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m Abstract Obtaining a good atomistic description of diffusion dynamics in ma-
terials has been a daunting task owing to the time-scale limitations of the molecular
dynamics method. We discuss promising new methods, derived from transition state
theory, for accelerating molecular dynamics simulations of these infrequent-event
processes. These methods, hyperdynamics, parallel replica dynamics, temperature-
accelerated dynamics, and on-the-fly kinetic Monte Carlo, can reach simulation times
several orders of magnitude longer than direct molecular dynamics while retaining full
atomistic detail. Most applications so far have involved surface diffusion and growth,
but it is clear that these methods can address a wide range of materials problems.

INTRODUCTION

The pastfew decades have shown a dramatic increase in the use of atomistic simula-
tion as a partner with experiment in addressing problems in materials science. The
most direct of these simulation techniques is the molecular dynamics (MD) method,
in which one chooses an appropriate interatomic potential to describe the forces
between atoms and then integrates the classical equations of motion with suitable
boundary conditions. The increasing power and popularity of this type of simula-
tion arise from the fact that the quality of interatomic potentials has become quite
good for some systems and because computer speeds continue to increase rapidly.
An appealing feature of MD [e.g., compared with Metropolis Monte Carlo (1)
or molecular statics] is that it follows the actual dynamical evolution of the system.
However, the limitation in the accessible simulation time represents a substantial
obstacle in making useful predictions with MD. Resolving individual atomic vi-
brations requires a time step of approximately femtoseconds in the integration of
the equations of motion, so that on today’s fastest processors, reaching even one
microsecond is very difficult. Because this integration is inherently sequential in
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nature, direct parallelization does not help much; it just makes it possible to reach
nanoseconds on much larger systems.

In the past five years, new methods have been developed that look very promis-
ing for circumventing this time scale problem. For systems in which the long-time
dynamical evolution is characterized by a sequence of activated events (i.e., dif-
fusive events), these methods can extend the accessible time scale by orders of
magnitude relative to direct MD, while retaining full atomistic detail. So far these
new methods have been applied primarily to metallic surface diffusion and surface
growth. With a little more development, they will be useful for a much broader
range of materials problems because this activated-event description applies to such
varied processes as vacancy diffusion, pipe diffusion along a dislocation core, dis-
location climb and kink nucleation, impurity clustering, void growth, grain growth,
and surface morphology evolution. With this potential in mind, we present here an
introduction to these methods, discuss their current strengths and limitations, and
predict how their capabilities may develop in the next few years.

The main emphasis in this review is on “accelerated dynamics methods,” a
class including hyperdynamics, parallel replica dynamics, and temperature accel-
erated dynamics. As discussed below, the conceptual link between these meth-
ods is that the system trajectory, caught in its current state, is stimulated to find
an appropriate path for escape more quickly than it would with direct MD. As
in MD, no a priori information about what this escape path might look like is
imposed on the procedure; the trajectory simply finds its own way out of the
state. Although each method accomplishes this acceleration in a different way,
transition state theory provides the theoretical foundation in each case. We also
discuss another promising approach for reaching longer time scales that we term
“on-the-fly kinetic Monte Carlo.” As our focus is on methods that can extend
the MD simulation time in an accurate way for materials problems, we make
no attempt to discuss the large body of related work involving enhanced sam-
pling methods and approximate dynamical approaches (e.g., for macromolecule
systems).

BACKGROUND

Infrequent Event Systems

We begin by defining an infrequent-event system, the type of system we discuss
throughout this article. The dynamical evolution of such a system consists of vi-
brational excursions within a potential basin, punctuated by occasional transitions
between basins; these transition events are infrequent in the sense that the average
time between events is many (perhaps very, very many) vibrational periods. A
simple example of such a system is an adatom on a metal surface at a tempera-
ture that is low relative to the energy barrier for a diffusive jump. We exclusively
consider thermal systems characterized by a temperatuaefixed number of
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Figure 1 Schematic illustration of an infrequent-event system. The trajectory wan-
ders around in the basin over a time scale of many (perhaps a huge number of) vibra-
tional periods. At some point in time, when enough energy has been localized into a
reactive mode, the trajectory passes through a dividing surface, entering another state.
In essence, it “accidentally” exits the state. During this brief period of excitation, it may
recross the dividing surface, but shortly thereafter it settles into the new state (or the
original state if it recrosses), beginning a new session of vibrational wandering, with
no memory of how it arrived in that state. Although it may never again visit this state,
and “sees” only a single dividing surface as it exits, it nonetheless chooses an escape
direction (relative to other possible escape directions) with the correct probability. This
property of any infrequent-event system, that a trajectory will automatically choose
an appropriate escape path with no prior information, is the basic concept exploited in
the accelerated dynamics methods. The key is to coax the trajectory into making this
choice more quickly without corrupting the relative escape probabilities (i.e., the rate
constants for escape to various states).

moving atoms\, and a fixed volum#®; i.e., the canonical ensemble (2). Although

for simplicity we often draw systems in one or two dimensions, as in Figure 1, it

is important to remember that they are actualN-dmensional. Forgetting this
complexity can sometimes lead to errors in our intuition. There may be a large
number of possible paths for escape from any given basin to an adjacent basin.
As a trajectory in this R-dimensional coordinate space passes from one basin
to another, it crosses aN3l)-dimensional “dividing surface” at the ridge top
separating the two basins. Although on average these crossings are infrequent,
successive crossings can sometimes occur within just a vibrational period or two;
these are termed correlated dynamical events. An example would be a double jump
of the adatom on the surface. For this presentation, it is sufficient, but important,
to know that such events can occur—that successive crossings of dividing surfaces
can be correlated in this way. The interested reader is encouraged to consult the
rich literature on this topic (3-9). In most of the methods presented below, we
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assume that these correlated events do not occur (this is the primary assumption
of transition state theory), which is actually a very good approximation for many
solid-state diffusive processes. We define the correlation tigag)(of the system

as the duration of the system memory. A trajectory that has resided in a particular
basin for more than ., has completely forgotten how it got there, in the sense
that when it later escapes from this basin, the probability for escape along a given
path is independent of how it entered the state. The relative probability for escape
to a given adjacent state is proportional to the rate constant for that escape path;
this rate is defined below.

To summarize and restate: An infrequent-event system is one in which the
trajectory resides in a basin for many vibrational periods before finding a way to
escape from the state after a timg, > 7o In €SSeNCE, the trajectory wanders
around until it accidentally crosses a dividing surface. This reactive crossing event
may (or may not) be followed quickly by subsequent crossings, leading to yet
another state or perhaps recrossing back into the initial state. After a ¢ijmbas
passed since the initial crossing, the trajectory will have settled into some state,
and the sequence begins again. The wandering within a basin between these bursts
of excitement may consist of a huge number of vibrational excursions. The key to
the accelerated dynamics methods presented below is recognizing that to obtain
the right sequence of state-to-state transitions, we need not evolve the vibrational
dynamics perfectly, as long as the relative probability of finding each of the possible
escape paths is preserved.

