
Nonlinear dimensionality reduction for nonadiabatic dynamics: The
influence of conical intersection topography on population transfer rates
Aaron M. Virshup, Jiahao Chen, and Todd J. Martínez 
 
Citation: J. Chem. Phys. 137, 22A519 (2012); doi: 10.1063/1.4742066 
View online: http://dx.doi.org/10.1063/1.4742066 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v137/i22 
Published by the American Institute of Physics. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 17 Jan 2013 to 128.125.12.14. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/266208507/x01/AIP/Goodfellow_JCPCovAd_933x251banner_11_27_2012/goodfellow.jpg/7744715775302b784f4d774142526b39?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Aaron M. Virshup&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Jiahao Chen&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Todd J. Mart�nez&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4742066?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v137/i22?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 137, 22A519 (2012)

Nonlinear dimensionality reduction for nonadiabatic dynamics: The
influence of conical intersection topography on population transfer rates

Aaron M. Virshup,1 Jiahao Chen,2 and Todd J. Martínez3,4

1Department of Chemistry, Duke University, Durham, North Carolina 27710, USA
2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
4SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

(Received 20 May 2012; accepted 19 July 2012; published online 9 August 2012)

Conical intersections play a critical role in the nonadiabatic relaxation of excited electronic states.
However, there are an infinite number of these intersections and it is difficult to predict which are ac-
tually relevant. Furthermore, traditional descriptors such as intrinsic reaction coordinates and steepest
descent paths often fail to adequately characterize excited state reactions due to their highly nonequi-
librium nature. To address these deficiencies in the characterization of excited state mechanisms, we
apply a nonlinear dimensionality reduction scheme (diffusion mapping) to generate reaction coor-
dinates directly from ab initio multiple spawning dynamics calculations. As illustrated with various
examples of photoisomerization dynamics, excited state reaction pathways can be derived directly
from simulation data without any a priori specification of relevant coordinates. Furthermore, diffu-
sion maps also reveal the influence of intersection topography on the efficiency of electronic popu-
lation transfer, providing further evidence that peaked intersections promote nonadiabatic transitions
more effectively than sloped intersections. Our results demonstrate the usefulness of nonlinear di-
mensionality reduction techniques as powerful tools for elucidating reaction mechanisms beyond
the statistical description of processes on ground state potential energy surfaces. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4742066]

I. INTRODUCTION

The faithful modeling of excited state reaction dynamics
is a major challenge since it places great demands on both
electronic structure theory (the calculation of electronic ex-
cited states for highly nonequilibrium molecular geometries)
and dynamics (quantum effects must be included to describe
the nonadiabatic transitions which allow for the transfer of
energy from the electronic to nuclear degrees of freedom).
Ab initio molecular dynamics (AIMD) methods, where
the dynamics and electronic structure problems are solved
simultaneously, have been developed for nonadiabatic
dynamics1–10 in order to avoid the need to fit potential energy
surfaces and their couplings to analytic functional forms. An
oft-quoted advantage of AIMD methods is that all nuclear de-
grees of freedom can be included in the dynamics, i.e., there is
little or no incentive to create reduced dimensionality models.
Ironically, while this is indeed an advantage for the realistic
modeling of excited state dynamics, it can be an obstacle to
extracting chemical understanding. Simply put, as more de-
grees of freedom (electronic and/or vibrational) are included,
it can become harder to see which are the most important.
Thus, a means of automatically identifying the important de-
grees of freedom would be most welcome.

For chemical processes occurring entirely on the ground
electronic state, one can use statistical theories as a guide to
identify important degrees of freedom. Thus, one identifies
local minima and transition states connecting these minima
as the first step in this process. One can further find min-
imal energy pathways connecting these points and thereby

identify possible reactions and their mechanisms. This ap-
proach is not so straightforward for many excited state re-
actions because they are intrinsically far from equilibrium.
Excited state reaction dynamics typically take place on fem-
tosecond timescales, as the electronic excitation event is rapid
and the molecule often finds itself on a steeply sloped part
of the excited state potential energy surface after photon ab-
sorption. The nonequilibrium nature of photodynamics thus
presents some difficulty in establishing quantitative rate theo-
ries. The standard methods for determining reaction paths and
rates for ground state reactions rely primarily on the assump-
tions of transition state theory; in particular, the dynamical
evolution of the system is either neglected entirely or at best
treated only in a thermodynamically averaged sense. Reac-
tion coordinates arising from such assumptions, such as the
one-dimensional intrinsic reaction coordinate (IRC) that pa-
rameterizes the minimal energy pathway,11 are therefore un-
likely to provide a realistic description of ultrafast processes
which are completed in picoseconds or even femtoseconds.
This problem is not unique to excited state reactions: dynam-
ical correlations are already known to disrupt the minimal en-
ergy path picture even in some thermally activated ground
state reactions.12–14 While transition path sampling methods
based on dynamical trajectories have been developed with
great success as a means of correctly sampling a variety of
candidate reaction pathways,15 they have so far only been ex-
plored for reactions on the ground electronic state.

