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The demand for artificial intelligence has grown significantly over the past decade, and this growth has been

fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. How-

ever, to increase the quality of predictions and render machine learning solutions feasible for more complex

applications, a substantial amount of training data is required. Although small machine learning models can

be trained with modest amounts of data, the input for training larger models such as neural networks grows

exponentially with the number of parameters. Since the demand for processing training data has outpaced the

increase in computation power of computing machinery, there is a need for distributing the machine learning

workload across multiple machines, and turning the centralized into a distributed system. These distributed

systems present new challenges: first and foremost, the efficient parallelization of the training process and the

creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the

field by outlining the challenges and opportunities of distributed machine learning over conventional (cen-

tralized) machine learning, discussing the techniques used for distributed machine learning, and providing

an overview of the systems that are available.
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1 INTRODUCTION

The rapid development of new technologies in recent years has led to an unprecedented growth
of data collection. Machine Learning (ML) algorithms are increasingly being used to analyze
datasets and build decision-making systems for which an algorithmic solution is not feasible due

Authors’ addresses: J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, and J. S. Rellermeyer, Delft University of Tech-

nology, Faculty of Electrical Engineering, Mathematics and Computer Science, Van Mourik Broekmanweg 6, 2628XE

Delft, Netherlands; emails: J.Verbraeken@student.tudelft.nl, matthijswolting@gmail.com, {J.B.Katzy, J.Kloppenburg}@

student.tudelft.nl, j.s.rellermeyer@tudelft.nl; T. Verbelen, Ghent University, IDLab, Department of Information Technol-

ogy, Technologiepark 126, 9052 Ghent, Belgium; email: tim.verbelen@ugent.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2020/03-ART30 $15.00

https://doi.org/10.1145/3377454

ACM Computing Surveys, Vol. 53, No. 2, Article 30. Publication date: March 2020.

https://doi.org/10.1145/3377454
mailto:permissions@acm.org
https://doi.org/10.1145/3377454


30:2 J. Verbraeken et al.

to the complexity of the problem. Examples include controlling self-driving cars [23], recognizing
speech [8], or predicting consumer behavior [82].

In some cases, the long runtime of training the models steers solution designers towards using
distributed systems for an increase of parallelization and total amount of I/O bandwidth, as the
training data required for sophisticated applications can easily be in the order of terabytes [29]. In
other cases, a centralized solution is not even an option when data are inherently distributed or
too big to store on single machines. Examples include transaction processing in larger enterprises
on data that are stored in different locations [19] or astronomical data that are too large to move
and centralize [124].

To make these types of datasets accessible as training data for machine learning problems, algo-
rithms have to be chosen and implemented that enable parallel computation, data distribution, and
resilience to failures. A rich and diverse ecosystem of research has been conducted in this field,
which we categorize and discuss in this article. In contrast to prior surveys on distributed machine
learning [119, 123] or related fields [87, 121, 122, 143, 152, 170], we apply a wholistic view to the
problem and discuss the practical aspects of state-of-the-art machine learning from a distributed
systems angle.

Section 2 provides an in-depth discussion of the system challenges of machine learning and how
ideas from High Performance Computing (HPC) have been adopted for acceleration and increased
scalability. Section 3 describes a reference architecture for distributed machine learning covering
the entire stack from algorithms to the network communication patterns that can be employed
to exchange state between individual nodes. Section 4 presents the ecosystem of the most widely
used systems and libraries as well as their underlying designs. Finally, Section 5 discusses the main
challenges of distributed machine learning.

2 MACHINE LEARNING—A HIGH-PERFORMANCE COMPUTING CHALLENGE?

Recent years have seen a proliferation of machine learning technology in increasingly complex
applications. While various competing approaches and algorithms have emerged, the data repre-
sentations used are strikingly similar in structure. The majority of computation in machine learn-
ing workloads amounts to basic transformations on vectors, matrices, or tensors—well-known
problems from linear algebra. The need to optimize such operations has been a highly active area
of research in the high-performance computing community for decades. As a result, some tech-
niques and libraries from the HPC community (e.g., BLAS [89] or MPI [62]) have been successfully
adopted and integrated into systems by the machine learning community. At the same time, the
HPC community has identified machine learning to be an emerging high-value workload and has
started to apply HPC methodology to them. Coates et al. [38] were able to train a 1B parameter
network on their Commodity Off-The-Shelf High Performance Computing (COTS HPC) system
in just three days. You et al. [165] optimized the training of a neural network on Intel’s Knights
Landing, a chip designed for HPC applications. Kurth et al. [84] demonstrated how deep learning
problems like extracting weather patterns can be optimized and scaled efficiently on large parallel
HPC systems. Yan et al. [162] have addressed the challenge of scheduling deep neural network ap-
plications on cloud computing infrastructure by modeling the workload demand with techniques
like lightweight profiling, which are borrowed from HPC. Li et al. [91] investigated the resilience
characteristics of deep neural networks with regard to hardware errors when running on acceler-
ators, which are frequently deployed in major HPC systems.

Like for other large-scale computational challenges, there are two fundamentally different and
complementary ways of accelerating workloads: adding more resources to a single machine (ver-
tical scaling or scaling up) and adding more nodes to the system (horizontal scaling or scaling
out).
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2.1 Scaling Up

Among the scale-up solutions, adding programmable GPUs is the most common method and vari-
ous systematic efforts have shown the benefits of doing so [18, 78, 125]. GPUs feature a high num-
ber of hardware threads. For example, the Nvidia Titan V and Nvidia Tesla V100 have a total of
5,120 cores, which makes them approximately 47× faster for deep learning than a regular server
CPU (namely an Intel Xeon E5-2690v4) [107]. Originally the applications of GPUs for machine
learning were limited because GPUs used a pure SIMD (Single Instruction, Multiple Data) [51]
model that did not allow the cores to execute a different branch of the code; all threads had to
perform the exact same program. Over the years GPUs have shifted to more flexible architectures
where the overhead of branch divergence is reduced, but diverging branches is still inefficient [66].
The proliferation of GPGPUs (General-Purpose GPUs, i.e., GPUs that can execute arbitrary code)
has lead the vendors to design custom products that can be added to conventional machines as
accelerators and no longer fulfill any role in the graphics subsystem of the machine. For example,
the Nvidia Tesla GPU series is meant for highly parallel computing and designed for deployment
in supercomputers and clusters. When a sufficient degree of parallelism is offered by the work-
load, GPUs can significantly accelerate machine learning algorithms. For example, Meuth [100]
reported a speed-up up to 200× over conventional CPUs for an image recognition algorithm using
a Pretrained Multilayer Perceptron (MLP).

An alternative to generic GPUs for acceleration is the use of Application Specific Integrated
Circuits (ASICs), which implement specialized functions through a highly optimized design. In
recent times, the demand for such chips has risen significantly [99]. When applied to, e.g., Bitcoin
mining, ASICs have a significant competitive advantage over GPUs and CPUs due to their high
performance and power efficiency [144]. Since matrix multiplications play a prominent role in
many machine learning algorithms, these workloads are highly amenable to acceleration through
ASICs. Google applied this concept in their Tensor Processing Unit (TPU) [128], which, as the
name suggests, is an ASIC that specializes in calculations on tensors (n-dimensional arrays), and
is designed to accelerate their Tensorflow [1, 2] framework, a popular building block for machine
learning models. The most important component of the TPU is its Matrix Multiply unit based on
a systolic array. TPUs use a MIMD (Multiple Instructions, Multiple Data) [51] architecture that,
unlike GPUs, allows them to execute diverging branches efficiently. TPUs are attached to the server
system through the PCI Express bus. This provides them with a direct connection with the CPU,
which allows for a high aggregated bandwidth of 63 GB/s (PCI-e5x16). Multiple TPUs can be used
in a data center, and the individual units can collaborate in a distributed setting. The benefit of
the TPU over regular CPU/GPU setups is not only its increased processing power but also its
power efficiency, which is important in large-scale applications due to the cost of energy and the
limited availability in large-scale data centers. When running benchmarks, Jouppi et al. [80] found
that the performance per watt of a TPU can approach 200× that of a traditional system. Further
benchmarking by Sato et al. [128] indicated that the total processing power of a TPU or GPU can
be up to 70× higher than a CPU for a typical neural network, with performance improvements
varying from 3.5×–71×, depending on the task at hand.

Chen et al. [32] developed DianNao, a hardware accelerator for large-scale neural networks with
a small area footprint. Their design introduces a Neuro-Functional Unit (NFU) in a pipeline that
multiplies all inputs, adds the results, and, in a staggered manner after all additions have been
performed, optionally applies an activation function like a sigmoid function. The experimental
evaluation using the different layers of several large neural network structures [48, 70, 90, 132,
133] shows a performance speedup of three orders of magnitude and an energy reduction of more
than 20× compared to using a general-purpose 128-bit 2 GHz SIMD CPU.
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Hinton et al. [70] address the challenge that accessing the weights of neurons from DRAM is a
costly operation and can dominate the energy profile of processing. Leveraging a deep compression

technique, they are able to put the weights into SRAM and accelerate the resulting sparse matrix-
vector multiplications through efficient weight sharing. The result is a 2.9× higher throughput and
a 19× improved energy efficiency compared to DianNao.