Itis easy to imagine systems that are not in this infrequent-event class. For ex-
ample, if many of the barriers are extremely low, or if the system is at a temperature
that is high relative to the typical barrier, then the correlated crossing events will be
intermingled with the reactive events, violating the infrequent-event assumption.
In the extreme case of this intermingling, even the rate constants themselves are
ill-defined. Another example is a system that makes rapid transitions because it is
driven by a high stress or strain rate. For many solid-state materials systems, how-
ever, the long-time dynamical evolution does fall into this infrequent-event class,
and is thus, in principle, amenable to treatment with the accelerated dynamics
methods described below.

Transition State Theory

Transition state theory (TST) (10-14) is the formalism that underpins all of the
accelerated dynamics methods, directly or indirectly. In the TST approximation,
the classical rate constant for escape from #idtesome adjacent staBais taken

to be the equilibrium flux through the dividing surface betwa@mdB (Figure 2).

If there are no correlated dynamical events, the TST rate is the exact rate constant.
To expand on this equilibrium flux concept, imagine that for a two-state system
we run a long classical trajectory, weakly coupled to a heat bath in some way to
guarantee overall canonical (thermal) behavior. We run the trajectory for so long
that it establishes equilibrium, visiting both states an extremely large number of
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Figure2 Atwo-state systemthatillustrates
the definition of the transition state theory

B rate constant as the outgoing flux through the
dividing surface bounding stafe

times. By examining this trajectory, we could accurately determine the fraction,
Xxa Of the time it spends in staeand the number of crossings, per unit time, of
the dividing surface. The TST rate constant for escape o=, would then be
half of this crossing rate (i.e., counting only those crossings that are exiting state
A) divided by x a.

The real beauty of TST, though, is that because this flux is an equilibrium
property of the system, we can compute the TST rate without ever propagating a
trajectory. The appropriate ensemble average is

kp>l = (|dxe/dt] 8(x1 — Q) a- 1.

Here the angular brackets indicate the ratio of Boltzmann-weighted integrals over
6N-dimensional phase space (configuration spaaed momentum spag®; i.e.,
for some property(r, p),

(P) — [/ P(r.p)exp[-H(r, p)/ke T dr dp ,

[/ exp[-H(r,p)/kgT]drdp
wherekg is the Boltzmann constant. The subscrptin Equation 1 indicates
the configuration space integrals are restricted to the space belonging to state
A (eliminating the need to divide by,), and the dividing surface, for simplicity
here, is ak; = g, involving only the reaction coordinaig (x; € r). If the effective
massm of the reaction coordinate is constant over the dividing surface, Equation
1 reduces to a simpler ensemble average over configuration space only (15),

Kol = /2kgT/m (8(X1 — Q) a- 3.

The essence of this expression, and of TST, is that the Dirac delta function picks
out the probability of the system being at the dividing surface, relative to every-
where it can be in statd. Note that there is no dependence on the nature of
the final stateB. Evaluating Equation 3 to find the TST rate for a given temper-
ature is relatively straightforward using, e.g., Metropolis Monte Carlo (1), once
the dividing surface has been specified (15). At [Bvthe Metropolis walk will
only rarely reach the dividing surface region, so importance sampling techniques
become crucial (16-19).

In a system with correlated events, not every dividing surface crossing corre-
sponds to a reactive event, so that, in general, the TST rate is an upper bound on
the exact rate. [Adjusting the position of the dividing surface to mininkiZg,
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thereby obtaining the best approximation to the true rate, is the basis of variational
TST (20).] If desired, the exact rate can be recovered by running short trajectories
from the dividing surface to compute a dynamical correction factor (9), a concept
that goes back at least to Keck (3) and to Bennett (4, 21) for condensed phases.
For two-state condensed phase systems, Chandler developed an elegant dynamical
corrections formalism (5, 22) that has been extended to many-state systems (7). For
diffusive events in materials at moderate temperatures, these correlated dynamical
events typically do not cause a large change in the rate constants, so TST is often
an excellent approximation. This is a key point; this behavior is markedly different
from that chemical systems (e.g., molecular reactions in solution or the gas phase),
where TST is just a starting point and dynamical corrections often lower the rate
significantly (23, 24).

Whereas in the traditional use of TST, rate constants are computed after the
dividing surface is specified; in the accelerated dynamics methods, we exploit the
TST formalism to design approaches that do not require knowing in advance where
the dividing surfaces will be, or even what product states might exist.

Harmonic Transition State Theory

A common and useful approximation to TST can be applied if we have identi-
fied a saddle point on the potential energy surface for the reaction pathway. We
assume that the potential energy near the basin minimum is well described (out
to displacements sampled thermally) with a second-order energy expansion, i.e.,
that the vibrational modes are harmonic and that the same is true for the modes
perpendicular to the reaction coordinate at the saddle point. Then the TST rate
constant (in this case, the flux through the saddle plane), becomes simply

KTTST = 1y exp(—Ea/kgT), 4.
where
=N min
A
[TV
Vo = W 5.
l—[ psad
i
i

Here E, is the static barrier height, or activation energy (energy difference be-
tween the saddle point and the minimum) (Figure{2)™"} are the normal mode
frequencies at the minimum, afq@;%% are the nonimaginary normal mode fre-
guencies at the saddle (25). This is often referred to as the Vineyard (26) equation,
although equivalent or very similar expressions were derived by others earlier
(27). The analytic integration over the whole phase space thus leaves a very simple
Arrhenius temperature dependence. (Although the exponent depends only on the
static barrier height, there is no assumption that the trajectory passes exactly
through the saddle point.) To the extent that there are no recrossings and the modes
are truly harmonic, this is an exact expression for the rate. This harmonic TST
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expression is employed in the temperature-accelerated dynamics (without need
for the prefactor), and in the on-the-fly kinetic Monte Carlo method. It is inter-
esting to note that the frequency of the imaginary mode (the reaction coordinate)
does not enter, although it would come into play if we considered a high-friction
system (27-29) or quantum effects (27).