Conical intersections (CIs), i.e., molecular geometries
where two or more electronic states are exactly degenerate,
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are now recognized to play a central role in ultrafast
photochemistry.16, 17 The Born-Oppenheimer approximation
breaks down at and near these geometries, thus allowing
nonadiabatic population transfer between different electronic
states. Thus, these geometries may be viewed as analogs to
the transition state in a ground state chemical reaction (but
here for the “reaction” A* → A). However, CIs are not iso-
lated points, but rather high-dimensional seams. For a CI in-
volving two electronic states, the degeneracy between the po-
tential energy surfaces (PESs) is lifted linearly in exactly two
dimensions (the “branching plane”) around the CI, forming
the shape of a double cone. To first order, the two electronic
states remain degenerate with respect to molecular displace-
ments along all other vibrational degrees of freedom. Thus,
for a two state intersection in a molecule with N vibrational
degrees of freedom, the CI seam is an N-2 dimensional mani-
fold. It can be difficult to predict which parts of this manifold
will be most important in a given excited state reaction.

In this work, we aim to construct coarse-grained rep-
resentations of dynamically accessed reaction paths and
portions of the CI seam directly from dynamics simulations.
One goal is to identify the dynamically accessible seam of
CIs. In general, the shape of the CI manifold is difficult
to determine, although in some cases, certain points on
the CI manifold can be deduced from simple symmetry
considerations. Furthermore, the high dimensionality of the
seam usually represents far more degrees of freedom than can
be visualized straightforwardly. Traditionally, the CI seam is
characterized by its local minima, which are termed minimal
energy CIs (MECIs).18, 19 This parallels the IRC approach
for ground state reactions in providing a convenient set of
molecular geometries that can be used to describe a reaction
mechanism. However, the ultrafast nature of photochemical
processes makes the relevance of these points uncertain.
In fact, it has been shown in some cases that they have
little or no role in excited state reaction mechanisms.16, 20, 21

Nevertheless, they do retain some utility for descriptive
purposes, i.e., as “signposts” on the PES that can be used
to describe and distinguish alternative mechanisms, if only
because there are few easily computed alternatives available.

In contrast, powerful statistical techniques exist for an-
alyzing high-dimensional data sets, which could allow us to
circumvent this somewhat ad hoc approach. These so-called
dimensionality reduction techniques characterize general Rie-
mannian manifolds by transformations of point clouds sam-
pled from the manifold. Such methods take as input a set of
datapoints and in return give a description of that dataset in
terms of a reduced set of variables. Consider, for instance,
a one-dimensional manifold (i.e., a curve or trajectory) em-
bedded in a high dimensional space. Ideally, a dimensional-
ity reduction technique applied to points sampled from this
manifold should return a single coordinate describing motion
along the manifold whose value can be interpreted as the dis-
placement from some reference point on the curve. One of
the most common and mature of these techniques is principal
component analysis (PCA),22 which fits, in the least-squares
sense, an N-dimensional hyperplane to a point cloud embed-
ded in RN. The variances associated with each axis of the hy-
perplane give a measure of the importance of each coordinate.

Typically, only a small number, M, of axes are retained, thus
creating an M-dimensional representation of the original data
based only on the most strongly varying degrees of freedom
and projecting out all other, more weakly varying dimensions.
However, PCA’s inherent linearity strongly limits its appli-
cability to large-scale chemical dynamics. In particular, the
assumption of linear variance of the coordinates in the hyper-
plane fitting process introduces a problematic dependence on
the choice of coordinate system when the variations become
large. For example, a large amplitude torsional motion may be
viewed as a linear displacement in a dihedral angle or alter-
natively a highly nonlinear collective motion in the Cartesian
coordinates of the atoms. In applications to chemical dynam-
ics, this precludes the use of PCA for the characterization of
many sequential reactions and the results are strongly depen-
dent on the choice of coordinate system.

To address such issues, there has been increasing
interest in nonlinear dimensionality reduction (NLDR)
techniques.23–26 As in PCA, these techniques quantify “im-
portant” coordinates, and project out “unimportant” degrees
of freedom. However, in contrast to PCA, these techniques
are often invariant to coordinate system, and can recover
parameters describing nonlinear manifolds. Rather than fo-
cusing on data variance in a specified coordinate system,
NLDR techniques construct low-dimensional subspaces that
preserve short-range spatial relationships from the original
high-dimensional space – these are constructed by projections
that preserve distances between nearby datapoints in the orig-
inal space, but not necessarily those between distant points.
In larger, equilibrium chemical systems, NLDR techniques
have been applied with notable successes; for instance, the
ISOMAP NLDR technique has been shown to be effective
in identification of reaction coordinates and transition states
directly from dynamics data.24 The diffusion map algorithm
has also been applied to molecular systems, allowing a reac-
tion coordinate to be identified25 and its associated reduced
equation of motion to be derived27 without any a priori as-
sumptions about the nature of this coordinate. We also employ
diffusion maps in this paper. The diffusion map technique
is particularly well suited for ultrafast nonadiabatic chemi-
cal dynamics because of its nonlinearity, coordinate indepen-
dence, computational simplicity (relative to other NLDR tech-
niques), and robustness to noise.28

In this paper, we specifically focus on two photoisomer-
ization reactions that have already been well studied and have
known excited state mechanisms. Our goal is to show that dif-
fusion mapping recovers the known mechanisms from full di-
mensional dynamics data without any guidance or foreknowl-
edge.

