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Vojtěch Vlček,1,a) Roi Baer,2,b) and Daniel Neuhauser3,c)

AFFILIATIONS
1Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
2Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
3Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA

a)Electronic mail: vlcek@ucsb.edu
b)Electronic mail: roi.baer@huji.ac.il
c)Electronic mail: dxn@ucla.edu

ABSTRACT
We develop a stochastic approach to time-dependent density functional theory with optimally tuned range-separated hybrids containing non-
local exchange, for calculating optical spectra. The attractive electron-hole interaction, which leads to the formation of excitons, is included
through a time-dependent linear-response technique with a nonlocal exchange interaction which is computed very efficiently through a
stochastic scheme. The method is inexpensive and scales quadratically with the number of electrons, at almost the same (low) cost of
time dependent Kohn-Sham with local functionals. Our results are in excellent agreement with experimental data, and the efficiency of the
approach is demonstrated on large finite phosphorene sheets containing up to 1958 valence electrons.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093707

I. INTRODUCTION

The understanding of optical excitations in materials is essen-
tial for developing novel optical and electronic devices.1,2 However,
it is very challenging to calculate optical properties in extended sys-
tems. For small molecules, highly correlated approaches are used,
including configuration interaction or the equation of motion cou-
pled cluster approach.3,4 Further, the optical response is typically
described by the Bethe-Salpeter equation (BSE).1,5 These high level
techniques are predictive but scale steeply with the number of elec-
trons so they can only be used for relatively small molecules and unit
cells.

An alternative to costly many-body techniques is time-
dependent density functional theory (TDDFT)6 that describes
excited state energies, geometries, and other properties of small
molecules with a relatively moderate computational cost. In prin-
ciple, TDDFT is exact, but in practice, approximations have to
be introduced. The most common is the adiabatic time-dependent

Kohn-Sham (TDKS) theory. While TDKS has been applied suc-
cessfully to a wide range of molecular systems,1,2 it suffers from
many failures, particularly for extended systems, charge-transfer
excited states,7 multiple excitations,8 and avoided crossings.9 The
most notable problem of TDKS is the inability to capture low-lying
excitonic states in bulk.1,5

It has been argued that a TDDFT formulation beyond the
Kohn-Sham (KS) picture, namely, a TD-GKS (Generalized Kohn-
Sham) approach10 which employs a nonlocal exchange interac-
tion,11–13 captures the necessary physics to describe excitation in
extended systems14–16 and molecules,17–19 and accurately predicts
the formation of bound excitons. However, the inclusion of the
nonlocal exchange in the TDDFT calculations makes them com-
putationally demanding and out of reach for large nanoscale sys-
tems. Recently a family of stochastic orbital methods has been devel-
oped to describe ground and excited states with the goal of low-
ering the computational complexity at the cost of introducing a
controllable statistical error.20–25 Specifically relevant to the current
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work is a stochastic ground state range-separated hybrid (RSH) DFT
method23 and a stochastic method for the Bethe-Salpeter equation
(BSE).24

Our first and main aim in this work is to overcome, using
stochastic methods, the computational bottleneck in TDDFT with
nonlocal exchange. Specifically, we develop a real-time general-
ized Kohn-Sham method based on a range-separated hybrid (RSH)
with a long-range exact exchange operator. The approach has sim-
ilarities to that proposed for stochastic BSE (where a damped
exchange operator was used), but the starting point is different.
Here, the starting point is long-range-corrected RSH-DFT, a method
which is known to produce excellent charge-transfer states.26 There-
fore, the present long-range exchange TDDFT starts only from a
long-range corrected DFT calculation (which is also implemented
stochastically), so the resulting approach is self-contained in the
DFT/TDDFT framework and does not resort to a separate compu-
tation of individual quasiparticle states; this is in contrast to a BSE
work where the starting point is a prior calculation of the quasi-
particle states which is achievable, e.g., through the stochastic GW
method.21,25,27

The second aim of the paper is then to use the resulting
fully ab initio stochastic TDDFT method for describing optical
excitations in extremely large systems with thousands of elec-
trons. To validate our method, we investigate the optical prop-
erties of phosphorene due to its distinctive properties: it exhibits
very strong excitonic signatures and its optical spectra are strongly
anisotropic.28–33

Below, we first (Sec. II) review the basic theory and present our
stochastic implementation. In Sec. III, we verify our method by com-
paring with experiment for PH3 and the method is then applied to
study 2D phosphorene sheets of increasing sizes. Conclusions follow
in Sec. IV.