Even general-purpose CPUs have increased the availability and width of vector instructions in
recent product generations to accelerate the processing of computationally intensive problems like
machine learning algorithms. These instructions are vector instructions, part of the AVX-512 fam-
ily [126] with enhanced word-variable precision and support for single precision floating-point
operations. In addition to the mainstream players, there are more specialized designs available
such as the Epiphany [110]. This special-purpose CPU is designed with a MIMD architecture that
uses an array of processors, each of which accessing the same memory, to speed up execution of
floating-point operations. This is faster than giving every processor its own memory, because com-
municating between processors is expensive. The newest chip of the major manufacturer Adapteva
is the Epiphany V, which contains 1,024 cores on a single chip [109]. Although Adapteva has not
published power consumption specifications of the Epiphany V yet, it has released numbers sug-
gesting a power usage of only 2 Watts [4].

2.2 Scaling Out

While there are many different strategies to increase the processing power of a single machine
for large-scale machine learning, there are reasons to prefer a scale-out design or combine the
two approaches, as often seen in HPC. The first reason is the generally lower equipment cost,
both in terms of initial investment and maintenance. The second reason is the resilience against
failures because, when a single processor fails within an HPC application, the system can still
continue operating by initiating a partial recovery (e.g., based on communication-driven check-
pointing [46] or partial re-computation [168]). The third reason is the increase in aggregate I/O
bandwidth compared to a single machine [49]. Training ML models is a highly data-intensive task,
and the ingestion of data can become a serious performance bottleneck [67]. Since every node
has a dedicated I/O subsystem, scaling out is an effective technique for reducing the impact of
I/O on the workload performance by effectively parallelizing the reads and writes over multiple
machines. A major challenge of scaling out is that not all ML algorithms lend themselves to a dis-
tributed computing model, which can thus only be used for algorithms that can achieve a high
degree of parallelism.

2.3 Discussion

The lines between traditional supercomputers, grids, and the cloud are increasingly getting blurred
when it comes to the best execution environment for demanding workloads like machine learning.
For instance, GPUs and accelerators are now more common in major cloud datacenters [134, 135].
As a result, parallelization of the machine learning workload has become paramount to achiev-
ing acceptable performance at large scale. When transitioning from a centralized solution to a
distributed system, however, the typical challenges of distributed computing in the form of per-
formance, scalability, failure resilience, or security apply [40]. The following section presents a
systematic discussion of the different aspects of distributed machine learning and develops a ref-
erence architecture by which all existing systems can be categorized.

3 A REFERENCE ARCHITECTURE FOR DISTRIBUTED MACHINE LEARNING

Designing a generic system that enables an efficient distribution of regular machine learning is
challenging, since every algorithm has a distinct communication pattern [78, 105, 127, 145, 149,
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Fig. 1. General overview of machine learning. During the training phase an ML model is optimized using

training data and by tuning hyper parameters. Then the trained model is deployed to provide predictions

for new data fed into the system.

151]. Despite various different concepts and implementations for distributed machine learning,
we have identified a common architectural framework that covers the entire design space. Every
section discusses a particular area where designers of machine learning solutions need to make a
decision.

In general, the problem of machine learning can be separated into the training and the prediction
phase (Figure 1).

The Training phase involves training a machine learning model by feeding it a large body of
training data and updating it using an ML algorithm. An overview of applicable and commonly
used algorithms is given in Section 3.1. Aside from choosing a suitable algorithm for a given prob-
lem, we also need to find an optimal set of hyperparameters for the chosen algorithm, which is
described in Section 3.2. The final outcome of the training phase is a Trained Model, which can then
be deployed. The Prediction phase is used for deploying the trained model in practice. The trained
model accepts new data as input and produces a prediction as output. While the training phase of
the model is typically computationally intensive and requires the availability of large datasets, the
inference can be performed with less computing power.

The training phase and prediction phase are not mutually exclusive. Incremental learning com-
bines the training phase and inference phase and continuously trains the model by using new data
from the prediction phase.

When it comes to distribution, there are two fundamentally different ways of partitioning the
problem across all machines: parallelizing the data or the model [119] (Figure 2). These two meth-
ods can also be applied simultaneously [161].

In the Data-Parallel approach, the data are partitioned as many times as there are worker nodes
in the system and all worker nodes subsequently apply the same algorithm to different datasets.
The same model is available to all worker nodes (either through centralization or through repli-
cation) so a single coherent output emerges naturally. The technique can be used with every ML
algorithm with an independent and identical distribution (i.i.d.) assumption over the data samples
(i.e., most ML algorithms [161]). In the Model-Parallel approach, exact copies of the entire datasets
are processed by the worker nodes that operate on different parts of the model. The model is there-
fore the aggregate of all model parts. The model-parallel approach cannot automatically be applied
to every machine learning algorithm, because the model parameters generally cannot be split up.
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Fig. 2. Parallelism in distributed machine learning. Data parallelism trains multiple instances of the same

model on different subsets of the training dataset, while model parallelism distributes parallel paths of a

single model to multiple nodes.

One option is to train different instances of the same or similar model, and aggregate the outputs
of all trained models using methodologies like ensembling (Section 3.3).

The final architectural decision is the topology of the distributed machine learning system. The
different nodes that form the distributed system need to be connected through a specific architec-
tural pattern to fulfill a common task. However, the choice of pattern has implications on the role
that a node can play, the degree of communication between nodes, and the failure resilience of the
whole deployment. A discussion of commonly used topologies is presented in Section 3.4.

In practice, the three layers of architecture (machine learning, parallelism, topology) are not
independent. The combining factor is their impact on the amount of communication required to
train the model, which is discussed in Section 3.5.

3.1 Machine Learning Algorithms

ML algorithms learn to make decisions or predictions based on data. We categorize current ML
algorithms based on the following three characteristics:

• Feedback—the type of feedback that is given to the algorithm while learning.
• Purpose—the desired end result of the algorithm.
• Method—the nature of model evolution that occurs when given feedback.

3.1.1 Feedback. To train an algorithm, it requires feedback so it can gradually improve the
quality of the model. There are several different types of feedback [164]:

• Supervised learning uses training data that consist of input objects (usually vectors) and
the corresponding desired output values. Supervised learning algorithms attempt to find a
function that maps the input data to the desired output. Then, this function can be applied
to new input data to predict the output. One of the goals is to minimize both the bias and
variance error of the predicted results. The bias error is caused by simplifying assumptions
made by the learning algorithm to facilitate learning the target function. However, methods
with high bias have lower predictive performance on problems that do not fully satisfy the
assumptions. For example, a linear model will not be able to give accurate predictions if
the underlying data have a non-linear behavior. The variance captures how much the re-
sults of the ML algorithm change for a different training set. A high variance means that
the algorithm is modeling the specifics of the training data without finding the underlying
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(hidden) mapping between the inputs and the outputs. Unfortunately, eliminating both the
bias and the variance is typically impossible, a phenomenon known as the bias-variance
trade-off [54]. The more complex the model, the more training data are required to train
the algorithm to gain an accurate prediction from the model. For example, when the di-
mensionality of the data is high, the output may depend on a convoluted combination of
input factors, which requires a high number of data samples to detect the relations between
these dimensions.

• Unsupervised learning uses training data that consist of input objects (usually vectors)
without output values. Unsupervised learning algorithms aim at finding a function that
describes the structure of the data and group the unsorted input data. Because the input
data are unlabeled, they lack a clear output accuracy metric. The most common use case of
unsupervised learning is to cluster data together based on similarities and hidden patterns.
Unsupervised learning is also used for problems like dimensionality reduction where the
key features of data are extracted. In this case, the feedback is generated using a similarity
metric.

• Semi-supervised learning uses a (generally small) amount of labeled data, supplemented
by a comparatively large amount of unlabeled data. Clustering can be used to extrapolate
known labels onto unlabeled data points. This is done under the assumption that similar
data points share the same label.

• Reinforcement learning is used to train an agent that has to take actions in an environ-
ment based on its observations. Feedback relies on a reward or cost function that evaluates
the states of the system. The biggest challenge here is the credit assignment problem, or
how to determine which actions actually lead to higher reward in the long run. Bagnell and
Ng [13] showed that a local reward system is beneficial for the scalability of the learning
problem, since global schemes require samples that scale roughly linearly with the number
of participating nodes.

3.1.2 Purpose. ML algorithms can be used for a wide variety of purposes, such as classifying an
image or predicting the probability of an event. They are often used for the following tasks [85]:

• Anomaly detection is used to identify data samples that differ significantly from the ma-
jority of the data. These anomalies, which are also called outliers, are used in a wide range
of applications including video surveillance, fraud detection in credit card transactions, or
health monitoring with on-body sensors.

• Classification is the problem of categorizing unknown data points into categories seen
during training. This is an inherently supervised process; the unsupervised equivalent of
classification is clustering.

• Clustering groups data points that are similar according to a given metric. Small datasets
can be clustered by manually labeling every instance, but for larger datasets that might be
infeasible, which justifies the need for automatic labeling the instances (namely, clustering).