Complex Infrequent Event Systems

The motivation for developing accelerated molecular dynamics methods becomes
particularly clear when we try to understand the dynamical evolution of what we
term complex infrequent event systems. In these systems, we simply cannot guess
where the state-to-state evolution might lead. The underlying mechanisms may
be too numerous, too complicated, and/or have an interplay whose consequences
are unpredictable. While in very simple systems we can raise the temperature to
make diffusive transitions occur on an MD-accessible time scale, in more complex
systems this strategy will cause the system to travel down a different path in state
space. Ultimately, this will lead to a completely different kind of system, making it
impossible to address the questions that the simulation was attempting to answer.
Often, even systems that seem very simple can turn out to be in this complex
class. For example, until 1990, we did not know, nor did we expect, that an adatom
on the fcc(100) surface diffused in any way other than by a simple hop mechanism.
The exchange mechanism (30-32), involving the adatom and a substrate atom (see
Figure 3) is now known to be the preferred mechanism for diffusion on fcc(100)
surfaces for many metals (e.g., Al, Pd, Pt, and Au), and the surface science com-
munity has since discovered a large variety of multiple-atom concerted diffusion
mechanisms (33-40). In addition, the interplay of surface diffusion mechanisms
during vapor-deposited growth can lead to surprising effects. For example, both
fcc(100) (41, 42) and fce(111) (43, 44) metals grow smoothly at high temperature,
rougher asT is lowered, and then smooth again as this lowered further, and
these are the simplest low-index surfaces! Many, if not most, materials problems

Figure 3 Adatom exchange mechanism on an fcc(100) surface. This, as
opposed to a jump, is the preferred adatom diffusion mechanism on a number
of fcc metals, demonstrating the complexity of even simple atomistic systems.
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fall into this complex infrequent-event system category. We may want to know
what happens on the time scale of milliseconds, seconds or longer, whereas with
MD we cannot even reach one microsecond. Running at higbetrying to guess

what the unit processes are can mislead us about how the system really behaves.
Often for these systems, if we could get a glimpse of what happens at these longer
times, even ifwe could only afford to do a single trajectory that reached these times,
our understanding of the system would improve substantially. This, in a sentence,
is the chief motivation for the development of the methods described in this review.

Dividing Surfaces and Transition Detection

We have implied that the ridge tops between basins are the appropriate dividing
surfaces in these systems. For a system that obeys TST, these ridge tops are the
optimal dividing surfaces; for any other choice of dividing surface, recrossings
will occur. A ridge top can be defined in terms of steepest descent paths—it is the
3N-1-dimensional boundary surface that separates thpsénts whose steepest
descent paths fall into one basin from those that fall into an adjacent basin. This
definition also leads to a simple way to detect transitions as a simulation proceeds,
as required in parallel replica dynamics and temperature-accelerated dynamics.
Intermittently, the trajectory is paused, and a steepest descent minimization is ini-
tiated from its current position. If this minimization leads to a basin minimum that

is distinguishable from the minimum of the basin in which the system previously
resided, a transition has occurred. An appealing feature of this approach is that it
requires virtually no knowledge of the nature of the transition. Often only a few
steepest descent steps are required to determine that there has been no transition.
Although this is a fairly robust detection algorithm, and the one used for the sim-
ulations presented below, more efficient approaches can be designed. Richie et al.
(45) have proposed a wavelet-based method that avoids the minimization require-
ment. It may also be possible to design very efficient system-specific algorithms;
e.g., for covalently bonded systems, changes in bond connectivity can signal a
transition.

PARALLEL REPLICA DYNAMICS

The parallel replica method (46) is the simplest and most accurate of the accelerated
dynamics techniques, with the only assumption being that of infrequent events
obeying first-order kinetics (exponential decay); i.e., for any time greater than
Tcorr after entering a state, the probability distribution function for the time of the
next escape is given by

p(t) = kexp(kt), 6.

wherek is the rate constant for escape. For example, Equation 6 arises natu-
rally for ergodic, chaotic exploration of an energy basin. The general approach
is shown in Figure 4. Starting with aN-atom system in a particular state
(basin), the entire system is replicated on eachMbfavailable parallel or
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distributed processors. After a short dephasing stagig(h> 7 con), during which
momenta are periodically randomized to eliminate correlations between replicas,
each processor carries out an independent constant-temperature MD trajectory for
the entireN-atom system, thus exploring phase space within the particular basin
M times faster than a single trajectory would. Whenever a transition is detected on
any processor, all processors are alerted to stop. The simulation clock is advanced
by the accumulated trajectory time summed over all replicas, i.e., the total time
spent exploring phase space within the basin until an escape pathway is found. Itis
readily shown (46) that this procedure gives an escape time that is correctly drawn
from the distribution in Equation 6, even if the processor speeds are inequivalent,
allowing the use of heterogeneous clusters or widely distributed machines running
parallel replica dynamics as low-level background processes (47).

The parallel replica method also correctly accounts for correlated dynamical
events (i.e., there is no requirement that the system obeys TST), unlike the other
three methods presented here. This is accomplished by allowing the trajectory that
made the transition to continue on its processor for a further amount oftipge>
Tcom, during which recrossings or follow-on events may occur. The simulation
clock is then advanced byt.or, the final state is replicated on all processors, and
the whole process is restarted. This overall procedure then gives exact state-to-state
dynamical evolution because the escape times obey the correct probability distribu-
tion; nothing about the procedure corrupts the relative probabilities of the possible
escape paths, and the correlated dynamical events are properly accounted for.

The efficiency of the method is limited by both the dephasing stage, which does
notadvance the system clock, and the correlated event stage, during which only one
processor accumulates time. (This is illustrated schematically in Figure 4, where
dashed line trajectories advance the simulation clock but dotted line trajectories
do not.) Thus, the overall efficiency will be high when

Trxn/ M > Algeph+ Atcorr. 7.

Some tricks can further reduce this requirement. For example, whenever the system
revisits a state, on all but one processor the interrupted trajectory from the previous
visit can be immediately restarted, eliminating the dephasing stage. Also, the
correlation stage (which involves only one processor) can be overlapped with the
subsequent dephasing stage for the new state on the other processors, in the hope
that there are no correlated crossings that lead to a different state.

Figure 5 shows an example of a parallel replica simulation; an Ag(111) island-
on-island structure decays over a period gidatT = 400 K (F. Montalenti,
T.C. Germann & A.F. Voter, in preparation). Many of the transitions involve
concerted mechanisms. It is interesting to note that the boost on just 32 pro-
cessors exceeds what we could currently obtain from either hyperdynamics or
temperature-accelerated dynamics because of the relatively high temperature (400
K) of this simulation. Although these other two methods offer dramatically in-
creasing boosts as the temperature is reduced (see below), parallel replica dynam-
ics provides a consistently predictable boost for any situation where Equation 7
holds.
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Birner et al. (49) have used parallel replica dynamics with up to 32 processors to
study the growth of silicon interstitial clusters, scanning for trapping and diffusion
mechanisms much more quickly than they could have with conventional MD. J.W.
Halley & Y. Duan (in preparation) have used parallel replica to study the diffu-
sion of Li ions in polyethylene oxide. To simplify and speed up the simulation,
transition detection was based solely on the displacements of the Liions, ignoring
motion of the polymer chains. They verified that the distribution of first escape
times was well approximated by an exponential, an important test in this type of
case (see below).