II. THEORY
It is well-known that absorption can be determined, in lin-

ear response, from the time-evolution of an induced dipole density
(see the Appendix). This time evolution is in principle gov-
erned by the time-dependent Schrödinger equation, which is, how-
ever, intractable beyond few-electron systems. DFT34 is a practical
approach for recasting the many-electron system as a set of vir-
tual particles interacting via a mean-field exchange-correlation (XC)
potential.

The original formulation of the Kohn-Sham (KS)35 DFT
scheme describes the xc interactions by a local potential which is,
in principle, nonlocal in time. In practice, it is further approx-
imated, e.g., by (semi)local functionals of the electronic density
at a given time (i.e., the functional is adiabatic). As mentioned
in the Introduction, this formulation has some notable failures,
e.g., missing excitonic effects. An alternative route, which we pur-
sue here, is to employ a GKS scheme10,11,36 with nonlocal long-
range asymptotic behavior as required for correct description of
charge transfer and polarizability37 and for electron-hole bound
states.12,14–16

We first review below the formulation of DFT and TDDFT
with long-range nonlocal exchange, and then detail the stochastic
implementation.

A. DFT with long-range nonlocal exchange
The GKS Hamiltonian reads

H[n, ρ] ≡ h0 + vH[n(r)] + vγC[n(r)] + Xγ[ρ(r, r′)], (1)

where h0 contains the kinetic energy and the electron-nuclear attrac-
tion. The density-density repulsion is given by the Hartree potential
vH , and vγC (where γ is defined shortly) is a (semi)local correlation
density functional—we use here a local functional form.38 The non-
local exchange interaction Xγ is a functional of the density-matrix
ρ(r, r′), where the density is of course n(r) = ρ(r, r). (Note that we use
different symbols, n and ρ, for the density and density matrix since
later we calculate the two separately—one deterministically and the
other stochastically.)

The form of Xγ derives from a screened Coulomb interaction
governed by a single parameter γ.12,36,39 Specifically, the Coulomb
kernel is partitioned as

1
r
= erfc(γr)

r
+

erf(γr)
r

, (2)

where γ is the range separation parameter. The first term dominates
at small distances (r → 0) and its contribution to the exchange is
approximated by a local density functional.38–40 The second term
in Eq. (2) is active at large distances and gives the nonlocal Fock
exchange (Xγnl). The matrix element of the exchange vector is a direct
product of the density matrix and the nonlocal Coulomb interac-
tion (the simple product form is important later in the stochastic
formulation)

Xγnl(r, r
′) ≡ −ν(r, r′)ρ(r, r′). (3)

Here, the long-range interaction is ν(r, r′) = erf(γ∣r − r′∣)/∣r − r′∣,
and the density matrix is determined from the eigenstates ρ(r, r′)
= ∑if i�i(r)�i(r′), where i is a state and spin index and f i are the
occupation factors, while the density is n(r) = ρ(r, r) = ∑if i|�i(r)|2

(In the following, we do not denote spin explicitly). Thus, determin-
istically, the nonlocal exchange term acts on a general function ψ as

⟨r∣Xγnl∣ψ⟩ = −∑
i
fiφi(r)∫ ν(r, r′)φi(r′)ψ(r′)dr′. (4)

In the first (DFT) stage, the occupied eigenstates �i(r) of
Eq. (1) are calculated self-consistently, ensuring H�i = εi�i, where
the density and density matrix are functions of the eigenstates.
The value of γ is found by enforcing the IP theorem that requires
that the HOMO energy equals the ionization energy. This opti-
mal tuning leads to good IPs and fundamental band gaps in finite
systems.41–43

The method’s success stems from the combination of
(semi)local functionals that capture correlation effects well at short
distances with the nonlocal Xγnl that guarantees for finite systems
the asymptotically correct 1/r behavior of the exchange potential
which is crucial for proper inclusion of the attractive electron-hole
interaction.1,37

B. TDDFT with long-range nonlocal exchange
It is well-known (the Appendix) that the absorption spec-

trum is obtained from a linear-response propagation of the density.
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Specifically, for polarized excitation along a unit vector ê, we apply
a small perturbation δν(r, t) = (r ⋅ ê)δ(t)∆ where ∆ is a small
constant (typically between 10−3 and 10−5 a.u.). Then, the system
evolves under the time-dependent GKS equation (using h̵ = 1)

i∣φ̇i(t)⟩ = [H[n(t), ρ(t)] + δν(r, t)]∣φi(t)⟩. (5)

To simplify the notation, we usually do not denote the dependence of
the density and density matrix (and therefore of the time-dependent
Hamiltonian) on the excitation strength ∆.