• Dimensionality reduction is the problem of reducing the number of variables in the input
data. This can either be achieved by selecting only relevant variables (feature selection), or
by creating new variables that represent multiple others (feature extraction).

• Representation learning attempts to find proper representations of input data for, e.g.,
feature detection, classification, clustering, encoding, or matrix factorization. This often also
implies a dimensionality reduction.

• Regression is the problem of estimating how a so-called dependent variable changes in
value when other variables change with a certain amount.
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3.1.3 Method. Every effective ML algorithm needs a method that forces the algorithm to im-
prove itself based on new input data so it can improve its accuracy. We identify five different
groups of ML methods that distinguish themselves through the way the algorithm learns:

• Evolutionary Algorithms (EAs) [57] (and specifically Genetic algorithms) learn iter-
atively based on evolution. The model that actually solves the problem is represented by
a set of properties, called its genotype. The performance of the model is measured using a
score, calculated using a fitness function. After calculating the fitness score of all generated
models, the next iteration creates new genotypes based on mutation and crossover of mod-
els that produce more accurate estimates. Genetic algorithms can be used to create other
algorithms, such as neural networks, belief networks, decision trees, and rule sets.

• Stochastic Gradient Descent (SGD)–based algorithms minimize a loss function defined
on the outputs of the model by adapting the model’s parameters in the direction of the
negative gradient (the multi-variable derivative of a function). The gradient descent is called
stochastic, as the gradient is calculated from a randomly sampled subset of the training data.
The loss function is typically a proxy for the actual error to be minimized; for example,
the mean squared error between the model outputs and desired outputs in the case of a
regression problem, or the negative log likelihood of the ground truth class according to
the model in the case of classification. The typical training procedure then becomes:

(1) Present a batch of randomly sampled training data.
(2) Calculate the loss function of the model output and the desired output.
(3) Calculate the gradient with respect to the model parameters.
(4) Adjust the model parameters in the direction of the negative gradient, multiplied by a

chosen learning rate.
(5) Repeat

SGD is the most commonly used training method for a variety of ML models.
—Support Vector Machines (SVMs) map data points to high-dimensional vectors for

classification and clustering purposes. For data points in a p-dimensional space, a (p-1)-
dimensional hyperplane can be used as a classifier. A reasonable choice would be the
hyperplane that properly separates the data points in two groups based on their labels by
the largest possible margin. Sometimes special transformation equations (called kernels)
are used to transform all data points to a different representation, in which it is easier to
find such a hyperplane.

—Perceptrons [104] are binary classifiers that label input vectors as “active” or “inactive.”
A perceptron assigns a weight to all inputs and then sums over the products of these
weights and their input. The outcome of this is compared to a threshold to determine
the label. Perceptron-based algorithms commonly use the entire batch of training data
in their attempt to find a solution that is optimal for the whole set. They are binary, and
therefore primarily used for binary classification.

—Artificial Neural Networks (ANNs) are perceptron-based systems that consist of mul-
tiple layers: an input layer, one or more hidden layers, and an output layer. Each layer
consists of nodes connected to the previous and next layers through edges with associ-
ated weights (usually called synapses). Unlike regular perceptrons, these nodes usually
apply an activation function on the output to introduce non-linearities.

The model is defined by the state of the entire network and can be changed by altering
(1) the weights of the synapses, (2) the layout of the network, or (3) the activation function
of nodes.
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Because neural networks require a large number of nodes, the understandability of a
neural network’s thought process is lower compared to, e.g., decision trees.

Neural networks are extensively studied because of their ability to analyze enor-
mous sets of data. They can be categorized into several subgroups based on network
layout:
∗ Deep Neural Networks (DNNs), are artificial neural networks that have many hidden

layers. This allows the neural network to learn hierarchical feature abstractions of the
data, with increasing abstraction the deeper you go in the network.

∗ Convolutional Neural Networks (CNNs/ConvNets) are deep, feed-forward neu-
ral networks that use convolution layers with nodes connected to only a few nodes
in the previous layer. These values are then pooled using pooling layers. It can be
seen as a way of recognizing abstract features in the data. The convolution makes the
network consider only local data. This makes the represented algorithms spatially in-
variant, which is why they are sometimes called Space Invariant Artificial Neural Net-
works (SIANN). Chaining multiple of these convolution and pooling layers together
can make the network capable of recognizing complicated constructs in big datasets.
Examples of this are cats in images or the contextual meaning of a sentence in a
paragraph.

∗ Recurrent Neural Networks (RNNs) keep track of a temporal state in addition to
weights, which means that previous inputs of the network influence its current deci-
sions. Recurrent synapses give the network a memory. This can help with discovering
temporal patterns in data. Blocks of nodes in recurrent networks operate as cells with
distinct memories and can store information for an arbitrarily long timespan.

∗ Hopfield Networks are a type of non-reflexive, symmetric recurrent neural network
that have an energy related to every state of the network as a whole. They are guaran-
teed to converge on a local minimum after some number of network updates.

∗ Self-Organizing Maps (SOMs)/Self-Organizing Feature Maps (SOFMs) are neural
networks that learn through unsupervised competitive learning, in which nodes com-
pete for access to specific inputs. This causes the nodes to become highly specialized,
which reduces redundancy. The iterations effectively move the map closer to the train-
ing data, which is the reason for its name. Some subtypes include the Time Adap-
tive Self-Organizing Map (TASOM, automatically adjust the learning rate and neigh-
borhood size of each neuron independently), Binary Tree TASOM (BTASOM, tree of
TASOM networks), and Growing Self-Organizing map (GSOM, identify a suitable map
size in the SOM by starting with a minimal set of nodes and growing the map by heuris-
tically adding new nodes at the periphery).

∗ Stochastic Neural Networks make use of stochastic transfer functions or stochastic
weights, which allows them to escape the local minima that impede the convergence
to a global minimum of normal neural networks. An example is a Boltzmann machine
where each neuron output is represented as a binary value and the likelihood of the
neuron firing depends on the network of other neurons.

∗ Auto-encoders are a type of neural network that are trained specifically to encode
and decode data. Since auto-encoders are trained to perform decoding separately from
encoding, the encoded version of the data is a form of dimensionality reduction of the
data.

∗ Generative Adversarial Networks (GAN) are generative models that are trained us-
ing a minimax game between a generator and discriminator network [58]. The goal is
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to train a neural network to generate data from a training set distribution. To achieve
this, a discriminator neural network is trained at the same time to learn to discriminate
between real dataset samples and generated samples by the generator. The discrimina-
tor is trained to minimize the classification errors, whereas the generator is trained to
maximize the classification errors, in effect generating data that are indistinguishable
from the real data.

• Rule-Based Machine Learning (RBML) Algorithms [156] use a set of rules that each
represent a small part of the problem. These rules usually express a condition, as well as
a value for when that condition is met. Because of the clear if-then relation, rules lend
themselves to simple interpretation compared to more abstract types of ML algorithms,
such as neural networks.
—Association Rule Learning is a rule-based machine learning method that focuses on

finding relations between different variables in datasets. Example relatedness metrics are
Support (how often variables appear together), Confidence (how often a causal rule is true),
and Collective Strength (inverse likelihood of the current data distribution if a given rule
does not exist).

—Decision Trees, sometimes called “CART” trees (after Classification And Regression
Trees), use rule-based machine learning to create a set of rules and decision branches.
Traversing the tree involves applying the rules at each step until a leaf of the tree is
reached. This leaf represents the decision or classification for that input.

• Topic Models (TM) [21] are statistical models for finding and mapping semantic structures
in large and unstructured collections of data, most often applied on text data.
—Latent Dirichlet Allocation [22] constructs a mapping between documents and a prob-

abilistic set of topics using the assumption that documents have few different topics and
that those topics use few different words. It is used to learn what unstructured documents
are about based on a few keywords.

—Latent Semantic Analysis (LSA)/Latent Semantic Indexing (LSI) creates a big matrix
of documents and topics in an attempt to classify documents or to find relations between
topics. LSA/LSI assumes a Gaussian distribution for topics and documents. LSA/LSI does
not have a way of dealing with words that have multiple meanings.

—Naive Bayes Classifiers are relatively simple probabilistic classifiers that assume dif-
ferent features to be independent. They can be trained quickly using supervised learning
but are less accurate than more complicated approaches.

—Probabilistic Latent Semantic Analysis (PLSA)/Probabilistic Latent Semantic In-

dexing (PLSI) is the same as LSA/LSI, except that PLSA/PLSI assumes a Poisson dis-
tribution for topics and documents instead of the Gaussian distribution that is as-
sumed by LSA/LSI. The reason is that a Poisson distribution appears to model the real
world better [72]. Some subtypes include Multinomial Asymmetric Hierarchical Analy-
sis (MASHA), Hierarchical Probabilistic Latent Semantic Analysis (HPLSA), and Latent
Dirichlet Allocation (LDA).