The first example is the photoisomerization of ethylene
after excitation to the lowest ππ* bright electronic state.
Ethylene may be thought of as the paradigmatic molecule for
photoisomerization, being perhaps the simplest molecule with
a C=C double bond. It has therefore long been of both ex-
perimental and theoretical interest.29–37 There is a barrierless
path from the Franck-Condon point in ethylene to a variety of
CIs connecting S1 and S0. Several geometries that have been
highlighted in previous discussions of the photodynamics in
ethylene are shown in Fig. 1. (Figure 1 also shows the energet-
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FIG. 1. Important points on the ππ* excited state PES of ethylene, obtained
from SA-3 CAS(2/2) / 6-31G** optimizations. Energy values are reported
relative to the Franck-Condon (FC) point. Minimal energy conical intersec-
tions (MECIs) are doubly underlined. Note that the level of theory employed
overestimates the Frank-Condon point energy, and that higher of levels of
theory show that the ethylidene and pyramidalized intersections should, in
fact, be more similar in energy.

ics that correspond to the level of theory we use in this paper
for reference below. For more accurate values of these ener-
gies, we refer the reader to other publications as referenced
above.) Because all of these structures are accessible from
the Franck-Condon point with no barrier, dynamical effects
play a crucial role in determining the excited state reactivity
of ethylene. Furthermore, the structure of the reaction path
is not easily represented linearly in standard internal coordi-
nates, thus requiring ad hoc, or, as here, nonlinear definitions
of the reaction coordinates and CI seam.

The second example is a model of the chromophore in
photoactive yellow protein (PYP). This chromophore has two
isomerizable bonds in the excited state, and thus multiple
excited state reaction mechanisms may be expected. Inter-
estingly, there are indications that the surrounding environ-
ment can strongly influence the branching ratio between these
mechanisms.38, 39 It is also considerably larger than ethylene
(21 atoms) and thus serves to show that the success of diffu-
sion maps for the interpretation and analysis of excited state
dynamics is not limited to small molecules.

We also use the diffusion map approach to address a
long-standing question in excited state dynamics around CIs
– namely, the role of intersection topography in the efficiency
(or lack thereof) of nonadiabatic transitions.40–42 As shown
schematically in Fig. 2, the local topography around a CI may
be “peaked” or “sloped”; this can be quantified using the over-
all slope introduced by Yarkony:40

S = lim
R0→RCI

∇
(

E1(R) + E2(R)

2

)∣∣∣∣
R=R0

. (1)

The length of the projection of this vector on the branch-
ing plane provides a measure of the sloped character of the in-
tersection – for an ideal peaked intersection, the vector S has
no projection on the branching plane. Dynamical considera-
tions suggest that peaked intersections should more efficiently
funnel trajectories towards the point of degeneracy RCI;40–42

however, a quantitative relationship between these static PES
properties and nonadiabatic dynamics has yet to be firmly es-
tablished. By using diffusion maps, we are able to quantify

FIG. 2. Schematic depiction of peaked and sloped conical intersections
(CIs). The character of the CI is distinguished by the norm of the gradient
of the branching plane, represented by a dashed line. It has been suggested
that peaked intersections more efficiently transfer population because their
pronounced funnel shape tends to direct trajectories toward the point of de-
generacy.

the influence of intersection topography on the efficiency of
nonadiabatic transitions, demonstrating that peaked intersec-
tions are indeed more likely to lead to efficient population
transfer.

II. METHODS

A. Diffusion maps

The process of finding low-dimensional manifolds
embedded in high-dimensional spaces (NLDR) is an area
of active algorithmic research. In this article, we employ
diffusion maps, an example of one such recently developed
algorithm, to quantitatively characterize the configuration
space manifold underlying excited state reaction pathways
sampled from ab initio multiple spawning (AIMS) simula-
tions of the nonadiabatic dynamics. The use and construction
of diffusion maps from high-dimensional data has been
described extensively elsewhere27, 43–45 and we restrict
ourselves to a brief overview here. The basic idea is to model
a diffusion process over a set of points sampled from the
manifold of interest. The diffusion process elucidates the
underlying degrees of freedom by identifying local directions
along which neighboring data points are connected, i.e.,
accessible via diffusion. In doing so, a manifold containing
the entire data set can be traced out. Keeping track of the local
directions employed over the course of the diffusion results in
a parameterization of the original dataset with a dimensional-
ity that tends toward that of the embedded manifold and not
the larger dimension of the embedding space. It is important
to note that “diffusion mapping” is a computational, not
physical, process. Although diffusion maps have special
connections to manifolds that arise from diffusive processes,
they can be used to map geometrical manifolds of arbitrary
origin, such as the excited state dynamics described here.27