The Hamiltonian H(t) is time dependent as it explicitly
depends on the propagated eigenstates φi(r, t), the time-dependent
charge density n(r, t) = ∑i fi∣φ(r′, t)∣2, and the charge density
matrix, ρ(r, r′, t) = ∑i fiφ(r, t)φ∗i (r′, t). The dipole moment along
the excitation direction is then calculated from the density, µ(t)
= ∫ (r ⋅ ê)n(r, t)dr, and the absorption spectrum is calculated by
Fourier transforming the dipole moment µ(t) (the Appendix).

In principle, the exchange-correlation term in the Hamiltonian
should account for memory effects, but since its form is unknown,
we resort to the adiabatic approximation and construct the xc terms
directly from n(r, t) and ρ(r, r′, t). Thus, the difference from Kohn-
Sham type adiabatic TDDFT is only in the exchange kernel.

The application of the nonlocal exchange as presented in Eq. (3)
is computationally demanding, due to the integral over the density
matrix. Practical calculations are therefore limited to systems with a
low number of states.

C. Stochastic DFT with nonlocal exchange
Next, we review our implementation23 of the DFT equations

with a stochastic representation of the nonlocal exchange opera-
tor. This is followed by the implementation of stochastic TDDFT
in Sec. II D.

The first step is the DFT ground-state calculation, where we
use the stochastic-exchange approach of Ref. 23. This grid-based
method is done by two key parts. The first is the representation of
the density matrix as an average over stochastic correlation func-
tions. Specifically, we construct stochastic states {η}, each of which
is a linear combination of all the occupied eigenstates {φi} (cf. Refs.
20, 22, 24, 44, and 45)

η(r) = ∑
i

√
fiφi(r)⟨φi∣η̄⟩, (6)

where η̄ is a completely random real vector, e.g., η̄(r) = ±(dV)−1/2,
and dV is the grid volume-element. It is straightforward to show
that as an operator, the density matrix becomes an average over the
separable terms

ρ = {∣η⟩⟨η∣}η̄, (7)

i.e., ρ(r, r′) = {η(r)η(r′)}η̄, where {⋯}η̄ denotes a statistical average
over all random states η̄. Since the average of |η⟩⟨η| yields the density
matrix, we can view η(r) as a stochastic density amplitude.

In the ground-state DFT stage, we supplement the stochastic
representation of the density matrix by a similar stochastic decom-
position of the long-range Coulomb interaction [Eq. (7)] using
stochastic states ζ

erf(γ∣r − r′∣)
∣r − r′∣ = {ζ(r)ζ(r′)}θ̄ (8)

that are evaluated as

ζ(r) = 1
V

1
2
∑
k

′√
ν(γ,k)ei(θ̄(k)+k⋅r), (9)

where θ̄(k) is a random phase, and we impose θ̄(−k) = −θ̄(k) to
ensure that ζ(r) are real. Also, V is the total volume. The prime in
the summation indicates that the k = 0 term is excluded and is later
added analytically. The γ-dependent long-range Coulomb interac-

tion in momentum space is ν(γ,k) = 4πe−
∣k∣2γ2

4 /∣k∣2. Note that the
average in Eq. (8) is over the random phases θ̄(k) which determine
the stochastic function ζ(r).

The stochastic decompositions of the density matrix and of the
Coulomb potential are then combined to give

⟨r∣Xγnl∣φ⟩ = −{ξ(r)⟨ξ∣φ⟩}η̄θ ≃ −
1
Nξ

Nξ
∑
j=1
ξj(r)⟨ξj∣φ⟩, (10)

where the combined exchange-operator stochastic amplitude is sim-
ply ξ(r) = η(r)ζ(r). The average is done now over Nξ random states;
each sampling (labeled by j) of random ξ(r) amounts to a simul-
taneously choosing (independently) both the phases θ(k) and the
random vector η̄(r), so ξj(r) = ηj(r)ζj(r).