• Matrix Factorization algorithms can be applied for identifying latent factors or find miss-
ing values in matrix-structured data. For example, many recommender systems are based
on matrix factorization of the User-Item Rating Matrix to find new items users might be
interested in, given their rating on other items [83]. Similarly factorizing a Drug compound-

Target Protein Matrix is used for new drug discovery [63]. As this problem scales withO (F 3)
with F the dimensionality of the features, recent research focuses on scaling these methods
to larger feature dimensions [142].
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3.2 Hyperparameter Optimization

The performances of many of the algorithms presented in the previous sections are largely im-
pacted by the choice of a multitude of algorithm hyperparameters. For example, in stochastic gra-
dient descent, one has to choose the batch size, the learning rate, the initialization of the model, and
so on. Often, the optimal values of these hyperparameters are different for each problem domain,
ML model, and dataset.

There are several algorithms that can be used to automatically optimize the parameters of the
machine learning algorithms and that can be re-used across different ML algorithm families.

These include:

• First-order algorithms that use at least one first-derivative of the function that maps the
parameter value to the accuracy of the ML algorithm using that parameter. Examples are
stochastic gradient descent (SGD) [24], stochastic dual coordinate ascent [136], or conjugate
gradient methods [42, 69].

• Second-order techniques that use any second-derivative of the function that maps the pa-
rameter value to the accuracy of the ML algorithm using that parameter. Examples are
Newton’s method [120] (which requires computing the Hessian matrix, and is therefore
generally infeasible), Quasi-Newton methods [28] (which approximate Newton’s method
by updating the Hessian by analyzing successive gradient vectors instead of recomputing
the Hessian in every iteration), or L-BFGS [95].

• Coordinate descent [158] (also called coordinate-wise minimization), which minimizes at
each iteration a single variable while keeping all other variables at their value of the current
iteration.

• The Markov-Chain Monte-Carlo [26], which works by successively guessing new parame-
ters randomly drawn from a normal multivariate solution centered on the old parameters
and using these new parameters with a chance dependent on the likelihood of the old and
the new parameters.

• A naive but often-used strategy is grid search, which exhaustively runs to a grid of potential
values of each hyperparameter [88].

• Random search uses randomly chosen trials for sampling hyperparameter values, which
often yields better results in terms of efficiency compared to grid search, finding better
parameter values for the same compute budget [17].

• Bayesian hyperparameter optimization techniques use the Bayesian framework to itera-
tively sample hyperparameter values [146]. These model each trial as a sample from a
Gaussian process (GP) and use the GP to choose the most informative samples in the next
trial.

3.3 Combining Multiple Algorithms: Ensemble Methods

For some applications, a single model is not accurate enough to solve the problem. To alleviate this
issue, multiple models can be combined in so-called Ensemble Learning. For example, when ma-
chine learning algorithms are performed on inherently distributed data sources and centralization
is thus not an option, the setup requires training to happen in two separate stages: first in the local
sites where the data are stored, and second in the global site that aggregates over the individual
results of the first stage [77]. This aggregation can be achieved by applying ensemble methods in
the global site.

Various different ways exist to perform ensembling, such as [50]:

• Bagging is the process of building multiple classifiers and combining them into one.
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• Boosting is the process of training new models with the data that are misclassified by the
previous models.

• Bucketing is the process of training many different models and eventually selecting the
one that has the best performance.

• Random Forests [25] use multiple decision trees and averaging the prediction made by the
individual trees to increase the overall accuracy. Different trees are given the same “voting
power.”

• Stacking is when multiple classifiers are trained on the dataset, and one new classifier uses
the output of the other classifiers as input in an attempt to reduce the variance.

• Learning Classifier Systems (LCSs) is a modular system of learning approaches. An
LCS iterates over data points from the dataset, completing the entire learning process in
each iteration. The main idea is that an LCS has a limited number of rules. A genetic algo-
rithm forces suboptimal rules out of the rule set. There are many different attributes that
can drastically change the performance of an LCS depending on the dataset, including the
Michigan-style vs. Pittsburgh-style architecture [113], supervised vs. reinforcement learn-
ing [81], incremental vs. batch learning [37], online vs. offline training, strength-based vs.
accuracy-based [157], and complete mapping vs. best mapping.

3.4 Topologies

Another consideration for the design of a distributed machine learning deployment is the structure
in which the computers within the cluster are organized. A deciding factor for the topology is the
degree of distribution that the system is designed to implement. Figure 3 shows four possible
topologies, in accordance with the general taxonomy of distributed communication networks by
Baran [15].

Centralized systems (Figure 3(a)) employ a strictly hierarchical approach to aggregation, which
happens in a single central location. Decentralized systems allow for intermediate aggregation,
either with a replicated model that is consistently updated when the aggregate is broadcast to
all nodes such as in tree topologies (Figure 3(b)) or with a partitioned model that is sharded over
multiple parameter servers (Figure 3(c)). Fully distributed systems (Figure 3(d)) consist of a network
of independent nodes that ensemble the solution together and where no specific roles are assigned
to certain nodes.

There are several distinct topologies that have become popular choices for distributed machine
learning clusters:

• Trees. Tree-like topologies have the advantage that they are easy to scale and manage, as
each node only has to communicate with its parent and child nodes. For example, in the
AllReduce [5] paradigm, nodes in a tree accumulate their local gradients with those from
their children and pass this sum to their parent node to calculate a global gradient.

• Rings. In situations where the communication system does not provide efficient support for
broadcast or where communication overhead needs to be kept to a minimum, ring topolo-
gies for AllReduce patterns simplify the structure by only requiring neighbor nodes to syn-
chronize through messages. This is, e.g., commonly used between multiple GPUs on the
same machine [76].

• Parameter Server. The Parameter Server paradigm (PS) [155] uses a decentralized set of
workers with a centralized set of masters that maintain the shared state. All model param-
eters are stored in a shard on each parameter server, from which all clients read and write
as a key-value store. An advantage is that all model parameters (within a shard) are in a
global shared memory, which makes it easy to inspect the model. A disadvantage of the
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Fig. 3. Distributed machine learning topologies based on the degree of distribution.

topology is that the parameter servers can form a bottleneck, because they are handling all
communication. To partially alleviate this issue, the techniques for bridging computation
and communication mentioned in Section 3.5.2 are used.

• Peer-to-Peer. In contrast to centralized state, in the fully distributed model, every node
has its own copy of the parameters and the workers communicate directly with each other.
This has the advantage of typically higher scalability than a centralized model and the elim-
ination of single points of failure in the system [52]. An example implementation of this
model is a peer-to-peer network, in which nodes broadcast updates to all other nodes to
form a data-parallel processing framework. Since full broadcast is typically prohibitive due
to the volume of communication, Sufficient Factor Broadcasting (SFB) [94] has been pro-
posed to reduce the communication overhead. The parameter matrix in SFB is decomposed
into so-called sufficient factors, i.e., two vectors that are sufficient to reconstruct the update
matrix. SFB only broadcasts these sufficient factors and lets the workers reconstruct the
updates. Other models limit the degree of communication to less-frequent synchronization
points while allowing the individual models to temporarily diverge. Gossip Learning [138]
is built around the idea that models are mobile and perform independent random walks
through the peer-to-peer network. Since this forms a data- and model-parallel processing
framework, the models evolve differently and need to be combined through ensembling. In
Gossip Learning, this happens continuously on the nodes by combining the current model
with a limited cache of previous visitors.
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3.5 Communication

As previously discussed, the need for more sophisticated machine learning-based setups quickly
outgrows the capabilities of a single machine. There are several ways to partition the data and/or
the program and to distribute these evenly across all machines. The choice of distribution, however,
has direct implications on the amount of communication required to train the model.

3.5.1 Computation Time vs. Communication vs. Accuracy. When Distributed Machine Learn-
ing is used, one aims for the best accuracy at the lowest computation and communication cost.
However, for complex ML problems, the accuracy usually increases with processing more train-
ing data, and sometimes by increasing the ML model size, hence increasing the computation cost.
Parallelizing the learning can reduce computation time, as long as the communication costs are
not becoming dominant. This can become a problem if the model being trained is not sufficiently
large in comparison to the data. If the data are already distributed (e.g., cloud-native data), then
there is no alternative to either moving the data or the computation.

Splitting up the dataset across different machines and training a separate model on a separate
part of the dataset avoids communication, but this reduces the accuracy of the individual models
trained on each machine. By ensembling all these models, the overall accuracy can be improved,
However, the computation time is typically not much lower, since the individual models still have
to take the same number of model update steps to converge.

By already synchronizing the different models during training (e.g., by combining the calculated
gradients on all machines in case of gradient descent), the computation time can be reduced by
converging faster to a local optimum. This, however, leads to an increase of communication cost
as the model size increases.

Therefore, practical deployments require seeking the amount of communication needed to
achieve the desired accuracy within an acceptable computation time.

3.5.2 Bridging Computation and Communication. To schedule and balance the workload, there
are three concerns that have to be taken into account [161]:

• Identifying which tasks can be executed in parallel.
• Deciding the task execution order.
• Ensuring a balanced load distribution across the available machines.

After deciding on these three issues, the information between nodes should be communicated as
efficiently as possible. There are several techniques that enable the interleaving of parallel com-
putation and inter-worker communication. These techniques trade off fast/correct model conver-
gence (at the top of the list found below) with faster/fresher updates (at the bottom of the list found
below).

