
2HOT: An Improved Parallel Hashed Oct-Tree
N-Body Algorithm for Cosmological Simulation

Michael S. Warren
Theoretical Division

Los Alamos National Laboratory
msw@lanl.gov

ABSTRACT
We report on improvements made over the past two decades
to our adaptive treecode N-body method (HOT). A math-
ematical and computational approach to the cosmological
N-body problem is described, with performance and scal-
ability measured up to 256k (218) processors. We present
error analysis and scientific application results from a series
of more than ten 69 billion (40963) particle cosmological
simulations, accounting for 4 × 1020 floating point opera-
tions. These results include the first simulations using the
new constraints on the standard model of cosmology from
the Planck satellite. Our simulations set a new standard for
accuracy and scientific throughput, while meeting or exceed-
ing the computational efficiency of the latest generation of
hybrid TreePM N-body methods.

General Terms
Computational Cosmology, N-body, Fast Multipole Method

1. INTRODUCTION
We first reported on our parallel N-body algorithm (HOT)

20 years ago [67] (hereafter WS93). Over the same timescale,
cosmology has been transformed from a qualitative to a
quantitative science. Constrained by a diverse suite of ob-
servations [47, 49, 53, 44, 9], the parameters describing the
large-scale Universe are now known to near 1% precision.
In this paper, we describe an improved version of our code
(2HOT), and present a suite of simulations which probe the
finest details of our current understanding of cosmology.

Computer simulations enable discovery. In the words of
the Astronomy and Astrophysics Decadal Survey, “Through
computer modeling, we understand the deep implications of
our very detailed observational data and formulate new the-
ories to stimulate further observations” [11]. The only way
to accurately model the evolution of dark matter in the Uni-
verse is through the use of advanced algorithms on massively
parallel computers (see [29] for a recent review). The origin
of cosmic structure and the global evolution of the Universe

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SC ’13 Nov 17-21 2013, Denver, CO, USA
ACM 978-1-4503-2378-9/13/11.
http://dx.doi.org/10.1145/2503210.2503220

can be probed by selecting a set of cosmological parameters,
modeling the growth of structure, and then comparing the
model to the observations (Figure 1).

Figure 1: Recent results from the Planck satellite [9]
compared with light-cone output from 2HOT. We
present our numerical simulation results in the same
HEALPix1 [21] Mollewide projection of the celestial
sphere used by Planck. The upper figure shows the
density of dark matter in a 69 billion particle sim-
ulation (upper left) compared with the fluctuations
in the cosmic microwave background. The obvious
difference in the upper panel is due to the imperfect
removal of sources within our galaxy in the Planck
data, The statistical measurements of the smaller
details match precisely between the observation and
simulation. The lower figure shows the simulation
compared with the gravitational lensing signal mea-
sured by Planck.

1http://healpix.jpl.nasa.gov

http://healpix.jpl.nasa.gov

Computer simulations are playing an increasingly impor-
tant role in the modern scientific method, yet the exponen-
tial pace of growth in the size of calculations does not nec-
essarily translate into better tests of our scientific models
or increased understanding of our Universe. Anywhere the
relatively slow growth in the capacity of human attention in-
tersects with the exponential explosion of information, new
tensions are created. The timespan between the completion
of a large simulation and the publication of scientific results
based upon it is now often a year or more, and is growing
longer instead of shorter. In the application described here,
the sheer complexity of managing the volume of information
in many layers of data and code has required additional soft-
ware tools to be developed. We have written substantially
more lines of software for data analysis, generating initial
conditions, testing and task management than are present
in the 2HOT code base. The scale of simulations requires
most of these ancillary tools to be parallel as well.

High-performance computing (HPC) allows us to probe
more questions with increased resolution and reduced statis-
tical uncertainty, leading to new scientific discoveries. How-
ever, reducing the statistical errors more often than not
uncovers systematic errors previously masked by statistical
variance. Addressing these details takes us out of realm of
HPC into applied mathematics, software engineering and
data analysis. However, without progress on all fronts, the
over-arching scientific questions can not be answered. A
corollary of this point is that making a code faster is often
a poor investment when the aim is to answer a particular
scientific question. More important than speed is the code’s
applicability to the problem, correctness, and even less tan-
gible properties such as robustness and maintainability. For
those reasons, we focus here on the wide variety of changes
made to 2HOT over the past two decades which have enabled
us to produce the state-of-the-art scientific results presented
in Section 6.