This method also has a generality beyond the atomistic solid-state systems dis-
cussed here; the only requirements are that the first-escape-time distribution is ex-
ponential and that transitions can be identified. Pande and coworkers (47, 51) have
used parallel replica dynamics to accelerate the folding of small polypeptides. In
their systems, each state is primarily a free-energy basin (ignoring the low barriers
corresponding to dihedral rotations of the backbone chain), entropically trapped by
the difficulty the chain has in finding a better (or different) way to fold. They devel-
oped a novel transition detection scheme for these systems based on the potential
energy fluctuations. Using widely distributed machines running parallel replica
dynamics as low-level background processes (47), they have been able to follow
the complete folding dynamics of some fast-folding proteins on the microsecond
time scale.

Shirts & Pande (52) have analyzed the more general case when the escape-time
distribution is not exponential. Parallelizing accelerates the evolution, although
knowing how to advance the simulation clock becomes more complicated because
the distribution shape must be known to make an estimate of the speed-up. For
atomistic systems (or any energy-basin system), caution must be exercised if a
nonexponential first-escape distribution is observed, as it indicates thatrigher
has not been reached or the definition of a “state” is omitting some important
substate transitions. For either case, there is a danger that the parallel replica
procedure will give an incorrect sequence of transitions, corrupting the dynamics.

Parallel replica dynamics has the advantage of being fairly simple to program,
with very few knobs to adjustitgepnand Ateor, Which can be conservatively set
at a few picoseconds for most systems. The replica trajectories can themselves
be accelerated trajectories, using, for instance, hyperdynamics on each processor,
thus giving multiplicative boost factors (53, 54). As multiprocessing environments
become more ubiquitous, with more processors within a node or even on a chip,
and with loosely linked Beowulf clusters of such nodes, parallel replica dynamics
will become an increasingly important simulation tool.

HYPERDYNAMICS

Method

In the hyperdynamics approach (55), the potential surfgcg of the system is
modified by adding to it a non-negative bias potentidl(r), and a canonical
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Figure 6 Schematic illustration of the hyperdynamics method. A bias potential
(AV(r)), is added to the original potential/(t), solid line). Provided that\V/(r)
meets certain conditions, primarily that it be zero at the dividing surfaces between
states, a trajectory on the biased potential surfe@® ¢ AV(r), dashed line) escapes
more rapidly from each state without corrupting the relative escape probabilities. The
accelerated time is estimated as the simulation proceeds.

[constant-temperature (56)] classical trajectory is then propagated on this surface.
A schematicillustration is shown in Figure 6. The derivation of the method requires
that the system obeys TST; i.e, it assumes there are no correlated events. There are
also important requirements on the form of the bias potential. It must be zero at all
the dividing surfaces, and the system must still obey TST for dynamics on the biased
potential. Assuming that we can construct such a bias potential, a challenging task
discussed in some depth below, we obtain a very appealing result: A trajectory
on this modified surface, while relatively meaningless on vibrational time scales,
evolves correctly from state to state at an accelerated pace. (The evolution is correct
in the sense that the probability of observing any particular sequence of states is
the same for a simulation on the biased potential as for the unbiased potential.)
Moreover, the accelerated time is easily estimated as the simulation proceeds. For
a regular MD trajectory, the time advances at each integration steyi\y, the

MD time step (e.g..~1 fs). In hyperdynamics, the time advance at each step is
Atyp multiplied by an instantaneous boost factor, the inverse Boltzmann factor
for the bias potential at that point, so that the total time aftetegration steps is

n
thyper= Y _ Atwp eXp[AV (1 (t;))/ ke T]. 8.
j=1
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Time thus takes on a statistical nature, advancing monotonically but nonlinearly.
In the long-time limit, it converges on the correct value for the accelerated time
with vanishing relative error. The overall computational speedup is then given by
the average boost factor,

boost(hyperdynamics} thyper/tmp = (€Xp[AV (r)/KkeT])b. 9.

divided by the extra computational cost of calculating the bias potential and its
forces. In Equation 9, thgy, indicates an average over the trajectory on the biased
potential. If all the visited states are equivalent (e.g., this is common in calculations
to test or demonstrate a particular bias potential), Equation 9 takes on the meaning
of a true ensemble average.

The rate at which the trajectory escapes from a state is enhanced because the
positive bias potential within the well lowers the effective barrier. Note, however,
that the shape of the bottom of the well after biasing is irrelevant; no assumption of
harmonicity is being made. The evolution from state to state is correct because the
bias potential does not change the relative TST rates for different escape paths from
a given state. Because of the delta function in Equation 1, only the denominator
(see Equation 2) is affected liyV (which by construction is zero at the dividing
surface), so the ratio of two TST rates is independemt \¢f

The derivation of the hyperdynamics method builds on the basic concept of im-
portance sampling, a well known technique in statistical mechanics (16, 23). That
importance sampling (or umbrella sampling) can be used to fill in a potential basin
to increase the probability for the system to be found near the transition state has
been known for many years. Grimmelmann et al. (17) presented an excellent exam-
ple of the power of this approach for a surface desorption process. More recently, it
was suggested that it may be possible to construct a general bias potential without
having prior knowledge of the nature of the transition state(s) or possible escape
paths. Grubmaller (57) proposed a “conformational flooding” approach for macro-
molecular systems, in which the system is evolved in its current basin (actually a
superbasin of basins for a macromolecular system) with regular MD to determine
a representative configuration-space density. A coarse-grained representation of
this population density (a multivariate Gaussian) is then obtained from the lowest
eigenvectors of the covariance matrix, and this Gaussian in turn defines a bias
potential of a harmonic form. In the hyperdynamics approach (55), independently
developed later, a Hessian-based bias potential was proposed (see below), and the
direct connection to a boosted time scale was derived, giving the exact long time
dynamics for any bias potential meeting the requirements stated above.

Bias Potentials and Applications

The ideal bias potential should give a large boost factor, should have low compu-
tational overhead (although more overhead is acceptable if the boost factor is very
high), and should to a good approximation meet the requirements given above.
This is challenging because we want, as much as possible, to avoid utilizing any
prior knowledge of the dividing surfaces or the available escape paths. The bias
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potentials in the first hyperdynamics paper (55) were based on the lowest eigen-
value €;) of the Hessian (the matria®v/axdx). The bias potential was made
positive for regions where; > 0, and zero elsewhere, exploiting the fact that
positive near the bottom of a basin and negative at saddle points. For a periodic two-
dimensional example system (58), this gave substantial boosts (in the thousands
whenkgT was~1/20 of the barrier height) and excellent accuracy, even when
some recrossings were present. This approach was also tested on a more realistic
atomistic system by simulating motion of a Ni adatom on a very small patch of
Ni(100) using an embedded atom method (59) interatomic potential (60). The sys-
tem was trimmed to just nine moving atoms to reduce the cost of diagonalizing the
Hessian matrix. AT = 500 K, a boost factor of 40 was obtained (not counting
the computational overhead €6), and this boost increased to 434 if the bias was
turned on even whegy, was negative (but not as negative as the known value of
€1 at the saddle point). This latter simulation reacheg«20These boost factors
would have been larger at lower temperatures because a general property of hyper-
dynamics is that the boost increases roughly exponentially with decreasing tem-
perature, as is evident from Equation 9. However, the overall rate of transitions
(i.e., measured in computer time or human time), decreases even faster with tem-
perature, and = 500 K was the lowest temperature at which enough transitions
could be observed (on computers in the year 1996) to test whether the rate constant
was correctly predicted. As discussed below, this temperature dependence leads
to the interesting observation that for many systems the power of hyperdynamics
grows superlinearly with increasing computer speed.