The mapping takes as input a finite collection of points
{xi}Mi=1 in the original space. In this article, these points are
molecular geometries (xi ∈ R3N) sampled from AIMS tra-
jectories at regular time intervals, as described below. A dif-
fusion kernel is constructed on the dataset, representing the
unnormalized amplitude of a random walker diffusing from
datapoint i to point j,

kij = e−(dij /D)2
, (2)
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where dij is the distance between datapoints i and j, and D
is an empirically chosen length scale as described below. A
diffusion operator is then constructed from the kernel, repre-
senting the probability of transition from datapoint i to j:

a(xi , xj ) = 1

Zi

kij

(vivj )α

where vi =
∑

j

kij and Zi =
∑

j

kij

(vivj )α
, (3)

where the parameter α determines the specific type of dif-
fusion modeled (discussed below), and the quantities υ i and
Zi are normalization and renormalization constants, respec-
tively. We refer the reader to earlier in-depth discussions of
this renormalization procedure.27, 43

An m-dimensional representation is found by solving for
the m largest eigenvalues of the diffusion operator a. The
m corresponding eigenvectors {φj}j = 1, . . , m provide the low-
dimensional parameterization of the original dataset. In this
respect, the diffusion operator plays a role analogous to that
of the covariance matrix in PCA. However, while the original
high-dimensional coordinates are the basis of the covariance
matrix, the data points themselves are the basis of the diffu-
sion kernel. Thus, the dimensionality of each eigenvector is
not the dimensionality of the original coordinate system, as in
PCA, but instead M, the number of data points used to con-
struct the mapping. The low dimensional representation of the
ith datapoint, x′

i, is given by the ith components of the domi-
nant m eigenvectors,

x ′
i := (φ1 (i) , φ2 (i) , . . . , φm (i)) . (4)

Thus, we have constructed a mapping of the original
dataset from R3N to Rm. We refer to this low-dimensional
space as the “reduced space,” and the m new coordinates as
the “diffusion coordinates.” The dimensionality of the param-
eterization, m, is determined by examination of the eigenvalue
spectrum; typically, all eigenvectors corresponding to eigen-
values beneath the first significant spectral gap are discarded.

The parameter D sets the distance scale of the diffu-
sion kernel (cf. Eq. (2)). This should be much larger than
the nearest neighbor spacings between data points to smooth
out discretization effects, but small enough so that large-scale
features of the manifold are not obscured. The choice of α

depends on the significance of data point density; α = 0 cor-
responds to standard Laplacian diffusion, which is heavily in-
fluenced by the local density of datapoints; α = 1 gives an ap-
proximation to Laplace-Beltrami heat diffusion, resulting in a
diffusion map that is invariant the density of data points; and α

= 1/2 approximates the backward Fokker-Planck operator on
the dataset, resulting in a map that emphasizes, but is not dom-
inated by, the density of sampled points along the manifold.44

For this work, we employ α = 1, as it provides an approxi-
mately consistent reproduction of distances across the mani-
fold (that is, the magnitude of the Jacobian between diffusion
space and coordinate space depends only weakly on location).

Finally, a distance between data points needs to be de-
fined (dij in Eq. (2)). Here we use the root-mean-square dis-
placement between each pair of geometries, after moving the
two geometries into maximum coincidence through rotation46

and symmetry operations (including permutation of identical
nuclei).

B. Ab initio multiple spawning dynamics

The dynamical results presented here were generated
with the ab initio multiple spawning (AIMS) technique for
molecular quantum dynamics, which has been described ex-
tensively elsewhere.4, 5, 47 The AIMS wavefunction is a linear
combination of Born-Oppenheimer basis functions

�AIMS(r, R, t) =
N(t)∑
i=1

ci (t) ψMi
(r; R) χi(R; R̃i(t), P̃i(t)),

(5)
where ψJ is the electronic wavefunction on the Jth adiabatic
state, χ (R; R̃(t), P̃(t)) is a Gaussian wavepacket centered at
R̃(t) with momentum P̃(t), and ci(t) are the complex ampli-
tudes associated with each vibronic basis function. The pa-
rameters R̃(t) and P̃(t) have an obvious classical interpreta-
tion as nuclear positions and momenta, and are propagated
classically on the PES for the electronic state with which they
are associated. Hence, the vibronic basis functions are de-
noted trajectory basis functions (TBFs). At points where the
Born-Oppenheimer approximation breaks down, i.e., in the
vicinity of conical intersections, population can be transferred
between electronic states (through the evolution of the com-
plex amplitudes as dictated by the solution of the Schrödinger
equation in the time-evolving basis set). In order to ensure
that the appropriate basis functions are available to represent
this population transfer, new TBFs are “spawned” when the
coupling between electronic states exceeds a predetermined
threshold – it is for this reason that the upper limit N(t) in the
sum of Eq. (5) is explicitly time-dependent.

The PESs for dynamics were generated on the fly us-
ing ab initio quantum chemical techniques. The electronic
structure calculations of potential energy surfaces, gradi-
ents, and nonadiabatic couplings were carried out using
MOLPRO.9, 48 Specifically, the calculations for ethylene used
the state-averaged complete active space self-consistent field
(SA-CASSCF) method,49, 50 with state averaging over the
lowest three singlet states, an active space of two electrons
in two orbitals, and the 6-31G** basis set,51 i.e., SA-3-
CAS(2/2)/6-31G**. For the photoactive yellow protein (PYP)
chromophore, the electronic wavefunction is described with
the SA-2-CAS(8/6)/6-31G* method. Initial conditions in both
cases are sampled from the harmonic approximation to the
Wigner distribution of the ground vibrational state.

