perform the learning phase. This could create a 
major number of cache misses in a multi-core setup. 

More interesting are the considerations about the 
budget spent for performing the experiments. Given the 
large number of partitions used, the duration of the single 
CoXCS task is quite limited. This allows completing the 
exploration of all the folds in less than one hour, in case of 
the BRCA dataset, and less than two hours in case of the 
Prostate dataset. These executions, even though with 
different timings, incur the same cost for both of the two 
setups. If we take into account, that there is a significant 
difference in the execution time (32% on average), the 
granularity offered by Amazon could not be enough to 
provide an efficient pricing model. The current accounting 
system implemented in Aneka keeps track of the execution 
of tasks by minute and it is designed to share the virtual 
resources among multiple users. By letting Aneka act as a 
middleman between the Cloud provider and the end-users, 
a more efficient billing strategy can be implemented. 

B. Functional Magnetic Resonance Imaging Workflows 

Brain imaging technologies focus on processing image 
data obtained from MRI (Magnetic Resonance Imaging) 
scanners. The processed images can be further analyzed by 
medical personnel and scientists. In particular, Functional 
Magnetic Resonance Imaging (fMRI) attempts to 
determine which parts of the brain reacts in response to 
some given stimulus. In order to achieve this goal, first, 
the images of the brain collected from MRI scanners have 
to be transformed in order to reduce anatomic variability 
that naturally differentiate one subject from another one. 
This process is known as special normalization or Image 
Registration (IR). Once this step is completed, the images 
are compared with the atlas, which is a reference image 
obtained as the average of all the subjects brain images, 
and as a final step, the specific fMRI analysis procedures 
are carried out. 

Figure 6 provides a visual representation of the 
sequence of steps involved in the fMRI analysis. Of the 
whole fMRI process, only the spatial normalization, which 
involves a sequence of complex operations, has been 

Feature m1.small c1.medium 

Cores 1 2 

EC2 Computing Units 2.5 5 

Memory 1.7 GB 1.7 GB 

Slave Instances 10 20 

Cost/Hour 0.10 USD 0.20 USD 

Setup BRCA Prostate 

Fold 1 2 3 4 1 2 

M1.small 08:26 10:00 10:00 9:00 35:13 40:44 

c1.medium 10:42 10:04 15:17 11:42 52:48 53:48 

Delta 2:16 0:04 05:17 02:42 17:35 13:04 
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modeled as a workflow. Such workflow, described in 
Figure 6, is both data and compute intensive in nature.  

A typical scenario involves the use of 10 to 40 brain 
images for analysis, which are repeatedly carried out over 
different groups of subjects [25]. Each input image is 
around 16MB in size. For 20 images, the total input to the 
workflow is 640MB. The output data size of each process 
in the workflow ranges from 20MB to 40MB. In case of 
40 brain images, the total size of data processed exceeds 
20GB. The ideal execution time for a 1-subject IR 
workflow (done for estimating execution time for >1 
subjects) is about 69 minutes on a single machine where 
there is no time spent for transferring data. In a distributed 
execution settings, where data transfer times and 
management overheads are non-trivial, the total time taken 
for execution increases significantly. 

 

 
Figure 6.  fMRI analysis. 

The original experiment, featuring 20 subjects has been 
performed during the Second IEEE International Scalable 
Computing Challenge (SCALE 2009) held at CCGrid 
2009 conference in Shanghai, China. The experiment 
results presented here are a part of the demonstration, 
which was one of the two winners of the competition. 

The system deployed to run the experiments was 
completely hosted within the Amazon Cloud 
infrastructure. The execution of the workflow has been 
managed by the Gridbus Workflow Engine [26] that 
handled the execution of tasks in the workflow depicted in 
Figure 7. The experiment has been repeated with 2, 10 and 
20 subjects and executed on the Amazon Cloud by using 

EC2 as a provider of computing resources and S3 for the 
storage of input data. The results of the execution have 
been compared with the execution of the same workflow 
in Grid’5000 [27], in which each compute node in the 
network served as both storage and compute resource. The 
metrics used to compare the results of the two executions 
is the makespan (difference between the submission time 
of the first submitted task and the output arrival time of the 
last exit task to be executed on the system) and execution 
cost of the workflow. The execution cost in Grid’5000 is 
assumed to be zero.  
 

 
 

Figure 7.  IR workflow structure. 

Figure 8 compares the makespan of the workflow 
when the number of subjects used is varied. We observe 
that for large number of subjects, the makespan decreases 
when using EC2. For 2 subjects, the change in the 
makespan is not significant. This difference in makespan is 
mainly due to the shortening of the data-transfer time 
between the virtual nodes in EC2 as compared to the 
transfer between multiple physical sites in Grid’5000. For 
a large workflow (20 subjects) individual file transfer time 
gets cumulated, resulting in a significant difference in total 
makespan when compared to the results of Grid’5000. 

Figure 9 compares the change in makespan versus the 
EC2 usage cost. The data transfer and the storage cost 
during execution were very minimal as the compute nodes 
were part of a Cloud datacenter. As the number of 
execution nodes is increased from 2 to 20 EC2 nodes, the 
makespan decreases significantly from 391 minutes to 107 
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minutes for a workflow analyzing 20 subjects. The cost of 
usage of Cloud nodes rose from $5.2 to $14.28. However, 
the ratio between the cost and the number of EC2 nodes 
used shows that: the total cost of computation of a large 
workflow (20 subjects) using 20 EC2 nodes would be 
$0.714/machine, as opposed to $2.6 when executing the 
same workflow using only 2 EC2 nodes. The average cost 
of usage per machine decreases as the number of resources 
provisioned increases from 2 to 20. Consequently, the 
overall application execution cost increased by not more 
than three times with a decrease in execution time by 
similar factor. 