A bias potential requiring a diagonalization of the fuN-8limensional Hessian
at every time step becomes prohibitively expensiv asincreased beyond a few
tens of atoms. Moreover, except for certain very simple systems, the fraction of
configuration space withy > 0 decreases aincreases, so thatthe boost vanishes
for large systems. In a later paper (61), the bias potential and its calculation were
modified in a few ways to address these issues. First, a more sophisticated form
for the bias potential was developed that goes smoothly to zero in the proximity of
any ridge top. Following the proposal of Sevick et al. (62), the system is assumed
to be at a ridge top when the following conditions hold:

€2<0 and g =0, 10.

whereg;, is the projection of the gradient onto the lowest eigenvector. This defi-
nition is not guaranteed to coincide with the exact ridge top between basins (63),
but it is exact at a saddle point and a good approximation nearby (64).

A novel iterative method was also presented to obtain the lowest eigenvalue
using only first derivatives of the potential, eliminating the need to diagonalize
the Hessian, or even to construct it (61). The basic concept is to define the nu-
merical approximation to the second derivative along an arbitrary direStian
3N-spacefi.e.,d?V/dS? = [V(r + nS) + V(r — nS) — 2V(r)]/n?}, and then rotate
Sto minimize the value of this derivative. Within this numerical approximation, the
optimized vectors,y, is the direction of the lowest eigenvector, and the numerical
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second derivative alon§, is the lowest eigenvalue,. [Both Munro & Wales

(65) and Henkelman &aHsson (66) have used this approach to do mode-following
(67) searches for saddle points, and the latter authors (66) have developed itinto a
method (the dimer method) efficient enough to use as the basis of an on-the-fly ki-
netic Monte Carlo procedure, as discussed below.] An iterative method (the lambda
method) was also presented (61) for findipg and its derivatives, as needed

for a definition of AV based on Equation 10.

This bias potential gives larger boost factors than an expression based on the
eigenvalue alone. A boost factor of 8310 was obtained (with a computational over-
head of~30) in a 221.2us simulation of thel = 300 K diffusion of a ten-atom
cluster of silver on Ag(111), a system with 70 moving atoms. However, the deriva-
tives needed for the hyperdynamics forces in this bias form can be somewhat noisy
because they are based on iteratively minimized quantities. Although in principle
this noise can be reduced to give the correct derivatives to arbitrary accuracy by
insisting on a high level of convergence, the derivatives of the projected gradient
(01p) are especially sensitive to incomplete convergence in the lambda method.
Stabilizing this procedure is the subject of ongoing study by our group and others
(C.F. Sanz-Navarro, personal communication). Sanz-Navarro & Smith (69, 70)
have tested an approximation to thg derivative that is computationally less
expensive and may in some cases be accurate enough for iterative Hessian-based
hyperdynamics.

Alternative bias potentials have also been explored, the simplest of which is the
“flat” bias potential proposed by Steiner etal. (71). They choose a fixed eviggigy
which is higher than the basin minimum but lower than the energy of the lowest
saddle point. As the trajectory propagates, if the potential engrgys greater than
Viat, the bias potential is zero. W(r) is belowVy, the biased surface becomes flat
(V+ AV = Vs, and the trajectory skates across the ice on the pond. Interestingly,
this type of bias potential actually has negative computational overhead because
when the bias is turned on, the energy derivatives need not be calculated—the
total force is zero. They demonstrated this approach for a two-dimensional model
system and for a Lennard-Jones realization of the small fcc(100) surface diffusion
system discussed above.

Because the average energy (relative to the basin minimum) of a system grows
linearly with the number of degrees of freedom, a flat bias potential set below
the lowest barrier will give vanishing boost for large systems [e.g., see (72)]; the
system will only rarely have a potential energy lower thag. Indeed, to obtain a
substantial boost for their small fcc(100) terrace diffusion system with only nine
moving atoms, Steiner et al. (71) had to pi; well above the lowest saddle point,
requiring the calculation of a “numerator correction” (involving prior knowledge
of the dividing surface) to obtain accurate hopping rates. This is an example of how
our intuition can mislead us if we visualize a low-dimensional system. The thermal
contribution to the total potential energy in a large systerBNksT/2) is almost
always greater than the lowest barrier, but the system only goes “over” the barrier
when it has enough energy in the particular mode corresponding to the reaction
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coordinate. For similar reasoning, however, for a system with many dimensions,
it becomes safe to s&k, somewhat above the lowest barrier (71) because the
transition state subsystem has an average potential energy ef{JkgT/2. This
approach has not been explored in detail, although D. Choudhary & P. Clancy
(in preparation) have recently shown in annealing an amorphous silicon sys-
tem that such a flat bias can be effective for gaining a small but useful boost
factor with little programming investment, even for a system with hundreds of
atoms.

In their paper, Steiner et al. (71) also proposed and tested the concept of a local
bias potential—one based on the potential energy of only one or a few atoms. The
idea is to focus attention on a known defect region, for instance around an adatom
or vacancy, where the next activated event is most likely to occur. This can be a
powerful approach in principle: By decoupling the size of the biased region (or
regions) from the total system size, a large system can be studied with a simple
and inexpensive bias potential.

Gong & Wilkins (74) subsequently extended the local bias potential method to
a more sophisticated Hessian-based form. They achieved boost factorstof 10
10° for diffusion of a dimer on a Lennard-Jones fcc(111) surface, diagonalizing
the Hessian for the dimer adatoms and their neighbors (the active region). Similar
boost factors have been obtained for monovacancy diffusion on an Al(100) surface,
where the atoms immediately adjacent to the vacancy are taken as the active region
(75). A single-atom, Hessian-based bias potential was also used by Fang & Wang
(76) to study the diffusion of a vacancy in the core of an edge dislocation in Al,
obtaining a boost factor of 0

The local bias concept has also been explored by Fichthorn’s group (77, 78). As
in the Steiner et al. approach, they construct the bias energy based purely on the
energy of an atom. Rather than a flat bias, they use a form such that from the point
of view of that atom, the basin is softer and shallower. A significant feature of
their approach, introduced in the second paper (78), is that the bias potential at any
instant is defined based on the atom in the system that would give the lowest value
for the bias potential. In this way, if any atom is about to jump, the bias potential
will be defined based on that atom, turning the bias potential off. Substantial boost
factors were obtained (78) for adatom diffusion on the Lennard-Jones fcc(100)
surface; a lesser boost was observed for fcc(111) due to the lower jump barrier.