III. RESULTS

A. Ethylene

The first 200 fs of ethylene photodynamics following ver-
tical excitation from the ground state minimum to the ππ*
state (S1 for the electronic wavefunction ansatz used here)
were simulated with 600 uncoupled AIMS simulations (each
starting with a single TBF and spawning new TBFs as dic-
tated by the nonadiabatic coupling matrix elements). Due to
computational requirements (specifically, the cost of diago-
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FIG. 3. (a) Eigenvalue spectrum for diffusion map from ethylene S1 dynam-
ics. There is a large spectral gap after the first nontrivial eigenvalue (φ2),
indicating that the dynamics are predominantly one-dimensional. (b) Loca-
tions of the sampled geometries as a function of φ2 and φ3, colored to in-
dicate the time following photoexcitation. (c) Overlays of all geometries at
several different values of φ2, illustrating the “width” of the reaction path at
several different points. Geometries are clustered fairly tightly at each value,
illustrating that φ2 is the dominant controlling variable for the dynamics.

nalizing the M × M matrix representing the diffusion kernel,
where M is the number of geometries), the diffusion map was
constructed using geometries sampled every 5 fs from the ini-
tial excited state trajectory in the first 200 simulations, yield-
ing a total of 6738 molecular geometries.

The distance between each pair of molecular geometries
was computed as described above. This pairwise distance
matrix was then transformed into a diffusion kernel using
Eqs. (2) and (3) with α = 1 and D = 0.5 Å. This diffusion ker-
nel was then diagonalized. Note that the first eigenvector (φ1)
of this and any other diffusion kernel is trivial, with a uniform
value for the entire data set – this indicates that all data points
occupy a single, compact cluster.27 As shown in Fig. 3(a), the
eigenvalue spectrum of the diffusion kernel from the ethy-
lene excited state dynamics simulations contains a large spec-
tral gap after the second eigenvector. Therefore, this diffu-
sion map describes a dominantly one-dimensional reaction
path parameterized by the second eigenvector φ2. In Fig. 3(b),
we show the geometries (data points) in the two-dimensional
space characterized by the second and third eigenvectors (φ2

and φ3), colored according to the time when the geometry
was accessed in the dynamics (t = 0 corresponds to the pho-
toexcitation event). The coordinates of the ith geometry (data
point) along the φ2 and φ3 axes are given by the ith element
of the second and third diffusion kernel eigenvectors, as given
in Eq. (4). Of course, restricting the diffusion map to a single
diffusion coordinate necessarily implies that there are many
molecular geometries which are described by the same value
of the diffusion coordinate. One can get some insight into this
by superimposing molecular geometries corresponding to re-
stricted ranges of the diffusion coordinate. This is done in
Fig. 3(c), where a set of geometries from the data set gener-
ating the diffusion kernel are superimposed according to their

diffusion coordinate value. Geometries with similar values of
the diffusion coordinate can be seen to be quite similar, but
with a variance that reflects the “width” of the data set, i.e.,
the degree to which further diffusion coordinates would need
to be included to completely specify the geometries in the data
set.

The values of the diffusion coordinates for the geometries
in the data set as given in Eq. (4) are expressed in terms of
unitless “diffusion modes.” In order to convert these to more
meaningful real space distances, we compute the magnitude
of the Jacobian between the diffusion coordinate φ2 and the
real space coordinates R. The value of the Jacobian at φ can
be calculated by averaged finite difference,

J (φ) = ∂R
∂φ2

∣∣∣∣
φ

= lim
δ→0

〈
R − R̄
φ2 − φ

〉
{φ−δ,φ+δ}

, (6)

where 〈 〉{a, b} indicates an average over all points where
a < φ2 < b, and R̄ is the average value of R in the same in-
terval. The real-space distance along this coordinate can then
be calculated as

DRC (φ2) =
∫ φ2

O

|J (φ)| dφ, (7)

where O is an arbitrarily chosen reference point (here, the
Franck-Condon geometry as depicted in Fig. 2).

Selected molecular geometries corresponding to motion
along this coordinate are shown in Fig. 4. The coordinate
is here referred to as the “dynamical” (as opposed to in-
trinsic) reaction coordinate (DRC). This one-dimensional ex-
cited state reaction path is highly nonlinear in both Cartesian
and internal coordinates. Motion along the DRC schemati-
cally follows the excited state reaction mechanism described
above. At low values of the dynamical reaction coordinate
(DRC), the molecule is planar and similar to the Franck-
Condon geometry. More positive values of the DRC corre-
spond to twisting and pyramidalization about the C=C bond,
followed by hydrogen atom migration across the C=C bond
to form ethylidene; finally, the newly formed methyl group
twists and bends. The time evolution of several representa-
tive TBFs along the DRC is also shown. Initially, the TBFs

FIG. 4. Several representative trajectory basis functions (TBFs) along the
dynamical reaction coordinate (DRC) of the S1 state of ethylene and their
corresponding geometries. The unitless diffusion coordinate φ2 (see Fig. 3),
was converted to the DRC distance shown here using Eqs. (6) and (7), with
the Franck-Condon point set to a DRC value of 0 Å. TBFs may undergo
torsional motion for tens of fs (DRC 0–0.5 Å) before proceeding through
pyramidalization (DRC 0.5–1.5 Å) and hydrogen migration (DRC 1.5–3 Å)
to form ethylidene (DRC 3–6 Å).
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oscillate for a short time between the planar and twisted ge-
ometries, before falling through the pyramidalized structures
to the ethylidene minimum.