Equation (10) is formally exact if the number of states Nξ →∞.
For any finite number Nξ there is a statistical error proportional to
1/

√
Nξ, but since the long-range exchange vector is not numeri-

cally large, this error is small even when Nξ is only a few hundreds.
Further details, such as the supplementary use of a deterministic
HOMO/LUMO when extracting γ, are given in Ref. 23.

Note that in this present approach, the only operator which is
stochastically sampled is the long-range exchange. The density is still
sampled deterministically from the eigenstates, n(r) = ∑i fi∣φi(r)∣2,
and the DFT cost is similar to that of traditional deterministic DFT
for semilocal functionals. In practice, one can use any usual DFT
algorithm to iteratively solve H�i = εi�i for the occupied states, with
H constructed from n(r) and from Xγnl in Eq. (10).

The statistical errors in this mixed approach, where only the
exchange is sampled stochastically, are much smaller than in our
fully stochastic DFT approach20,46 where the stochastic orbitals η(r)
were also used to sample the local density (i.e., where we use
n(r) = {∣η(r)∣2}, or more generally n(r) = n0(r)+{∣η(r)∣2}, where
n0(r) is a fragment density). In the fully stochastic approach, the
eigenstates do not need to be determined20,44,45 so it formally scales
linearly with system size; here, the scaling goal is more modest, just
to reduce the cost to that of traditional DFT (and later TDDFT) with
only local and semilocal potentials.

D. Stochastic TDDFT with nonlocal exchange
Following the DFT stage with stochastic exchange, we turn to

the implementation of stochastic-exchange in TDDFT. Due to the
evolution in time, the eigenstates acquire a complex phase and it
is thus not possible to employ Eq. (6) which used real stochastic
vectors. Instead, complex stochastic vectors are used. Specifically, at
each time-step, we represent the density matrix as an average over
stochastic vectors, where each one is constructed from the occupied
eigenstates

β(r, t) = ∑
j
eiαj(t)

√
fjφj(r, t), (11)
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where αi(t) ∈ [0, 2π] is a random phase. Thus, each β is a stochas-
tic vector created using a distinct set of random phases {αi}, and a
different set of random phases is taken as each time step. Obviously,
{β(r, t)β∗(r′, t)} = ρ(r, r′, t).

Note that the η and β vectors have a similar meaning; the for-
mer is used for the initial time-independent stage and the latter for
TDDFT. We use a different symbol to emphasize that the number of
such stochastic vectors is different in DFT and TDDFT. Specifically,
since each time-step is small, the effect of the stochastic exchange
per time step is numerically small, so that it is sufficient to use only a
small number (Nβ) of vectors in each time step. For that reason, we
have not done a stochastic resolution of the Coulomb kernel for the
time-dependent exchange, which is formally calculated now as

⟨r∣Xγnl(t)∣φ⟩ = −
1
Nβ

Nβ

∑
l=1
βl(r, t)∫ v(r−r′)βl∗(r′, t)φ(r′)dr′. (12)

Thus, the cost of evaluating Eq. (12) is onlyNβ-times more expensive
than evaluating the Hartree term.

Since Eq. (12) is evaluated stochastically, H(t) exhibits fluctua-
tions even when there is no perturbation. For a linear response in ∆,
we therefore need to propagate two equations, with and without the
perturbation,

i∣φ̇∆
i (t)⟩ = [H∆(t) + δv(r, t)]∣φ∆

i (t)⟩, (13)

i∣φ̇∆=0
i (t)⟩ = H∆=0(t)∣φ∆=0

i (t)⟩, (14)

where φ∆
i (r, t = 0) = φ∆=0

i (r, t = 0) = φi(r). H∆ ≡ H[n∆(t), ρ∆(t)]
and H∆=0 ≡ H∆ ≡ H[n∆=0(t), ρ∆=0(t)] have the same functional
dependence on the density matrix, but since the time-dependent
solutions of Eqs. (13) and (14) are different, we distinguish the
Hamiltonians by superscripts. The time evolution of {φ∆=0

i } stems
purely from the stochastic fluctuations in H∆=0(t), as no external
perturbing potential is applied. This fluctuation also induces time-
dependence in the charge density n∆=0(r, t), which needs to be
subtracted when calculating the induced dipole

µ(t) = 1
∆ ∫ (r ⋅ ê)[n∆(r, t) − n∆=0(r, t)]dr, (15)

from which the frequency-dependent absorption follows.