The local bias approaches should be applied very carefully, however, because
mechanisms involving many atoms, or mechanisms in a seemingly unimportant
region, will be suppressed if the bias potential is defined such that it does not
recognize the mechanism (i.e. AV > 0 when the system is at the dividing surface
forthat mechanism). A good example of the caution required in such an approach is
offered by the fcc(100) exchange mechanism discussed above, which would likely
be suppressed by a local bias potential based purely on the energy of the adatom.
Indeed, it has been demonstrated (54) that the local Hessian-based approaches
artificially block almost all exchange events unless at least two neighbor shells
around an adatom are included in the active region.
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Nonetheless, the impressive boost factors demonstrated thus far using the vari-
ous flavors of bias potentials are quite tantalizing and motivate the ongoing research
into more powerful bias potentials.

TEMPERATURE-ACCELERATED DYNAMICS

Inthe temperature-accelerated dynamics (TAD) method (79), the ideais to speed up
the transitions by increasing the temperature, while filtering out the transitions that
should not have occurred at the original temperature. This filtering is critical, since
without it the state-to-state dynamics will be inappropriately guided by entropically
favored higher-barrier transitions. The TAD method is more approximate than the
previous two methods in that it relies on the harmonic TST approximation (see
above), but for many applications this additional approximation is acceptable,
and the TAD method often gives substantially more boost than hyperdynamics or
parallel replica dynamics. Consistent with the accelerated dynamics concept, the
trajectory in TAD is allowed to wander on its own to find each escape path, so that
no prior information is required about the nature of the reaction mechanisms.

In each basin, the system is evolved at a high temperdiyge (while the
temperature of interest is some lower temperaiyg. Whenever a transition out
of the basin is detected, the saddle point for the transition is found, e.g., using
the nudged elastic band method (80-82). The trajectory is then reflected back into
the basin and continued. This basin-constrained molecular dynamics (BCMD)
procedure generates a list of escape paths and attempted escape times for the
high-temperature system. [Chekmarev & Krivov have proposed a basin-confined
MD approach for other applications (83).] Assuming that TST holds and that the
system is chaotic and ergodic, the probability distribution for the first-escape time
for each mechanism is an exponential (Equation 6). Because harmonic TST gives
an Arrhenius dependence of the rate on temperature (Equation 4), depending only
on the static barrier height, we can then extrapolate each escape time observed at
Thigh to obtain a corresponding escape timelgy, that is drawn correctly from
the exponential distribution &,,. This extrapolation, which requires knowledge
of the saddle point energy, but not the preexponential factor, can be illustrated
graphically in an Arrhenius-style plot (In(f) versus ¥T), as shown in Figure 7.
The event with the shortest time at low temperature is the correct transition for
escape from this basin. Because the extrapolation can in general cause areordering
of the escape times, a new shorter-time event may be discovered as the BCMD is
continued al,gh. If we make the additional approximation that there is a minimum
preexponential factop,,,, which bounds from below all the preexponential factors
in the system, we can define a time at which the BCMD trajectory can be stopped,
knowing that the probability that any transition observed after that time would
replace the first transition ai,,, is less thard. This stop time is given by

, 11.

In(1/5) Vminliow,short Tlow/ Thigh
thigh,stopE

In(1/9)

Vmin
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Figure 7 Schematic illustration of the temperature-accelerated dynamics method.
Progress of the high-temperature trajectory can be thought of as moving down the
vertical time line at YTygh. For each transition detected during the run, the trajectory
is reflected back into the basin, the saddle point is found, and the time of the transition
(solid dot on left time line) is transformed (arrow) into a time on the low-temperature
time line. Plotted in this Arrhenius-like form, this transformation is a simple extrap-
olation along a line whose slope is the negative of the barrier height for the event.
The dashed termination line connects the shortest-time transition recorded so far on
the low temperature time line (solid dot) with the confidence-modified minimum pre-
exponential ¢, = vmin/IN(1/8)) on the y axis. The intersection of this line with the
high-T time line gives the timetg,, open circle) at which the trajectory can be ter-
minated. With confidence 4;-we can say that any transition observed &figgcould

only extrapolate to a shorter time on the low-T time line if it had a pre-exponential

lower thanv min.
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wheretiow shortiS the shortest transition time &t Once this stop time is reached,

the system clock is advanced i shors the transition corresponding t@w,short

is accepted, and the TAD procedure is started again in the new basin. The average
boost in TAD can be dramatic whélxign/ Tiow iS large. Any anharmonicity error

at Thign transfers tdl,y; a rate that is twice the Vineyard harmonic rate owing to
anharmonicity ailhgh Will cause the transition times &g, for that pathway to

be 50% shorter, which in turn extrapolate to transition times that are 50% shorter
atTion. If the Vineyard approximation is perfect &t,,, these events will occur at
twice the rate they should. This anharmonicity error can be controlled by choosing
aThigh that is not too high.

As in hyperdynamics, the boost is limited by the lowest barrier, although this
effect can be mitigated somewhat by treating repeated transitions in a “synthetic”
mode (79). This is in essence a kinetic Monte Carlo treatment of the low-barrier
transitions, inwhich the rate is estimated accurately from the observed transitions at
Thigh, and the subsequent low-barrier escapes observed during BCMD are excluded
from the extrapolation analysis.

One ofthefields where accelerated MD is desperately needed is vapor-deposited
crystal growth, where the typical time scale can exceed minutes (44, 84). The ap-
plication of accelerated MD to vapor-deposited crystal growth is discussed in
Reference (85), and Figure 8 shows an example of the power of the TAD method
for this problem (T.C. Germann, F. Montalenti & A.F. Voter, in preparation). We
simulate vapor deposited growth of a Cu(100) surface at a deposition rate of one
monolayer per 15 s and a temperatlire: 77 K, exactly matching (except for the
system size) the experimental conditions of Egelhoff & Jacob (41). Each deposi-
tion event is simulated using direct molecular dynamics for 2 ps, long enough for
the atom to collide with the surface and settle into a binding site. A TAD simulation
with Thigh = 550 K then propagates the system for the remaining time (0.3 s on
average for this system size and deposition rate) until the next deposition event is
required. The overall boost factorisl(’, although it is not as large at higher tem-
peratures. Even at this low temperature, many events accepted during the growth
process involve concerted mechanisms, a few examples of which, observed during
growth atT =77 K andT = 100 K, are shown in Figure 9.