Even though we constructed the diffusion map from a
limited subset of simulations, it is possible in practice to map
the data from all 600 original simulations into the reduced di-
mensionality space. The diffusion coordinates for geometries
in the 400 trajectories that were not included in the construc-
tion of the diffusion map can be estimated with the Nyström
extension.52 For each new geometry y, a new diffusion ker-
nel b is constructed which includes the new point as well as
all the original geometries in the set S (those used to construct
the diffusion map). The reduced coordinates for the new point
are given by

y ′
i = 1

λi

∑
xj ∈S

b(xj , y)φi(xj ) (8)

where λi and φi(xj) are the eigenvalues and eigenvectors from
the original diagonalization of a. This so-called “restriction”
provides a transformation from configuration space R3N to
the reduced dimensional space Rm. Using this procedure, we
can carry out a reduced dimensionality analysis of the data
from all 600 dynamical AIMS simulations, even though only
200 were utilized in the construction of the diffusion map. We
note in passing that the inverse “lifting” transformation (deter-
mining the molecular geometries in the full 3N-dimensional
space corresponding to a given point in the reduced dimen-
sional space) is necessarily more complicated since informa-
tion has been discarded in the reduced space. Attempts to de-
fine such a transformation have so far been restricted to an
inverse transformation in a stochastic sense, for example by
running stochastic dynamics with a constraint on the reduced
space coordinates.52 In the present work, we do not require
this “lifting” transformation and we do not consider it further.

The value of the excited state potential energy for each
sampled geometry along the DRC is shown in Fig. 5, where
the important geometries from Fig. 2 are also shown. A re-
action path similar to the one in Fig. 2 is recovered, but with
most points lying well above the excited state minima. This
is to be expected given that the Franck-Condon point is sev-

FIG. 5. Energies of sampled points from dynamics along the reaction path
of the S1 state of ethylene.

FIG. 6. Time evolution of the reduced probability density on the excited elec-
tronic state as a function of the DRC for the photodynamics of ethylene.

eral eV above the twisted/pyramidalized MECI as well as the
other depicted MECIs and minima on S1.

We can also represent the nuclear wavepacket probabil-
ity density as a function of the diffusion coordinate, using
the same Monte Carlo integration that allows us to represent
the time-evolving wavepacket in an arbitrary set of internal
coordinates.53 In Fig. 6, we show the time evolution of the
probability density on the excited electronic state in terms of
the DRC. Note that as the reaction progresses, the total wave-
function density drops off quickly as population quenches to
the ground state.

In order to characterize the dynamically relevant portion
of the CI seam, we select the molecular geometries at which
“spawning” takes place, i.e., the initial locations of the new
TBFs that are added to the simulation to allow the descrip-
tion of nonadiabatic events. We choose these geometries as
those with the largest magnitude of the nonadiabatic cou-
pling vector connecting S0 and S1 during the placement of
the newly spawned TBF. Population transfer to these newly
spawned TBFs is evaluated by monitoring the complex am-
plitudes c(t) as given in Eq. (5) until the associated popula-
tion (evaluated as a Löwdin-like population54 to account for
nonorthogonality) of the TBF becomes approximately con-
stant, typically within twenty femtoseconds of the introduc-
tion of the new TBF. In Fig. 7, the population transferred to
ground state TBFs is shown as a function of both time and the
location of the associated spawning geometries in the reduced
space. The spawning geometries were projected in the re-
duced space using the Nyström extension as discussed above.
Population transfer is localized to geometries in two regions
of the DRC. As can be determined from Fig. 4, the first
of these (0.5–1.5 Å) corresponds to twisted/pyramidalized
geometries and the second (3–6 Å) region corresponds to
ethylidene-like geometries where a hydrogen atom has mi-
grated to form CH3CH. Furthermore, there is a strong tem-
poral/spatial correlation with early population transfer occur-
ring in the twisted/pyramidalized region and later population
transfer events being mediated by ethylidene-like geometries.
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FIG. 7. Population transferred to ground state as a function of DRC and time.
Population is initially quenched in the pyramidalized region, while the longer
timescale decay takes place in the ethylidene region.

The efficiency of population decay through nonadiabatic
transitions is not constant along the reaction path and it would
be interesting to correlate the transition rates with features of
the potential energy surface such as the energy or topogra-
phy of the closest conical intersection. We evaluate a time-
averaged rate constant for ground state quenching at each
value along the excited state DRC directly from the simula-
tion data. Specifically, we compare the amount of population
transfer through each point to the total wavepacket probability
density that passed through that region of the path

α(x) = T (x)∫ tf
ti

dtρ(x, t)
, (9)

where x is the DRC, T(x) is the amount of population trans-
ferred through that point (integral over the time coordinate
in Fig. 7), and ρ(x, t) is the probability density shown in
Fig. 6. The DRC-dependent nonadiabatic transition rate α(x)
was evaluated by a histogramming procedure, integrating over
the time coordinate in Figs. 6 and 7. The upper panel of Fig. 8
shows the results, where the red bars denote the amount of
population transferred to the ground state as a function of the
DRC and the blue bars denote the time-integrated probability

FIG. 8. Upper panel: Population transferred (red) and time-integrated
wavepacket probability density (blue) along the diffusion reaction coordinate
of the S1 state of ethylene. Lower panel: Average slope of conical intersec-
tions closest to the spawning points (green, left axis) and effective population
decay rate (red, right axis). Although the pyramidalized/hydrogen geome-
tries are higher in energy than ethylidene (with the electronic structure ansatz
used in this work), they nevertheless serve to promote nonadiabatic transi-
tions more effectively.