E. Numerical propagation of TDDFT
with stochastic exchange

We use a split operator approach for the numerical propaga-
tion of the TDDFT equation with stochastic exchange. As usual, the
perturbation is first applied at t = 0 (and we again omit below the ∆
superscript)

φi(r, t = 0+) = e−i(r⋅ê)∆φi(r), (16)

and we then split the propagation of the nonlocal exchange and the
remainder of the Hamiltonian

∣φi(t + dt)⟩ = e−iX
γ
nl

dt
2 e−i(h0+vH[n(t)]+vγC[n(t)])dte−iX

γ
nl

dt
2 ∣φi(t)⟩. (17)

The short time kinetic+potential propagator [the non-Xγnl part in
Eq. (17)] is itself calculated with a usual split operator evolution

which will not be reviewed here, while e−iX
γ
nl

dt
2 is evaluated extremely

simply as

e−iX
γ
nl

dt
2 ∣φ⟩ ≃ Nφ(1 − iXγnl

dt
2
)∣φ⟩, (18)

where N� is a time-dependent normalization constant, i.e.,
N−1
φ = ∣∣(1 − iXγnl

dt
2 )∣φ⟩∣∣. Since the normalization is dependent on

the initial vector, Eq. (18) is slightly nonlinear, but this is of little
practical consequence. The primitive approach of Eq. (18) is suffi-
cient since the time-steps used are generally small, typically dt = 0.05
a.u., i.e., around 1 as.

III. RESULTS
For all systems studied here, we first perform a ground-state

DFT calculation and obtain the range-separation parameter γ by
enforcing the piecewise linearity condition for the total energy; this
ensures that the HOMO is the same as the ionization energy.

A. Validation of the method using PH3

The smallest system studied is a PH3 molecule. Here, a deter-
ministic DFT calculation was performed using experimental molec-
ular structure,47 and the valence electronic states were computed
with Troullier-Martins pseudopotentials.48 Note that stochastic
sampling was not used for the ground state calculation, but it was
applied for TDDFT as detailed below. The total energy and the
eigenvalues were converged to 5 meV with a real space grid of 64
× 64 × 64 points and a 0.4 a0 grid spacing. Note that small molec-
ular systems require, in general, a large range separation parame-
ter and converge slower with the grid size and spacing compared
to large systems. Through the tuning procedure,23,41,43 we found
that γ = 0.37 a−1

0 ; the resulting ionization potential (i.e., the nega-
tive of the HOMO energy) is 10.4 eV, in excellent agreement with
experiment (10.6 eV—Ref. 49).

The LUMO (obtained with the same range separation parame-
ter) is barely bound, by slightly less than 0.1 eV, but experimentally
PH3 does not form a stable anion so the LUMO energy should be
non-negative.

Using the optimally tuned BNL functional, the optical cross-
section σ(ω) was obtained [see Eq. (A6)] by deterministic and
stochastic real time propagations, and the results are shown in Fig. 1.
The TDDFT equations were propagated for a total time of 24 fs,
which provides a spectral resolution of ∼170 meV. The computed
absorption crosssection has a first peak at E1 = 7.1 eV, in excellent
agreement with the first experimental peak at 7.0 eV.

The exciton binding energy is defined as

Eb = Eg − E1, (19)

where Eg is the fundamental band gap taken as the difference
between HOMO and LUMO energies, i.e., Eg = 10.3 eV. The pre-
dicted PH3 binding energy is, thus, Eb = 3.2 eV, close to the
experimental value of 3.4 eV.50

The overall absorption maximum is at 11.5 eV, which is in good
agreement with experiment (12.0 eV), though the latter exhibits
large peak widths. At higher frequencies, the TDDFT spectrum
has multiple local maxima (e.g., at 16.5 and 20.4 eV) that in the
experiment only appear as shoulders. This is because experimental
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FIG. 1. Top: Optical absorption of a PH3 molecule from stochastic and determin-
istic TDDFT simulations (full and dashed lines, respectively). The experimental
spectrum51 is shown by a blue shaded area. Bottom: An initial segment of the time
propagation showing the evolution of the induced dipole µ(t).

measurements cannot be resolved at energies higher than the ion-
ization threshold (10.4 eV).