• Bulk Synchronous Parallel (BSP) is the simplest model in which programs ensure con-
sistency by synchronizing between each computation and communication phase [161]. An
example of a program following the BSP bridging model is MapReduce.

An advantage is that serializable BSP ML programs are guaranteed to output a correct
solution. A disadvantage is that finished workers must wait at every synchronization barrier
until all other workers are finished, which results in overhead in the event of some workers
progressing slower than others [34].

• Stale Synchronous Parallel (SSP) relaxes the synchronization overhead by allowing the
faster workers to move ahead for a certain number of iterations. If this number is exceeded,
then all workers are paused. Workers operate on cached versions of the data and only com-
mit changes at the end of a task cycle, which can cause other workers to operate on stale
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data. The main advantage of SSP is that it still enjoys strong model convergence guaran-
tees. A disadvantage, however, is that when the staleness becomes too high (e.g., when a
significant number of machines slows down), the convergence rates quickly deteriorate. The
algorithm can be compared to Conits [166], used in distributed systems, because it specifies
the data on which the workers are working and consistency is to be measured.

• Approximate Synchronous Parallel (ASP) limits how inaccurate a parameter can be.
This contrasts with SSP, which limits how stale a parameter can be. An advantage is that,
whenever an aggregated update is insignificant, the server can delay synchronization in-
definitely. A disadvantage is that it can be hard to choose the parameter that defines which
updates are significant and which are not [73].

• Barrierless Asynchronous Parallel [65]/Total Asynchronous Parallel [73]

(BAP/TAP) lets worker machines communicate in parallel without waiting for each
other. The advantage is that it usually obtains the highest possible speedup. A disadvantage
is that the model can converge slowly or even develop incorrectly, because, unlike BSP and
SSP, the error grows with the delay [65].

3.5.3 Communication Strategies. Communication is an important contributor to defining the
performance and scalability of distributed processing [27]. Several communication management
strategies [161] are used to spread and reduce the amount of data exchanged between machines:

• To prevent bursts of communication over the network (e.g., after a mapper is finished), con-
tinuous communication is used, such as in the state-of-the-art implementation Bösen [155].

• Neural networks are composed out of layers, the training of which (using the back-
propagation gradient descent algorithm) is highly sequential. Because the top layers of
neural networks contain the most parameters while accounting for only a small part of the
total computation, Wait-free Backpropagation (WFBP) [171] was proposed. WFBP exploits
the neural network structure by sending out the parameter updates of the top layers while
still computing the updates for the lower layers, hence hiding most of the communication
latency.

• Because WFBP does not reduce the communication overhead, hybrid communication (Hy-
bComm) [171] was proposed. Effectively, it combines Parameter Servers (PS) [155] with
Sufficient Factor Broadcasting (SFB) [159], choosing the best communication method de-
pending on the sparsity of the parameter tensor. See below for more information about PS
(under Centralized Storage) and SFB (under Decentralized Storage).

3.6 Discussion

While machine learning and artificial intelligence is a discipline with a long history in computer
science, recent advancements in technology have caused certain areas like neural networks to
experience unprecedented popularity and impact on novel applications. As with many emerg-
ing topics, functionality has been the primary concern, and the non-functional aspects have only
played a secondary role in the discussion of the technology. As a result, the community has only a
preliminary understanding of how distributed ML algorithms and systems behave as a workload
and which classes of problems have a higher affinity to a certain methodology when considering
performance or efficiency.

However, as with similar topics like big data analytics, systems aspects are increasingly be-
coming more important as the technology matures and consumers become more mindful about
resource consumption and return of investment. This has caused ML algorithms and systems to be
increasingly more co-designed, i.e., adapting algorithms to make better use of systems resources
and designing novel systems that support certain classes of algorithms better. We expect this trend
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Fig. 4. Distributed machine learning ecosystem. Both general-purpose distributed frameworks and single-

machine ML systems and libraries are converging towards distributed machine learning. Cloud emerges as

a new delivery model for ML.

to continue and accelerate, eventually leading to a new wave of distributed machine learning sys-
tems that are more autonomous in their ability to optimize computation and distribution for given
hardware resources. This would significantly lower the burden of adopting distributed machine
learning in the same way that popular libraries have democratized machine learning in general
by raising the level of abstraction from numerical computing to a simple and approachable tem-
plated programming style, or similar to the way that paradigms like MapReduce [44] have made
processing of large datasets accessible.

4 THE DISTRIBUTED MACHINE LEARNING ECOSYSTEM

The problem of processing a large volume of data on a cluster of machines is not restricted to
machine learning but has been studied for a long time in distributed systems and database re-
search. As a result, some practical implementations use general-purpose distributed platforms as
the foundation for distributed machine learning. Popular frameworks like Apache Spark [168, 169]
have seized the opportunity of machine learning being an emerging workload and now provide
optimized libraries (e.g., MLlib [98]). On the other end of the spectrum, purpose-built machine
learning libraries that were originally designed to run on a single machine have started to receive
support for execution in a distributed setting. For instance, the popular library Keras [35] received
backends to run atop Google’s Tensorflow [1] and Microsoft’s CNTK [129]. Nvidia extended their
machine learning stack with their Collective Communications Library (NCCL) [106], which was
originally designed to support multiple GPUs on the same machine, but version 2 introduced the
ability to run on multiple nodes [76]. The center this ecosystem (Figure 4) is inhabited by systems
natively build for distributed machine learning and designed around a specific algorithmic and
operational model, e.g., Distributed Ensemble Learning, Parallel Synchronous Stochastic Gradient
Descent (SGD), or Parameter Servers. While the majority of these systems are intended to set up
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and operated by the user and on-premise, there is an increasingly large diversity of machine learn-
ing services offered through a cloud delivery model, many centered around established distributed
machine learning systems enhanced by a surrounding platform that makes the technology more
consumable for data scientists and decision makers.

4.1 General Purpose Distributed Computing Frameworks

Distributed systems for processing massive amounts of data largely rely on utilizing a number of
commodity servers, each of them with a relatively small storage capacity and computing power,
rather than one expensive large server. This strategy has proven more affordable compared to
using more expensive specialized hardware, as long as sufficient fault tolerance is built into the
software, a concept that Google has pioneered [16] and that has increasingly found traction in
the industry. Furthermore, the scale-out model offers a higher aggregate I/O bandwidth compared
to using a smaller number of more powerful machines, since every node comes with its own I/O
subsystem. This can be highly beneficial in data-intensive applications where data ingestion is a
significant part of the workload [116].

4.1.1 Storage. The storage layer of existing frameworks is commonly based on the Google File

System (GFS) [55] or comparable implementations. GFS is owned by and used within Google to
handle all big data storage needs in the company. GFS splits up the data that are uploaded to the
cluster into chunks, which are then distributed over the chunk servers. The chunks are replicated
(the degree of replication is configurable and the default is three-way [55]) to protect the data from
becoming unavailable in the event of machine failures. The data on the chunk servers can then be
accessed by a user through contacting the master, which serves as a name node and provides the
locations for every chunk of a file. The GFS architecture was adopted by an open-source frame-
work called Hadoop [103], which was initially developed by Yahoo! and is now open source and
maintained at the Apache Foundation. Its storage layer, named Hadoop File System or HDFS [141],
started off as essentially a copy of the GFS design with only minor differences in nomenclature.

4.1.2 Compute. While the storage architecture has essentially converged to a block-based
model, there exist many competing frameworks for scheduling and distributing tasks to compute
resources with different features and trade-offs.

MapReduce is a framework (and underlying architecture) for processing data that was developed
by Google [44] to process data in a distributed setting. The architecture consists of multiple phases
and borrows concepts from functional programming. First, all data are split into tuples (called key-
value pairs) during the map phase. This is comparable to a mapping of a second-order function to
a set in functional programming. The map phase can be executed fully parallel, since there are no
data dependencies between mapping a function to two different values in the set. Then, during the
shuffle phase, these tuples are exchanged between nodes and passed on. This is strictly necessary,
since aggregation generally has data dependencies and it has to be ensured that all tuples belonging
to the same key are processed by the same node for correctness. In the subsequent reduce phase,

the aggregation is performed on the tuples to generate a single output value per key. This is similar
to a fold operation in functional programming, which rolls up a collection using a second-order
function that produces a single result value. Fold, however, cannot be parallelized, since every
fold step depends on the previous step. Shuffling the data and reducing by key is the enabler of
parallelism in the reduce phase.

The main benefit of this framework is that the data can be distributed across a large number of
machines while tasks of the same phase have no data dependencies and can therefore be executed
entirely in parallel. Those same machines can be nodes in a GFS (or similar) storage cluster, so
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instead of moving data to the program, the program can be moved to the data for an increase of
data locality and better performance. The program is usually several orders of magnitude smaller to
transfer over the wire, and is therefore much more efficient to pass around. Furthermore, in compli-
ance with the idea of scale-out, MapReduce implements fault-tolerance in software by monitoring
the health of the worker nodes through heartbeat messages and rescheduling tasks that failed to
healthy nodes. Typically, the granularity of a task equals the size of a single block in the input
dataset so a node failure should only affect a fraction of the overall application and the system is
able to recover gracefully. Chu et al. [36] have mapped several ML algorithms to the MapReduce
framework to exploit parallelism for multicore machines.