Especially interesting is the concerted sliding of an eight-atom cluster on a
fce(111) facet that formed during the growth. The embedded atom method potential
used for this simulation (46) predicts a diffusion barrier fora Cu adatom on Cu(111)
(87) that is probably too low, but this particular sliding event would have occurred
before the next deposition even if the barrier (0.046 eV) was four times higher.

This MD/TAD procedure for simulating film growth has also been applied to
Ag/Ag(100) at low temperatures (88), where a balance between normal-incidence
steering (89) and thermally activated events was found to give a roughness that
decreased with both temperature and the kinetic energy of the deposited atoms.
Heteroepitaxial systems can also be considered, and experimental time scales have
been reached in studying Cu/Ag(100) growth (J.A. Sprague, in preparation).

Heteroepitaxial systems are especially hard to treat with kinetic Monte Carlo
(discussed below) because of the increased tendency for the system to go off lattice
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owing to mismatch strain and because the rate table needs to be considerably larger
when neighboring atoms can have multiple types.

Very recently, an enhancement to TAD, beyond the synthetic mode mentioned
above, has been developed for systems that revisit states (91). The time required to
accept an event can be reduced at each repeat visit by taking advantage of the time
accumulated in previous visits. This procedure is exact; no assumptions beyond
the ones required by the original TAD method are needed. After many visits, the
procedure converges. The minimum barrier for escape from that Bfgeié then
known to within uncertainty. In this converged mode (ETAD), the average time
at Thigh required to accept an event no longer depend$ and the average boost
factor becomes simply

fIow.short F{ ( 1 1 )]
boost(ETAD)= - =exd Emin| —— — — 12.
( ) high,stop mn I(BTIOW I(BThigh

for that state. The additional boost (when converged) compared with the original
TAD is an order of magnitude or more (91, 92).

For systems that seldom (or never) revisit the same state, it may still be possible
to exploit this extra boost by running in ETAD mode wiEh, supplied externally,
a concept we explore below.

ON-THE-FLY KINETIC MONTE CARLO

Here we describe an alternative to the accelerated dynamics concept that has an
identical goal: to make the system pass from state to state in a valid way as quickly
as possible. In the standard kinetic Monte Carlo (KMC) approach, which has
existed for many years (93-96), there is no classical trajectory at all. Instead, from
a list of possible transition events, one escape path is chosen randomly, weighted
by the rate constant, and the system is advanced to that new state. The clock is then
incremented in a way that is consistent with the average time for escape from that
state, which can be determined easily from the rate constants for the possible escape
paths in the list. The rates for each of the events can be computed accurately from
TST, making a “rate catalog” (95), using classical interatomic potentials, or even
first-principles calculations (97). If the rate catalog is complete, the state-to-state
dynamical evolution is exact.

The long-standing problem with this type of approach is that to generate a list of
possible escape paths, approximations are usually made. Usually, only those mech-
anisms in which atoms stay on lattice are considered, a restriction that is sometimes
unrealistic. The other, probably more serious problem, is that one assumes that
the possible escape mechanisms can be guessed in advance. As discussed above
we now know that highly concerted events can be common and can be important to
the dynamical evolution of the system. The number of possible events of this type
can be very large, and sometimes the atomic motion is counterintuitive. As a result,
itmay be extremely difficult if notimpossible to compile an adequate KMC catalog.



340

VOTER ® MONTALENTI = GERMANN

Recently, Henkelman &aHsson (72) proposed a variation on the KMC method,
in which one builds a state-specific catalog on the fly. The key to this new approach
is the dimer method, which, as discussed above, is essentially a way to follow the
lowest eigenvector up a trough to find the saddle at the top. Preliminary studies
(66) indicate that this type of saddle search can be made so efficient-{4@p,
force calls per saddle for adatom diffusion on Al(100)] that one can afford to start
searches from many different randomly placed configurations, with the goal being
to find, with high probability, all of the low-lying saddles surrounding the state,
thus building a KMC catalog on the fly. If all saddles are found, then one has an
exact KMC, and even if only the relevant low-lying saddles are found, one has
a very accurate KMC; thus this on-the-fly KMC (OFKMC) is a very appealing
approach. However, there is no guarantee that all relevant saddles can be found,
and in fact this type of approach may systematically miss some obscured saddles,
thus corrupting the dynamics. Also, if a state is revisited many times, it becomes
increasingly important to find not just the low-lying saddles but also the higher-
lying saddles. Otherwise, one could be incorrectly trapped in a superbasin of states,
without finding the important escape path that is operative on longer time scales.

Despite these caveats, initial results with this method (which we will refer
to as dimer-OFKMC) look promising; it has been applied to island ripening on
Al(100) at T=300 K, and vapor deposition (at 1 ML/ms) of Al on Al(100) at
T=100K (72).Ineach case, arich variety of mechanisms was observed, including
many concerted mechanisms. This approach can be parallelized efficiently, as each
dimer search can be performed on a separate processor. Also, for large systems,
each dimer search can be localized to a subset of the system (if appropriate).

This OFKMC concept has been applied in a more approximate way by Barkema
& Mousseau (98,99). With the goal of annealing amorphous systems, they
designed the “activation-relaxation technique”. Beginning from a random dis-
placement, a first-derivative-only procedure pushes the system up the valley (the
activation step), after which the system is relaxed into the basin on the other side
of the saddle point. Accepting or rejecting the resulting basin-to-basin move ac-
cording to the Metropolis probability (1) gives a pseudodynamics with thermally
appropriate behavior.

COMPUTATIONAL SCALING WITH SYSTEM SIZE

As the above dynamical methods are developed further and come into wider use,
their computational scaling with system size will become an important issue.
Although the exact scaling depends on the type of system and many aspects of the
implementation, a few general points can be made.

It can be shown that the computational work in both ETAD (91) and dimer-
OFKMC (72) scales as @) for a finite-range classical interatomic potential (i.e.,
the same scaling as regular MD, resulting from the cost of each force call) for the
trivial case of a system that has been enlarged by a simple replication. For the orig-
inal TAD, the scaling for this case goesh& Tov/Thion (91). These scalings assume
thatallthe work of dimer searches, transition detection, and saddle optimization can
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be localized. However, real systems are more complicated. For example, states with
low-barrier escape paths (which lower the boost) are more likely to show up some-
where in a large system than in a small system. To our knowledge, this type of
effect has not been studied systematically.

The scaling in hyperdynamics depends both on the nature of the system and the
form of the bias potential. Even for the ideal case of a bias potential requiring no
computational overhead, there could still be an overall scaling worseNtian
the reasons just given.

DISCUSSION AND PREDICTIONS

Applications of these methods to problems in materials research will become more
prevalent as we gain experience with the methods and as computers get faster. In
addition, development of the methods will remain a rich research area for a while.
We conclude this article by discussing some of the their common properties and
distinguishing features. We also point out some issues of importance for the near
future and make a few predictions about how the methods may evolve.