The stochastic decomposition of the time-dependent exchange
[sTDDFT—Eq. (12)] reproduces the deterministic results already
for Nβ = 2 (note that this is half the number used in determinis-
tic exchange, which involves four valence states). We also checked
that the spectrum does not change when the perturbation is varied
in the range ∆ = 10−4–10−3 a.u., as expected in linear response; this
was also checked for the phosphorene sheets, which will be discussed
next.

B. Phosphorene sheets: DFT
The major advantage of stochastic approaches is their applica-

bility to large systems. We demonstrate this feature now on a set
of 2D phosphorene sheets of increasing sizes, derived from a black
phosphorus crystal structure.52 The sheets were passivated with H
atoms on the rims; each P atom that would have been bound to
two H atoms was removed, resulting in a compact sheet geometry.
Note that the two in-plane directions in the phosphorene sheet are
traditionally labeled as armchair and zig-zag. With a kinetic energy
cutoff of 26 Eh and a real space grid with 208 × 136 × 40 points
and a 0.6 a0 spacing, the Kohn-Sham eigenvalues were converged
to 10 meV.

The smallest sheet is 0.6 × 0.8 nm2 and has 112 valence elec-
trons. For its ground state DFT calculations, we employed both the
deterministic and stochastic formulation of the exchange operator
Xγnl. The optimally tuned range-separation parameter for this sheet
is γ = 0.10 a−1

0 , and the stochastic eigenvalues converge slowly with
the number of stochastic states, so Nξ ∼ 1600 is required to yield a
statistical error of <0.05 eV.

In addition to the small sheet, we considered two larger sheets,
1.3 × 2.1 nm and 3.1 × 4.3 nm (labeled “medium” and “big”), with
478 and 1958 valence electrons, respectively. For these larger sheets,
the exchange operator was calculated purely stochastically as the

deterministic calculation would have been very expensive. The range
separation parameter gradually decreases with system size as in other
1D and 3D systems,41,53,54 so γ = 0.09a−1

0 in the medium-size sheet
and 0.05a−1

0 in the largest one. As the range separation parameter
decreases with system size, the long-range exchange operator Xγnl is
numerically smaller and its stochastic representation has therefore
a small absolute statistical error. Hence, the largest system requires
a smaller value of Nξ in the ground state calculations. Namely, the
eigenvalues are converged to <50 meV with Nξ = 1600 stochastic
states for the medium-size sheet and only Nξ = 400 for the largest
one.

The stochastic-exchange DFT yields fundamental gaps Eg that
decrease with system size: Eg = 3.9, 3.1, and 1.7 eV for the three
sheets respectively. The large-sheet result is very similar to the HSE
hybrid functional prediction of 1.5 eV.55 Comparing to with pre-
vious periodic G0W0 calculations (with a starting point based on
a semilocal density functional), we find that the largest sheet is in
rough but not perfect agreement with the 2D periodic G0W0 funda-
mental gap of 2.08 eV.33,56 The difference from the GW result could
be due to the scalar (i.e., nondirectional) nature of the range sepa-
rated parameter, which ignores the difference between the effective
interactions in the in- and out-of plane directions, and perhaps also
due to the approximate nature of the G0W0 itself.

C. Phosphorene sheets: TDDFT results
We next discuss the stability of TDDFT simulations for the

sheets and the resulting optical spectra. Since the wavefunction
is only incremented gradually, by dt/2 = 0.025 a.u., the statisti-
cal fluctuation introduced by each stochastic decomposition of the
exchange operator is significantly smaller than for the ground state
calculation. Hence, as mentioned, a small Nβ is sufficient for the
time-dependent calculation, so the short-time results are fairly accu-
rate already for Nβ = 1–4. However, Nβ influences the total time of
the simulations since due to statistical fluctuations the propagation
eventually becomes unstable. We verified that this instability is not
influenced by the time step, grid size, and kinetic-energy cut-off.

We noticed the instability phenomena already in our orig-
inal stochastic TDDFT approach22 where, unlike here, we prop-
agated only a few stochastic combination of eigenstates [i.e.,
several β(r, t)], and constructed from them the density as
n(r, t) ≃ N−1

β ∑β ∣β(r, t)∣2. That approach is extremely efficient
for short time simulations (where the plasmon response of systems
with thousands of electrons is accurately modeled by circa 10 prop-
agated states), but is limited to short times since the propagation
eventually becomes unstable. Here, since all occupied eigenstates
are propagated and the density is constructed from all of them, the
propagation is fairly stable for longer times.