FIG. 9. Relationship between the rate of population transfer induced by
nonadiabatic transitions and the slope of the nearest conical intersection (ob-
tained from the data in Fig. 8) in ethylene. Error bars indicate the width of
the distribution of slope parameters for intersections corresponding to the
data point.

of finding the nuclei in a geometry corresponding to a partic-
ular value of the DRC.

We then calculated the average slope of conical intersec-
tions as a function of the DRC by calculating the magnitude
of the overall slope vector S (Eq. (1)) for each spawning ge-
ometry. The average of this distribution for each value of the
DRC is shown as the green line in the lower panel of Fig. 8,
showing that intersections in the twisted/pyramidalized region
of the DRC tend to be quite peaked (small overall slope) and
those in the ethylidene region of the DRC tend to be strongly
sloped. This panel also shows the nonadiabatic transition rate
(cf. Eq. (9)) as a red line, demonstrating that nonadiabatic
transitions are far more efficient in the region of the DRC
corresponding to twisted/pyramidalized geometries, as com-
pared to the ethylidene geometries. From this data, it is easy
to extract the rate of nonadiabatic transitions as a function of
conical intersection slope. This is shown by plotting the de-
cay rate as a function of the intersection slope in Fig. 9. The
error bars along the x axis correspond to the width of the dis-
tribution of intersection slopes for each value of the DRC.
Of course, there is only limited data and this is for a spe-
cific example, but Fig. 9 does show that highly sloped inter-
sections tend to lead to less efficient nonadiabatic transitions,
while the most efficient nonadiabatic transitions occur around
peaked intersections. Although there is no clear one-to-one re-
lationship between intersection slope and nonadiabatic transi-
tion rate (and neither is this to be expected since the momen-
tum of the nuclei should also play a role), the maximal val-
ues along the plot suggest a limiting relationship, supporting
previous suggestions40–42 about the importance of intersection
topography.

B. Photoactive yellow protein chromophore

As a second example, showing that diffusion mapping
also successfully recovers low-dimensional manifolds of the
dynamics of larger systems, we turn to the case of photoi-
somerization in the chromophore of photoactive yellow pro-
tein (PYP). We choose a model chromophore here, anionic
p-coumaric acid (pCK-), shown in Fig. 10. We have pre-
viously discussed the photodynamics of this chromophore
in isolation and in condensed phase environments.10, 38, 55
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FIG. 10. The p-coumaric acid anion, a model for the chromophore of pho-
toactive yellow protein (PYP), denoted as pCK- in the text. After photoex-
citation, there are two possible photoisomerization pathways – torsion about
the phenyl-adjacent single bond (φS) or the side chain double bond (φD),
which are indicated in the figure.

Upon photoabsorption in the protein environment, the PYP
chromophore undergoes trans-cis isomerization, initiating the
negative photoaxis pathway of Halorhodospira halophile.56

Various experimental57, 58 and theoretical55, 59–64 studies have
shown rotation of the ethylenic double bond (D) and the
phenyl-adjacent single bond (S) are the principal reaction co-
ordinates and these can compete with each other.

Here, we simulate the excited state dynamics of isolated
pCK- with 16 initial AIMS trajectories. Electronic structure
calculations were at the SA2-CAS(8/6) level of theory with
the 6-31G* basis set. In contrast to ethylene, the larger size
and longer excited state lifetime of pCK- limits the amount of
dynamical data available. Even with a relatively small dataset,
however, the diffusion mapping recovers a one-dimensional
representation of the reaction path that agrees with the quali-
tative picture of the reaction proceeding through torsion about
either the S or D bond (these torsions are indicated in Fig. 10).
In contrast to ethylene, where the excited state reaction dy-
namics largely follows a sequential path from the Franck-
Condon region to twisted/pyramidalized and finally ethyli-
dene geometries, two potential outcomes compete in the pho-
todynamics of pCK-. Specifically, the molecule starts in the
Franck-Condon region, and then may isomerize about either
the S or the D bond. As shown in Fig. 11, the dynamical re-
action coordinate revealed by diffusion mapping captures this
behavior nicely. Negative values of the DRC correspond to
torsion about the D bond, and positive values correspond to
torsion about the S bond. Geometries at the extremes (both
positive and negative) of the DRC involve some degree of tor-

FIG. 11. Plot of the two relevant torsion angles along the DRC for the model
PYP chromophore. The diffusion map correctly identifies these as the two
most important coordinates in the photodynamics of the chromophore, as
shown by the fact that the DRC is dominated by the φS torsion angle for
the right half of the plot (from 0 to 9 Å) and by the φD torsion angle for the
left half of the plot (from 0 to −7.5 Å).