 

 
Figure 8.  Makespan comparison  between EC2 and Grid’5000 setups. 

 

 

Figure 9.  Makespan comparison between EC2 and Grid’5000 setups. 

From our experiments, we conclude that large high 
performance applications can benefit from on-demand 
access and scalability of compute and storage resources 
provided by public Clouds. Hence, the increase in cost is 
subdued by the significant reduction in application 
execution time by making use of abundance of Cloud 
resources, which can be provisioned on demand. 

V. OBSERVATIONS AND THOUGHTS 

The Cloud computing model introduces several 
benefits for end users, enterprises, service providers, and 
scientific institutions. The advantage of dynamically 
scaling the IT infrastructure on a pay per use basis and 
according to the real needs of applications, definitely 
constitute one of the major gains brought by Cloud 
computing. Moreover, by moving the IT infrastructure into 
the Cloud it is not necessary: (a) to bear costs derived from 
capacity planning for peak loads; (b) to statically acquire 
infrastructure due to the sporadic need of large 
computation power; and (c) to incur expensive 
administrative and maintenance costs. These issues are 
likely to be more important for enterprises and service 
providers that can maximize their revenue and cut costs. 
For what concerns end users, the most interesting aspect of 
Cloud computing resides in taking advantage of the 
multitude of applications already available and having 
their personal data and documents accessible from 
anywhere at anytime. On the other hand, scientific 
institutions can be more interested in PaaS and IaaS 
offerings that allow having complete control over the 
infrastructure used for scientific research and finely 
customizing their software systems according to the 
specific needs of the experiments to be performed. Cloud 
computing also ensures the desired Quality of Service, 
which is established by means of Service Level 
Agreements. This aspect can constitute an additional 
value, which could make scientists prefer computing 
Clouds to traditional Grids for experiments with additional 
constraints. For example, different types of analysis can be 
performed at different costs by optimizing the trade-off 
between the budget and the expected accuracy of results. 

Due to its specific nature, Cloud computing introduces 
new challenges and new problems yet to be faced, 
especially from a legal and a security point of view. In the 
case of public clouds, systems, applications, and even 
personal data are hosted into datacenters owned by third 
parties. These datacenters are often placed into the more 
convenient geographic location for reducing maintenance 
and consumption costs. Such places could even be in a 
different country where different laws on the digital 
content apply. The same application can then be 
considered legal or illegal according to where it is hosted. 
In addition, privacy and confidentiality of data depends on 
the location of its storage. For example, confidentiality of 
accounts in a bank located in Switzerland may not be 
guaranteed by the use of datacenter located in United 
States. In order to address this issue some Cloud 
computing vendors have included the geographic location 
of the hosting as a parameter of the service level 
agreement made with the customer. For example, Amazon 
EC2 provides the concept of availability zones that 
identify the location of the datacenters where applications 
are hosted. Users can have access to different availability 
zones and decide where to host their applications. Security 
is another important issue, at the moment it is not clear 
which kind of measures, apart from the standard security 
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tools, are taken to guarantee the privacy of data. While this 
issue is more compelling for enterprises and end users, 
there could be relevant implications even in the case of 
scientific computing: many scientific projects are often 
funded by federal bodies or directly by the government 
that often puts severe restrictions in the use and the 
management of sensible data. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

We have discussed the potential opportunities and the 
current state-of-the-art of high-performance scientific 
computing on public clouds. The adoption of Cloud 
computing as a technology and a paradigm for the new era 
of computing has definitely become popular and appealing 
within the enterprise and service providers. It has also 
widely spread among end users, which more and more 
host their personal data to the cloud. For what concerns 
scientific computing, this trend is still at an early stage. 

Science computing Grids such as Open Science Grid 
and EGEE already provide a large scale infrastructure, a 
set of well established methods and tools, and huge 
community of users. What could make interesting the use 
of computing Clouds for scientific institutions is the 
possibility of having a fully customizable runtime 
environment where they can carry out experiments. Other 
interesting opportunities arise, in considering the different 
available options in terms of Quality of Service for a given 
experiment. New and interesting scenarios can be 
explored, where scientists can decide the level of accuracy 
of their experiment or the specific partition of data to 
analyze according to the Service Level Agreement 
established with the Cloud provider. At present, some 
preliminary works have investigated the cost of doing 
science in the Cloud, by taking the Amazon EC2 and S3 
infrastructure as case study. From an operational point of 
view, the first science computing cloud has been has been 
already deployed as a result of the joint efforts of a 
consortium of universities. The active interest of 
government bodies such as the Department of Energy in 
Cloud computing, will probably open pathways to the 
establishment of more science Clouds. A stronger adoption 
of Cloud computing for computational science will also 
contribute to advance research in other functional aspects 
such as security and jurisdiction. Many scientific projects 
are funded by the government bodies that sometimes 
impose significant restrictions on the use of data. 

We also demonstrated some practical examples of 
doing science in the Cloud and presented the advanced 
features that Aneka provides for leveraging public and 
private Clouds to scale on demand according to the 
requirements of applications. Two case studies have been 
presented: the classification of gene expression data by 
using Aneka Cloud deployed on the Amazon EC2 
infrastructure and the execution of scientific workflow on 
EC2. The preliminary considerations about the 
experiments performed show that the effective use of 
Cloud resources is really important and a trade-offs 
between cost and performance have to be carefully 
evaluated. This is where a platform like Aneka comes into 

picture. As a middleman, it gives access to cloud 
resources; maximizes their global usage; and provides end-
users with a better pricing model. More detailed studies in 
this direction will definitely constitute the next step from 
this work. 
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