The MapReduce architecture is similar to the Bulk-Synchronous Processing (BSP) paradigm,
which preceded it. However, there are some subtle differences. For instance, the MapReduce frame-
work does not allow communication between worker nodes in the map phase. Instead, it only al-
lows cross-communication during the shuffle phase, in between the map and reduce phases [115],
for a reduction of synchronization barriers and an increase in parallelism. Goodrich et al. [59] have
shown that all BSP programs can be converted into MapReduce programs. Pace [115], in turn, pro-
posed that all MapReduce applications should be modeled as BSP tasks to combine the benefits of
theoretical correctness of the BSP paradigm with the efficient execution of MapReduce.

MapReduce as a framework is proprietary to Google. The architecture behind it, however, has
been recreated in the aforementioned open source Hadoop framework. It leverages HDFS where
MapReduce uses GFS, but is similar in its overall architecture. Advanced variants have deliberated
themselves from the strict tree topology of MapReduce data flows towards more flexible structures
such as Forests (Dryad [75]) or generic Directed Acyclic Graphs (DAGs).

Apache Spark. MapReduce and Hadoop heavily rely on the distributed file system in every phase
of the execution. Even intermediate results are stored on the storage layer, which can be a liability
for iterative workloads that need to access the same data repeatedly. Transformations in linear
algebra, as they occur in many ML algorithms, are typically highly iterative in nature. Further-
more, the paradigm of map and reduce operations is not ideal to support the data flow of iterative
tasks, since it essentially restricts it to a tree-structure [86]. Apache Spark has been developed in
response to this challenge. It is capable of executing a directed acyclic graph of transformations
(like mappings) and actions (like reductions) fully in memory [137]. Because of its structure, Spark
can be significantly faster than MapReduce for more complex workloads. When, for example, two
consecutive map phases are needed, two MapReduce tasks would need to be executed, both of
which would need to write all (intermediate) data to disk. Spark, however, can keep all the data in
memory, which saves expensive reads from the disk.

The data structure that Spark was originally designed around is called a Resilient Distributed

Dataset (RDD). Such datasets are read-only, and new instances can only be created from data stored
on the disk or by transforming existing RDDs [167]. The Resilient part comes into play when the
data are lost: Each RDD is given a lineage graph that shows what transformations have been exe-
cuted on it. This lineage graph ensures that, if some data are lost, Spark can trace the path the RDD
has followed from the lineage graph and recalculate any lost data. It is important that the lineage
graph does not contain cycles (i.e., is a Directed Acylic Graph). Otherwise, Spark would run into
infinite loops and be unable to recreate the RDD. In practice, the need for re-computation as a
result of data loss due to node failure can lead to ripple effects [167]. Spark allows for checkpoint-
ing of data to prevent extensive re-computation. Checkpoints have to be explicitly requested and
essentially materialize the intermediate state while truncating the RDD lineage graph. Systems
like TR-Spark [163] have automated the generation of checkpoints to make Spark able to run on
transient resources where interruption of the execution has to be considered the norm.
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Apache Spark also includes MLlib, a scalable machine learning library that implements many
ML algorithms for classification, regression, decision trees, clustering, and topic modeling. It also
provides several utilities for building ML workflows, implementing often-used feature transfor-
mations, hyperparameter tuning, and so on. As MLlib uses Spark’s APIs, it immediately benefits
from the scale-out and failure resilience features of Spark. MLLib relies on the Scala linear algebra
package Breeze [64], which in turn utilizes netlib-java [98] for optimization, a bridge for libraries
such as BLAS [20] and LAPACK [9], which are widely used in high-performance computing.

4.2 Natively Distributed Machine Learning Systems

As a result of the rising popularity of machine learning in many applications, several domain-
specific frameworks have been developed around specific distribution models. In this section, the
characteristics of the most popular implementations are summarized.

4.2.1 Distributed Ensemble Learning. Many generic frameworks and ML libraries have limited
support for distributed training, even though they are fast and effective on a single machine. One
way to achieve distribution with these frameworks is through training separate models for subsets
of the available data. At prediction time, the outputs of those instances can then be combined
through standard ensemble model aggregation [111].

Models that follow this strategy are not dependent on any specific library. They can be or-
chestrated using existing distribution frameworks (such as MapReduce [44]). The training process
involves training individual models on independent machines in parallel. Neither orchestration
nor communication are necessary once training has started. Training onm machines withm sub-
sets of the data results in m different models. Each of these can use separate parameters or even
algorithms. At prediction time, all trained models can then be run on new data, after which the
output of each one is aggregated. This can once again be distributed if needed.

One large drawback is that this method is dependent on proper subdivision of the training
data. If large biases are present in the training sets of some of the models, then those instances
could cause biased output of the ensemble. If the data are divided manually, then it is paramount
to ensure independence and identical distribution of the data (i.i.d.). If, however, the dataset is
inherently distributed, then this is not straightforward to achieve.

There is a large number of existing frameworks available for this method, as any machine learn-
ing framework can be used. Some popular implementations use Tensorflow [1], MXNet [33], and
PyTorch [117].

4.2.2 Parallel Synchronous Stochastic Gradient Descent. Synchronized parallelism is often the
most straightforward to program and reason about. Existing distribution libraries (such as Message
Passing Interface (MPI) [62]) can typically be reused for this purpose. Most approaches rely on the
AllReduce operation [5] where the compute nodes are arranged in a tree-like topology. Initially,
each node calculates a local gradient value, accumulates these with the values received from its
children and sends these up to its parent (reduce phase). Eventually, the root node obtains the
global sum and broadcasts this back down to the leaf nodes (broadcast phase). Then each node
updates its local model with regard to the received global gradient.

Baidu AllReduce uses common high performance computing technology (mainly MPI and its
AllReduce operation) to iteratively train SGD models on separate mini-batches of the training
data [56]. AllReduce is used to apply each of the workers’ gradients onto the last common model
state after each operation and then propagate the result of that operation back to each worker. This
is an inherently synchronous process, blocking on the result of each worker’s training iteration
before continuing to the next.

ACM Computing Surveys, Vol. 53, No. 2, Article 30. Publication date: March 2020.



30:20 J. Verbraeken et al.

Baidu includes a further optimization from Patarasuk and Yuan [118] in this process, called
a Ring AllReduce, to reduce the required amount of communication. By structuring the cluster
of machines as a ring (with each node having only two neighbors) and cascading the reduction
operation, it is possible to utilize all bandwidth optimally. The bottleneck, then, is the highest
latency between neighboring nodes.

Baidu claims linear speedup when applying this technique to train deep learning networks.
However, it has only been demonstrated on relatively small clusters (five nodes each, though each
node has multiple GPUs that communicate with each other through the same system). The ap-
proach lacks fault tolerance by default, as no node in the ring can be missed. This could be coun-
teracted using redundancy (at cost of efficiency). If this is not done, however, then the scalability
of the method is bounded by the probability of all nodes being available. This probability can be
low when using large numbers of commodity machines and networking, which is needed to facil-
itate big data. Baidu’s system has been integrated into Tensorflow as an alternative to the built-in
Parameter Server–based approach (described below).

Horovod [131] takes a very similar approach to that of Baidu: It adds a layer of AllReduce-based
MPI training to Tensorflow. One difference is that Horovod uses the NVIDIA Collective Communi-
cations Library (NCCL) for increased efficiency when training on (Nvidia) GPUs. This also enables
use of multiple GPUs on a single node. Data-parallelizing an existing Tensorflow model is rela-
tively simple, since only a few lines of code need to be added, wrapping the default Tensorflow
training routine in a distributed AllReduce operation. When benchmarked on Inception v4 [148]
and ResNet-101 [68] using 128 GPUs, the average GPU utilization is about 88%, compared to about
50% in Tensorflow’s Parameter Server approach. However, Horovod lacks fault tolerance (just like
in Baidu’s approach) and therefore suffers from the same scalability issues [53].

Caffe2 (primarily maintained by Facebook) distributes ML through, once again, AllReduce al-
gorithms. It does this by using NCCL between GPUs on a single host and custom code between
hosts based on Facebook’s Gloo [47] library to abstract away different interconnects. Facebook
uses Ring AllReduce (which offers better bandwidth and parallelism guarantees) but also recur-
sive halving and doubling (a divide-and-conquer approach that offers better latency guarantees).
According to their paper, this improves performance in latency-limited situations, such as for small
buffer sizes and large server counts. He et al. [68] managed to train ResNet-50 in the span of one
hour [61] using this approach, achieving linear scaling with the number of GPUs. They achieved
90% efficiency, measured up to 352 GPUs. However, once again, no fault-tolerance is present.

CNTK or The Microsoft Cognitive Toolkit offers multiple modes of data-parallel distribution. Many
of them use the Ring AllReduce tactic as previously described, making the same trade-off of linear
scalability over fault-tolerance. The library offers two innovations:

• 1-bit stochastic gradient descent (Seide et al. [130]) is an implementation of SGD that
quantizes training gradients to a single bit per value. This reduces the number of bits that
need to be communicated when doing distributed training by a large constant factor.