Specifically, for the small and medium sheets, with 112 and
478 valence electrons, the propagation was carried up to 1000 a.u.
(∼24 fs) without stability issues, using Nβ = 2. This is in line with
our previous simulations (Ref. 24) which used a damped exchange
(reduced by 80%) in 3D and were stable with Nβ = 1. However,
for the large sheet (with 1958 electrons), the time evolution became
numerically unstable after 260 a.u. (∼7 fs) even with Nβ = 6. The
instability is for two reasons: first, the rapid oscillations of the den-
sity in the direction perpendicular to the phosphorene sheet. Unlike
3D systems, the response here is highly anisotropic and this appears
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FIG. 2. Induced dipole per electron, µ(t)/Ne, along the armchair direction of
phosphorene, plotted for three phosphorene sheets with different lateral dimen-
sions. The largest system (black) was propagated only to 210 a.u., after which
the stochastic fluctuations dominate the signal. The periods of the induced dipole
oscillations grow with system size. A logarithmic time axis is used; the oscillations
are mostly nonstochastic and due to the logarithmic axis.

to enhance the stochastic noise in the time propagation. Hence, for
large 2D sheets the value of Nβ needs to be increased. Further, the
form of Eq. (12) is oscillatory even for ∆ = 0; in future publications,
we would use a less oscillatory form analogous to that in Ref. 24
and, in addition, would use a fully separable form of the TDDFT
calculations, analogous to Eq. (10) for DFT with exchange.

Next, we turn to discuss the individual results. The time evo-
lution of the induced dipole for the three phosphorene sheets is
shown in Fig. 2. The absorption cross sections per-electron are
shown in Fig. 3 for the zig-zag and armchair directions. The spec-
tra are strongly anisotropic, in agreement with experimental data
and GW/BSE calculations on 2D periodic sheets.28,29,31,33 With ris-
ing system size, there are diminished quantum confinement effects
so the fundamental band gap decreases and the absorption maxi-
mum, therefore, gradually shifts to lower energies. As the number of
valence electrons increases, the spectra also smoothen.

On the right panel of Fig. 3, we zoom on the absorption spec-
trum below the ionization potential (which only slowly decreases

with system size, from 5.9 to 5.4 eV). The absorption cross section
decreases rapidly at lower frequencies, but several local maxima are
evident. Some of these local maxima are below the band gap energy
(Eg) and therefore correspond to bound electron-hole pairs. These
excitonic peaks appear only for the armchair direction (due to the
strong anisotropy of the optical response); this feature was seen in
previous calculations for periodic phosphorene and was also seen
experimentally.28,30,33

Excitonic peaks are usually sharp and have a high intensity,
indicating long-lived quasiparticle states. The maxima in Fig. 3 are,
however, broadened due to the finite simulation time (24 fs for the
two small systems and 7 fs for the largest one). For the small sheet,
the excitonic peaks are well-separated but have relatively low inten-
sity. The position of the first absorption peak maximum (E1) changes
with increasing system size from 1.8 to 1.6 eV. The latter is in good
agreement with the experimental value and GW/BSE estimates, 1.7
and 1.6 eV, respectively,33,56 for a bulk 2D system.

The exciton binding energy [Eq. (19)] decreases rapidly with
system size from 2.1 to 0.1 eV. The strongest excitonic response (the
largest amplitude of the E1 peak) is found in the medium sized sys-
tem, which also has a high exciton binding energy Eb = 1.65 eV.
As mentioned, however, the fundamental gap Eg in the stochastic-
exchange DFT is underestimated relative to G0W0 calculations.
Therefore, the exciton binding energy for the largest sheet (0.1 eV)
is much lower than predicted by GW/BSE calculations, which give
Eb = 0.48 eV.56

Interestingly, when the phosphorene is encapsulated in dielec-
tric media, the GW/BSE binding energy becomes small, 0.14 eV,56

comparable to our TDDFT estimates of pristine (nonencapsulated)
phosphorenes. The encapsulation causes strong screening above
and below the 2D system (i.e., in the out-of-plane direction) lead-
ing to a big change in the G0W0 gap Eg (from 2.08 to 1.62 eV,
similar to our pristine DFT gap), while the position of the first
excitonic peak, E1, remains practically unaffected.56 The differ-
ence between our results and experiment and GW/BSE points to
a problem in describing 2D materials with range-separated poten-
tials, which should, in principle, account for the anisotropy of
the electron-electron interaction between the in- and out-of-plane
directions.