FIG. 12. Time evolution of the TBFs along the DRC of the model PYP
chromophore. The majority undergo torsion about the phenyl-adjacent sin-
gle bond (denoted by positive values of the DRC). Points where new TBFs
are spawned are indicated by diamonds, and comparison with Fig. 11 shows
that these correspond to a φD torsion angle around 90◦.

sion about both bonds. Of course, a more complete picture
would be obtained by including the second eigenvector of the
diffusion operator to build a two-dimensional reduced space
picture of the excited state dynamics.

As shown in Fig. 12, most of the TBFs undergo torsion
around the S bond after photoexcitation and continue to os-
cillate about φS = 90◦ (DRC = 5 Å) for at least 1 ps. How-
ever, no spawning events occur in this region of the reaction
path. Instead, spawning events occur only in regions where
the molecule is twisted about the D bond. This can occur in
two ways; either by immediate twisting about the D bond or
by torsion about the S bond followed by torsion about the D
bond (so that both bonds are twisted in a “hula-twist” like
motion).65

IV. CONCLUSIONS

Our results strongly suggest that diffusion maps provide
a useful low-dimensional description of ultrafast nonadiabatic
dynamics on excited state manifolds, as demonstrated in the
two reactions studied. For the ππ* excited state dynamics
of ethylene, the reduced dimensional model produced a one-
coordinate representation that agreed with previous dynami-
cal studies. The dynamical reaction coordinate derived from
the diffusion map has a natural interpretation of a highly
nonlinear interpolation between torsional rotation, pyrami-
dalization, and hydrogen migration coordinates, without any
a priori choice of coordinate parameterization. This nonlin-
earity along an unusual set of coordinates underlines the need
for nonlinear analyses of such processes, as linear methods
such as PCA will only yield useful results if a “good” set of
reaction coordinates is known in advance.

We find an inverse correlation between overall CI slope
and the rate of population transfer, as has been suggested in
previous work. The peaked (unsloped) CI transfers popula-
tion more efficiently, despite being higher in energy than the
sloped CI. While suggestive of an overall trend, our results
also show a need to disentangle aspects of dynamics on the
overall PES from those specifically related to the CI topog-
raphy, so as to further elucidate the detailed relationship be-
tween CI topography and nonadiabatic transition rates.
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Diffusion map analysis also identified a one-dimensional
manifold in the excited state dynamics of anionic p-coumaric
acid, a model system for the chromophore of photoactive yel-
low protein. The dynamical reaction coordinate picks out both
of the two competing torsional relaxations via the ethylenic
double bond (D) and the phenyl-adjacent single bond (S), and
thus allowed the classification of trajectories into two cate-
gories based on which torsional relaxation pathway was cho-
sen. The data furthermore showed a clear trend of triggering
spawning events only when there is significant torsion about
the D bond.

The approach in this work can be generalized in a number
of different ways. The distance metrics presented here were
based only on the 3N-dimensional molecular conformation
and were restricted to a single electronic surface. A distance
metric based on 6N-dimensional phase space would be use-
ful in further disentangling the dynamical and static aspects
of population transfer near conical intersections. Addition-
ally, an extended distance metric that included both nuclear
configurations and electronic information – for instance, al-
lowing nonadiabatic mixing to bring trajectories on different
electronic states close to one another – could provide a picture
of dynamical time-evolution across multiple electronic states.
The NLDR techniques presented here can also be straight-
forwardly applied to other semi-classical models of chem-
ical dynamics, such as surface hopping66 and wavepacket
dynamics,67 and a diffusion map of a dynamical quantum sys-
tem could easily be constructed on a collection of points sam-
pled from the probability density corresponding to the nuclear
wavefunction.

We have demonstrated that nonlinear dimensionality re-
duction techniques such as diffusion maps are powerful new
statistical tools for analyzing dynamics simulation data. Dy-
namically relevant reaction coordinates can be deduced au-
tomatically without the need for a priori specification of in-
teresting coordinates. Furthermore, these reaction coordinates
have illuminated qualitative features of the dynamics them-
selves, such as the nature and location of spawning points
in ab initio multiple spawning simulations, the branching ra-
tios of different reaction channels, and the dependence of
nonadiabatic transitions on the slope of CIs. The dynami-
cal reaction coordinates remain well defined even far from
equilibrium, and thus afford a new and valuable tool for
understanding ultrafast processes on electronically excited
states.

Although we have restricted our use of diffusion maps
to analysis of data from dynamics carried out in full dimen-
sionality, one can also imagine using the resulting diffusion
map to construct a reduced dimensionality model that might
be used in its own right. For example, an explicit reduced di-
mensionality model could provide a means of reaching longer
time scales (as has been explored for ground state reactions27)
or calculating the wavepacket evolution with more nearly
numerically exact quantum dynamics methods.68 This is an
avenue which might be profitable in future work, but the
nonequilibrium character of excited state reactions may in-
troduce difficulties in determining how to treat the degrees of
freedom outside the set of coordinates selected by the diffu-
sion map.
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