• Block-momentum SGD (Chen and Huo [31]) divides the training set into m blocks and
n splits. Each of the n machines trains a split on each block. Then the gradients calculated
for all splits within a block are averaged to obtain the weights for the block. Finally, the
block updates are merged into the global model while applying block-level momentum and
learning rate.

When benchmarked on a Microsoft speech LSTM, average speedups of 85%+ are achieved for
small numbers of GPUs (up to 16), but scalability drops significantly (below 70%) when scaling
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past that. However, the direct comparison of this number to the other synchronous frameworks’
results is questionable, as the dependency structure of an LSTM is significantly different than that
of an ordinary DNN due to the introduction of temporal state [139].

4.2.3 Parallel Asynchronous Stochastic Gradient Descent and Parameter Servers. Asynchronous
approaches tend be more complex to implement, and it can be more difficult to trace and debug
runtime behavior. However, asynchronism alleviates many problems that occur in clusters with
high failure rates or inconsistent performance due to the lack of frequent synchronization barriers.

DistBelief [43] is one of the early practical implementations of large-scale distributed ML, and it
was developed by Google. They encountered the limitations of GPU training and built DistBelief
to counteract them. DistBelief supports data- and model-parallel training on tens of thousands of
CPU cores (though GPU support was later introduced as well [2]). They reported a speedup of
more than 12× when using 81 machines training a huge model with 1.7B parameters.

To achieve efficient model-parallelism, DistBelief exploits the structure of neural networks and
defines a model as a computation graph where each node implements an operation transforming
inputs to outputs. Every machine executes the training of a part of the computation graph’s nodes,
which can span subsets of multiple layers of the neural network. Communication is only required
at those points where a node’s output is used as the input of a node trained by another machine.
Partitioning the model across a cluster is transparent and requires no structural modifications.
However, the efficiency of a given partitioning is greatly affected by the architecture of the model
and requires careful design. For example, locally connected models lend themselves better for
model-parallelism because of limited cross-partition communication. In contrast, fully connected
models have more substantial cross-partition dependencies and are therefore harder to efficiently
distribute through DistBelief.

To further parallelize model training, data parallelism is applied on top of the model parallelism.
A centralized sharded Parameter Server is used to allow each of a set of model replicas (which may
be model-parallel internally) to share parameters. DistBelief supports two different methods of
data parallelism, both of which are resilient to processing speed variance between model replicas
as well as replica failure:

• Downpour Stochastic Gradient Descent is an asynchronous alternative to the inher-
ently sequential SGD. Each replica of the model fetches the latest model parameters from
the Parameter Server every nf etch steps, updates these parameters in accordance with the
model, and pushes the tracked parameter gradients to the Parameter Server every npush

steps. The parameters nf etch and npush can be increased to achieve lower communication
overhead. Fetching and pushing can happen as a background process, allowing training to
continue.

Downpour SGD is more resilient to machine failures than SGD, as it allows the training to
continue even if some model replicas are off-line. However, the optimization process itself
becomes less predictable due to parameters that are out of sync. The authors found relaxing
consistency requirements to be remarkably effective, but offer no theoretical support for
this. Tactics that contribute to robustness are the application of adaptive learning rates
through AdaGrad [45] and warm starting the model through training a single model replica
for a while before scaling up to the full number of machines. The authors make note of the
absence of stability issues after applying these.

• Distributed L-BGFS makes use of an external coordinator process that divides training
work between model replicas, as well as some operations on the parameters between the
parameter server shards. Training happens through L-BGFS, as is clear from the name.
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Each of the shards of the Parameter Server hold a fraction of the parameter space of a model.
The model replicas pull the parameters from all shards and each parallelized part of the model
only retrieves those parameters that it needs.

Performance improvements are high, but the methodology is very expensive in terms of com-
putational complexity. While the best speedup (downpour SGD with AdaGrad) achieved an 80%
decrease in training time on ImageNet; this was achieved by using more than 500 machines and
more than 1K CPU cores. It has to be noted that DistBelief did not support distributed GPU train-
ing at the time of Dean et al. [43], which could reduce the required resources significantly and is
used in fact by almost all other implementations mentioned in this section.

DIANNE (DIstributed Artificial Neural NEtworks) [39] is a Java-based distributed deep learning
framework using the Torch native backend for executing the necessary computations. It uses a
modular OSGi-based distribution framework [154] that allows to execute different components of
the deep learning system on different nodes of the infrastructure. Each basic building block of a
neural network can be deployed on a specific node, hence enabling model-parallelism. DIANNE
also provides basic learner, evaluator, and parameter server components that can be scaled and
provide a downpour SGD implementation similar to DistBelief.

Tensorflow [1, 2] is the evolution of DistBelief, developed to replace DistBelief within Google.
It borrows the concepts of a computation graph and parameter server from it. It also applies sub-
sequent optimizations to the parameter server model, such as optimizations for training convolu-
tional neural networks [34] and innovations regarding consistency models and fault tolerance [92,
93]. Unlike DistBelief, TensorFlow was made available as open source software.

TensorFlow represents both model algorithms and state as a dataflow graph, of which the exe-
cution can be distributed. This facilitates different parallelization schemes that can take, e.g., state
locality into account. The level of abstraction of the dataflow graph is mathematical operations on
tensors (i.e., n-dimensional matrices). This in contrast to DistBelief, which abstracts at the level
of individual layers. Consequently, defining a new type of neural network layer in Tensorflow
requires no custom code—it can be represented as a subgraph of a larger model, composed of fun-
damental math operations. A Tensorflow model is first defined as a symbolic dataflow graph. Once
this graph has been constructed, it is optimized and then executed on the available hardware. This
execution model allows Tensorflow to tailor its operations towards the types of devices available
to it. When working with, e.g., GPUs or TPUs (Tensor Processing Units [80]), Tensorflow can take
into account the asynchronicity and intolerance or sensitivity to branching that is inherent to these
devices, without requiring any changes to the model itself.

Shi and Chu [138] show Tensorflow achieving about 50% efficiency on four-node, InfiniBand-
connected cluster training of ResNet-50 [68] and about 75% efficiency on GoogleNet [147], showing
that the communication overhead plays an important role and also depends on architecture of the
neural network to optimize.

MXNet [33] uses a strategy very similar to that of Tensorflow: Models are represented as dataflow
graphs, which are executed on hardware that is abstracted away and coordinated by using a pa-
rameter server. However, MXNet also supports the imperative definition of dataflow graphs as
operations on n-dimensional arrays, which simplifies the implementation of certain kinds of net-
works.

MXNet’s Parameter Server, KVStore, is implemented on top of a traditional key-value store. The
KVStore supports pushing key-value pairs from a device to the store, as well as pulling the current
value of a key from the store. There is support for user-defined update logic that is executed when a
new value is pushed. The KVStore can also enforce different consistency models (currently limited
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to sequential and eventually consistent execution). It is a two-tier system: Updates by multiple
threads and GPUs are merged on the local machine before they are pushed to the full cluster. The
KVStore abstraction theoretically enables the implementation of (stale-)synchronicity, although
only an asynchronous implementation is present at the time of writing.

On a small cluster of 10 machines equipped with a GPU, MXNet achieves almost linear speedup
compared to a single machine when training GoogleNet [147] with more than 10 passes over the
data [33].

DMTK or the Distributed Machine Learning Toolkit [102] from Microsoft includes a Parameter
Server called Multiverso. This can be used together with CNTK to enable Asynchronous SGD in-
stead of the default Allreduce-based distribution in CNTK.

4.2.4 Parallel Stale-synchronous Stochastic Gradient Descent.

Petuum [160] aims to provide a generic platform for any type of machine learning (as long as it is
iteratively convergent) on big data and big models (hundreds of billions of parameters). It supports
data- and model-parallelism. The Petuum approach exploits ML’s error tolerance, dynamic struc-
tural dependencies, and non-uniform convergence to achieve good scalability on large datasets and
models. This is in contrast to, for example, Spark, which focuses on fault tolerance and recovery.
The platform uses stale synchronicity to exploit inherent tolerance of machine learning against
errors, since a minor amount of staleness will only have minor effects on convergence. Dynamic
scheduling policies are employed to exploit dynamic structural dependencies, which helps mini-
mize parallelization error and synchronization cost. Finally, unconverged parameter prioritization
takes advantage of non-uniform convergence by reducing computational cost on parameters that
are already near optimal.

Petuum uses the Parameter Server paradigm to keep track of the parameters of the model be-
ing trained. The Parameter Server is also responsible for maintaining the staleness guarantees. In
addition, it exposes a scheduler that lets the model developer control the ordering of parallelized
model updates.

When developing a model using Petuum, developers have to implement a method named push,
which is responsible for each of the parallelized model training operations. Its implementation
should pull the model state from the parameter server, run a training iteration, and push a gradient
to the parameter server. Petuum by default manages the scheduling aspect and the parameter
merging logic automatically, so data-parallel models do not require any additional operations.
However, if model-parallelism is desired, the schedule method (which tells each of the parallel
workers what parameters they need to train) and the pull method (which defines the aggregation
logic for each of the generated parameter gradients) need to be implemented as well.