FIG. 3. The left panel shows the theoretical optical spectra of phosphorene sheets of increasing sizes: 0.6 × 0.8 nm2 (112 valence electrons), 1.3 × 2.1 nm2 (478 valence
electrons), and 3.1 × 4.3 nm2 (1958 valence electrons) marked by red, blue, and black lines, respectively, for the zig-zag (top) and armchair (bottom) directions. The right
panel shows details of the low energy portion of the spectra; the yellow and dark-green vertical lines indicate the positions of the fundamental band gap (Eg) and the first
excitonic peak (E1). Experimental data for a bulk 2D monolayer phosphorene (taken from Ref. 33) are shown in the bottom graph by blue points. Features that lie between
E1 and Eg correspond to multiple excitonic states.
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In systems with fairly isotropic electron-electron interaction,
which are well approximated by a scalar range-separation parameter,
we expect DFT to yield good fundamental band gaps and TDDFT
to provide good optical absorption spectra (including excitonic sig-
natures). Hence, for such systems, the exciton binding energies can
be, in principle, predicted. However, for highly anisotropic systems
stochastic TDDFT with isotropic long-range exchange (and there-
fore our stochastic version) can only be trusted for the exciton
frequency, not the binding energy. In this case, calculations of
the exciton binding would require a combination with more accu-
rate methods for the quasiparticle gap, or extended to deal with
nonisotropic exchange interactions.

IV. CONCLUSIONS
In summary, we developed an efficient real-time TDDFT

approach with stochastic long-range nonlocal exchange. The
stochastic treatment decomposes the density matrix in TDDFT to
an average over a product of random vectors β in the space spanned
by the occupied orbitals. It significantly reduces the computational
cost as only a few stochastic states are needed at each time step.
Further, the number of stochastic states varies only a little with
the system size. Calculations for very large systems thus become
feasible.

The resulting TDDFT with long-range nonlocal exchange
includes the attractive electron-hole interaction that gives rise to
exciton formation. Indeed, our TDDFT yields optical spectra that
are in excellent agreement with experiment. For small systems,
where deterministic calculations are affordable, the stochastic and
deterministic results agree.

We demonstrated that our method is applicable for extremely
big systems using a set of phosphorene sheets containing up to
∼2000 valence electrons. The largest system was compared to exper-
iments and previous calculations on infinite phosphorene sheets;
the analysis confirms that the range-separated hybrid functional
successfully predicts optical spectra even with strong excitonic
signatures.
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APPENDIX: PHOTOABSORPTION CROSS SECTION
Here, we overview for completeness the well-known expression

of the photoabsorption cross-section as a Fourier transform of a real-
time dipole correlation function.

The absorption cross section, σ(ω), is given in linear response
as1

σ(ω) = 4π
c
ω∬ δṽ(r,ω)χ̃(r, r′,ω)δṽ(r′,ω) dr dr′, (A1)

where tilde is used occasionally to denote quantities in frequency
domain, δṽ(r,ω) is dynamical external potential, and χ is the elec-
tronic reducible polarizability, which is given in the time domain

as
χ(r, r′, t − t′) = δn(r, t)

δv(r′, t′) , (A2)

where δn(r, t) is the induced charge density at a point r and time t.
The response function is causal, i.e., t > t′. For absorption of polar-
ized light along a unit vector ê, we apply δv as a dipole potential. The
cross section is then1

σ(ω) = 4π
c
ω∬ (ê ⋅ r)χ̃(r, r′,ω) ⋅ (ê ⋅ r′) dr dr′. (A3)

Here, σ is calculated from real-time linear-response. Specifi-
cally, the first stage is to apply a dipole external potential perturba-
tion

δν(r′, t) = (ê ⋅ r′)δ(t)∆, (A4)
where ∆ is the perturbation strength, and an instantaneous perturba-
tion is applied at t = 0, allowing to probe the response at all frequen-
cies. The perturbation potential is applied to all occupied eigenstates,
which are then propagated in time. The resulting oscillations of the
induced charge density [Eq. (A2)] are then used to find the dipole
autocorrelation

µ(t) = 1
∆ ∫ (ê ⋅ r) ⋅ δn(r, t) dr. (A5)

The absorption cross section is finally a Fourier transform of the
dipole auto correlation

σ(ω) = 4πω
c ∫

∞

0
µ(t)eiωt dt. (A6)
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