Parallel replica dynamics is the most accurate of the methods, making no as-
sumptions beyond that of infrequent events and exponential decay. Because it
properly accounts for correlated dynamical events, it may be especially powerful
for processes such as surface diffusion at a solid-liquid interface, where the whole
concept of a saddle pointis ill defined due to the myriad of possible orientations of
the liquid molecules during the transition. It may even have important applications
beyond atomistic systems. The maximum boost in parallel replica is the number of
processors, although it is possible to combine parallel replica with hyperdynamics
(53, 54) or TAD for multiplicative boost (until Equation 7 is no longer satisfied).

Hyperdynamics offers a general framework that will grow in power as better
bias potentials are developed. It makes no harmonic approximation and even ap-
pears to be applicable in some situations where TST is violated (55; A.F. Voter,
unpublished). In favorable cases, the boost factor can be dramatic, and itincreases
exponentially with decreasing temperature.

TAD is the most approximate of the three accelerated dynamics methods but
is typically easy to implement and, in our experience so far, generally gives the
largest boost factor. It requires that the system is well described by the harmonic
TST approximation at botffig, andThign.

Dimer-OFKMC is a powerful approach, and a significant improvement in qual-
ity over usual KMC, releasing the lattice restriction and eliminating the rate table
(which is usually woefully incomplete). We have not yet performed a direct com-
parison, but for a typical case it appears that it is probably faster than TAD, the most
closely related accelerated MD approach. This disparity will probably diminish as
each of the methods is developed further (see below). Dimer-OFKMC relies on
the harmonic approximation (Equation 4). Compared with TAD, it should have
less anharmonicity error because it is only the anharmonicity at the simulation
temperature that matters (however, depending on the temperature dependence of
the anharmonicity, even assuming it increases Wjth cancellation of errors can
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result in TAD having less error). Vineyard prefactors must be calculated (or a fixed
prefactor assumed, a sometimes dangerous approximation). This work scales as
N3, but for large systems, this dependence can be eliminated by restricting the
Hessian diagonalization to a subspace (100). The major approximation in dimer-
OFKMC arises from the fact that there is no guarantee, given a finite number of
dimer searches, that all the relevant saddle points will be found. This becomes a
more serious issue as a system is evolved for many transitions, since there is an
increasing cumulative probability that a high-barrier event (which may have been
missed) should be selected in the KMC step.

The temperature dependence of the boost in hyperdynamics and TAD gives
rise to an interesting prediction about their power and utility in the future. Some-
times, even accelerating the dynamics may not make the activated processes occur
frequently enough to study a particular process. A common trick is to raise the
temperature just enough that at least some events will occur in the available com-
puter time, hoping, of course, that the behavior of interest is still representative of
the lowerT system. When a faster computer becomes available, the same system
can be studied at a lower, more desirable, temperature. This in turn increases the
boost factor (e.g., see Equations 9 and 11), so that, effectively, there is a super-
linear increase in the power of accelerated dynamics with increasing computer
speed. (For hyperdynamics, this is an especially important effect, because if the
boost does not exceed the overhead cost of the bias potential, there is no point
in doing the hyperdynamics simulation at all—direct MD is faster.) Thus the ac-
celerated dynamics approaches will become increasingly more powerful in future
years simply because computers keep getting faster.

Using forces from first-principles calculations (e.g., density functional theory or
quantum chemistry) for atomistic simulations is an increasingly popular approach
(101). Because this is much more expensive than using a classical interatomic
potential, the converse of the argument given above indicates that first-principles
accelerated dynamics simulations will not give much useful boost on current com-
puters (i.e., using first principles to calculate the forces is like having a very slow
computer). First-principles hyperdynamics may be a powerful tool 5-10 years
down the road, when breakeven (boesbverhead) is reached, and this could hap-
pen sooner with development of less-expensive bias potentials. For small systems,
the flat bias potential of Steiner et al. (71) could be effective now. TAD is probably
close to being viable for first-principles dynamics, while parallel replica dynamics,
dimer-OFKMC, and the dimer-based ETAD discussed below could probably be
used on today’s computers for first-principles studies on some systems.

An interesting and important area for research is the low-barrier problem. Low
barriers degrade the boost of hyperdynamics and TAD (and even parallel replica,
if they cause Equation 7 to be no longer satisfied), and also reduce the efficiency
in standard KMC, OFKMC, and TAD in KMC (synthetic) mode. For example, in
hyperdynamics, which is the most susceptible to low barriers, it may be possible to
develop advanced bias potentials that can safely block low barriers to give the boost
necessary to escape from a superbasin (a basin of basins), although the possibility
that detailed balance is disrupted then becomes an issue.
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As mentioned above, the TAD method can be particularly efficient in boosting
the dynamics when the minimum barrigy,;, to escape from each state is known
(ETAD). One potentially powerful future development would be to combine the
dimer approach with ETAD. Upon entering a new state, a small number of dimer
searches would be used to find the minimum barrier for escape, after which ETAD
would be employed to quickly find a dynamically appropriate escape path. This
would exploit the power of the dimer method to quickly find low-barrier pathways,
while eliminating the danger associated with the possibility that it might miss
important escape paths. Although the dimer method could fail to find the lowest
barrier correctly, this is a much weaker demand on the dimer method than trying
to find all relevant barriers (including all of the lowest ones). This approach would
also eliminate the need to compute prefactors (Equation 5).

TAD itself can also be cast in an OFKMC form (A.F. Voter et al., in prepa-
ration). For each mechanism discovered at high temperature, the rate constant at
Tow Would be computed directly, using the full Vineyard expression (Equations 4
and 5). An expression similar to Equation 11 (and augmented by an additional run
time to allow for anharmonicity) indicates when it is safe to stop the BCMD at
Thigh, knowing that the OFKMC catalog for this state is complete enough @vith
confidence) to accept the next KMC event. Each revisit of a state requires succes-
sively less BCMD time to establish this. In this approach, the raigatan even
be computed with a more accurate treatment, e.g., including quantum effects (23)
or using first-principles.

As we hope we have demonstrated, the future of these methods looks quite
bright. They are powerful enough now to study a wide range of materials problems,
and there is plenty of room for further development.
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Figure 5 Nine snapshots from a parallel replica simulation of an island on top of an
island on the Ag(111) surface @t=400 K. On a microsecond time scale, the upper
island gives up all its atoms to the lower island, filling vacancies and kink sites as it
does so. This simulation took five days to reach one microsecond on 32 1-GHz Pentium
Il processors.



Figure 8 Snapshots from a TAD simulation of the deposition of five monolayers (ML) of Cu
onto Cu(100) at 0.067 ML/s anil= 77 K, matching the experimental conditions of Egelhoff

& Jacob (41). Deposition of each new atom was performed using direct molecular dynamics
for 2 ps, while the intervening time (0.3 s on average for this 50 atom/layer simulation cell)
was simulated using the TAD method. This simulation would taKe/@rs using direct MD.
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