Petuum provides an abstraction layer that also allows it to run on systems using YARN (the
Hadoop job scheduler) and HDFS (the Hadoop file system), which simplifies compatibility with
pre-existing clusters.

4.2.5 Parallel Hybrid-synchronous SGD. Both synchronous and asynchronous approaches have
some significant drawbacks, as is explored by Chen et al. [30]. A few frameworks attempt to find
a middle ground instead that combines some of the best properties of each model of parallelism
and diminishes some of the drawbacks.

MXNet-MPI [96] takes an approach to distributed ML (using a modified version of MXNet as a
proof of concept) that combines some of the best aspects of both asynchronous (Parameter Server)
and synchronous (MPI) implementations. The idea here is to use the same architecture as described
in the MXNet section. Instead of having single workers communicate with the parameter server,
however, those workers are clustered together into groups that internally apply synchronous SGD
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over MPI with AllReduce. This has the benefit of easy linear scalability of the synchronous MPI
approach and fault tolerance of the asynchronous Parameter Server approach.

4.3 Machine Learning in the Cloud

Several cloud operators have added machine learning as a service to their cloud offerings. Most
providers offer multiple options of executing machine learning tasks in their clouds, ranging from
IaaS-level services (VM instances with pre-packaged ML software) to SaaS-level solutions (Ma-
chine Learning as a Service). Much of the technology offered are standard distributed machine
learning systems and libraries. Among other things, Google’s Cloud Machine Learning Engine
offers support for TensorFlow and even provides TPU instances [60]. Microsoft Azure Machine
Learning allows model deployment through Azure Kubernetes, through a batch service, or by us-
ing CNTK VMs [101]. As a competitor to Google’s TPUs, Azure supports accelerating ML applica-
tions through FPGAs [114]. Amazon AWS has introduced SageMaker, a hosted service for building
and training machine learning models in the cloud. The service includes support for TensorFlow,
MXNet, and Spark [7]. IBM has bundled their cloud machine learning offerings under the Watson
brand [74]. Services include Jupyter notebooks, Tensorflow, and Keras. The cloud-based delivery
model is becoming more important, as it reduces the burden of entry into designing smart appli-
cations that facilitate machine learning techniques. However, the cloud is not only a consumer of
distributed machine learning technology but is also fueling the development of new systems and
approaches back to the ecosystem to handle the large scale of the deployments.

5 CONCLUSIONS AND CURRENT CHALLENGES

Distributed Machine Learning is a thriving ecosystem with a variety of solutions that differ in ar-
chitecture, algorithms, performance, and efficiency. Some fundamental challenges had to be over-
come to make distributed machine learning viable in the first place, such as finding mechanisms
to efficiently parallelize the processing of data while combining the outcome into a single coher-
ent model. Now that there are industry-grade systems available and in view of the ever-growing
appetite for tackling more complex problems with machine learning, distributed machine learn-
ing is increasingly becoming the norm and single-machine solutions the exception, similar to how
data processing in general had developed in the past decade. There are, however, still many open
challenges that are crucial to the long-term success of distributed machine learning.

5.1 Performance

A trade-off that is seen frequently is the reduction of wall-clock time at the expense of total
aggregate processing time (i.e., decreased efficiency) by adding additional resources. When
compute resources are affordable enough, many real-world use cases of machine learning benefit
most from being trained rapidly. The fact that this often implies a large increase in total compute
resources and the associated energy consumption is not considered important as long as a model
saves more money than it costs to train. A good example of this is found in Dean et al. [43], where
wall-clock time speedup factors are achieved by increasing the number of machines quadratically
or worse. It still delivered Google competitive advantage for years. Distributed use of GPUs, as in
Tensorflow, has better properties, but often still exhibits efficiency below 75%. These performance
concerns are much less severe in the context of synchronous SGD-based frameworks, which
often do achieve linear speedups in benchmarks. However, most of these benchmarks test at
most a few hundred machines, whereas the scale at which, e.g., DistBelief, is demonstrated, can
be two orders of magnitude larger. The research community could clearly benefit from more
independent studies that report on the performance and scalability of these systems for larger
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and more realistic applications, and that could provide valuable insights to guide research into
workload optimization and system architecture.

5.2 Fault Tolerance

Synchronous AllReduce-based approaches seem to scale significantly better than the parameter
server approach (up to a certain cluster size), but suffer from a lack of fault-tolerance: Failure of
a single machine blocks the entire training process. At smaller scales, this might still be a man-
ageable problem. However, past a certain number of nodes, the probability of any node being un-
available becomes high enough to result in near-continuous stalling. Common implementations
of these HPC-inspired patterns, such as MPI and NCCL, lack fault-tolerance completely. Although
there are efforts to counteract some of this, production-ready solutions are lacking. Some of the
described implementations allow for checkpointing to counteract this, but significant effort is nec-
essary to enable true fault-tolerance, as is described in Amatya et al. [6]. It is also possible to reduce
the probability of failure for each individual node, but this requires very specific hardware that is
expensive and not generally available in commodity scale-out data centers or in the cloud. Asyn-
chronous implementations do not suffer from this problem as much. They are designed to explicitly
tolerate straggling [41] (slow-running) and failing nodes, with only minimal impact on training
performance. The question for ML operators, then, is whether they prefer performance or fault
tolerance, and whether they are constrained by either one. Hybrid approaches even offer a way
to customize these characteristics, although they are not frequently found in use yet. It would be
interesting to see whether an even better approach exists, or whether there is an efficient way to
implement fault-tolerant AllReduce.

5.3 Privacy

There are scenarios in which it is beneficial or even mandatory to isolate different subsets of the
training data from each other [79]. The furthest extent of this is when a model needs to be trained
on datasets that each live on different machines or clusters and may under no circumstance be
co-located or even moved. Peer-to-peer topologies like Gossip Learning [112] fully embrace this
principle.

Another approach to training models in a privacy-sensitive context is the use of a distributed
ensemble model. This allows perfect separation of the training data subsets, with the drawback that
a method needs to be found that properly balances each trained model’s output for an unbiased
result.

Parameter server–based systems can be useful in the context of privacy, as the training of a
model can be separated from the training result. Abadi et al. [3] discuss several algorithms that are
able to train models efficiently while maintaining differential privacy. These parameter server–
based systems assume that no sensitive properties of the underlying data leak into the model
itself, which turns out to be difficult in practice. Recently, Bagdasaryan et al. [12] showed that it is
possible for attackers to implement a back door into the joint model.

Federated learning systems can be deployed where multiple parties jointly learn an accurate
deep neural network while keeping the data itself local and confidential. Privacy of the respec-
tive data was believed to be preserved by applying differential privacy, as shown by Shokri and
Shmatikov [140] and McMahan et al. [97]. However, Hitaj et al. [71] devised an attack based on
GANs, showing that record-level differential privacy is generally ineffective in federated learning
systems.

Additionally, it is possible to introduce statistical noise into each subset of the training data with
the intention of rendering its sensitive characteristics unidentifiable to other parties. Balcan et al.
[14] touch on this subject but make it clear that the resulting privacy in this scenario is dependent
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on the amount of statistical queries required to learn the dataset. This puts an upper bound on
usefulness of the model itself.

For a more in-depth discussion on privacy in distributed deep learning, we refer to Vepakomma
et al. [153]. In conclusion, while theoretical results exist, current frameworks do not offer much
support for even basic forms of privacy. It could be interesting to investigate fundamental ap-
proaches to facilitate distributed privacy, which could then be integrated into the currently popular
frameworks.

5.4 Portability

With the proliferation of machine learning, in particular deep learning, a myriad of different li-
braries and frameworks for creating and training neural networks is established. However, once
trained, one is often stuck to the framework at hand to deploy the model in production, as they all
use a custom format to store the results. For example, Tensorflow [2] uses a SavedModel directory,
which includes a protocol buffer defining the whole computation graph. Caffe [78] also uses a bi-
nary protocol buffer for storing saved models, but with a custom schema. Theano [18] uses pickle
to serialize models represented by Python objects, and PyTorch [117] has a built-in save method
that serializes to a custom ASCII or binary format.

Portability also becomes increasingly important with respect to the hardware platform on which
one wants to deploy. Although the x86_64 and ARM processor architectures are mainstream to
execute applications in the server and mobile devices market, respectively, we witness a shift to-
wards using GPU hardware for efficiently executing neural network models [108]. As machine
learning models become more widespread, we also see more development of custom ASICs such
as TPUs [128] in Google Cloud or dedicated neural network hardware in the latest iPhone [11].
This diversification makes it more difficult to make sure that your trained model can run on any
of these hardware platforms.

A first step towards portability is the rise of a couple of framework-independent specifications
to define machine learning models and computation graphs. The Open Neural Network Exchange
(ONNX) format defines a protocol buffer schema that defines an extensible computation graph
model as well as definitions for standard operators and data types. Currently, ONNX is supported
out of the box by frameworks such as Caffe, PyTorch, CNTK, and MXNet, and converters exist,
e.g., for TensorFlow. Similar efforts for a common model format specification are driven by Ap-
ple with their Core ML format [10] and the Khronos Group with the Neural Network Exchange
Format [150].
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