One of our first scientific N-body simulations of dark mat-
ter [70] used 1.1 million particles and was performed on the
64-node Caltech/JPL Mark III hypercube in 1990. The sim-
ulation was completed in 60 hours, sustaining 160 Mflop/s
with a parallel efficiency of 85%. In 2012 we used 2HOT on
262 thousand processors with over one trillion (1012) par-
ticles, sustaining in excess of 1.6 Petaflops with a parallel
efficiency of 90% [63]. Since our first parallel treecode sim-
ulations, the message-passing programming model, time to
solution and parallel efficiency are nearly the same, but the
problem size has increased by a factor of a million, and per-
formance a factor of 10 million.

Since WS93, HOT was been extended and optimized to
be applicable to more general problems such as incompress-
ible fluid flow with the vortex particle method [41] and as-
trophysical gas dynamics with smoothed particle hydrody-
namics [19, 18, 15]. The code also won the Gordon Bell
performance prize and price/performance prize in 1997 [60]
and 1998 [65]. It was an early driver of Linux-based clus-
ter architectures [60, 62, 64] and helped call attention to
power issues [69, 16]. Perhaps surprisingly (given that WS93
was presented at the same conference as the draft MPI 1.0
standard), the fundamental HPC abstractions in the code
have changed little over two decades, while more significant
changes have been required in its mathematical and cosmo-
logical underpinnings.

2. MATHEMATICAL APPROACH

2.1 Equations of Motion
The mathematical equations governing the evolution of

structure in an expanding Universe are generally solved us-
ing comoving coordinates, ~x = ~r/a(t). ~r is the “proper” co-
ordinate, while the scale factor a(t) is defined via the Fried-
mann equation

(H/H0)2 = ΩR/a
4 + ΩM/a

3 + Ωk/a
2 + ΩDE (1)

in terms of the Hubble parameter H ≡ ȧ/a and the densities
of the various components of the Universe; radiation in the
form of photons and ultra-relativistic particles (ΩR), mass
in the form of cold dark matter and baryons (ΩM), spatial
curvature (Ωk) and dark energy or a cosmological constant
(ΩDE). The particle dynamics are defined in terms of the
motion relative to the background model, the scale factor
and the acceleration due to gravity [39],

d~vi
dt

+ 2
ȧ

a
~vi = − 1

a3

∑
i6=j

Gmj~xij

|xij |3
(2)

Cosmological evolution codes most often account for cold
dark matter, baryons and dark energy. The Boltzmann
solvers which calculate the power spectrum of density per-
turbations use all of the components, including photons and
massless and massive neutrinos. For precise computations,
it is now necessary to include these other species. Using the
parameters of the Planck 2013 cosmological model, the age
of the Universe is 3.7 million years older if photons and radi-
ation from massless neutrinos are not treated correctly. The
linear growth factor from redshift 99 (an expansion of 100)
changes by almost 5% (from 82.8 to 79.0) under the same
circumstances. 2HOT integrates directly with the computa-
tion of the background quantities and growth function pro-
vided by CLASS [30], either in tabular form or by linking
directly with the CLASS library, and thereby supports any
cosmology which can be defined in CLASS. 2HOT addition-
ally maintains the ability to calculate the scale factor and
linear growth factor analytically (when radiation or non-
trivial dark energy is not included) in order to be able to
directly compare with codes which do not yet support them.

2.2 Multipole Methods
Using N particles to represent the Universe, treecodes and

fast multipole methods reduce the N2 scaling of the right-
hand side of equation (2) to O(N) or O(N logN)—a signif-
icant savings for current cosmological simulations which use
N in the range of 1010 to 1012.

2.2.1 Background Subtraction
Large cosmological simulations present a unique set of

challenges for multipole methods. The Universe is nearly
uniform at large scales. This means the resultant accelera-
tion on a particle from distant regions is a sum of large terms
which mostly cancel. We can precisely quantify this effect
by looking at the variance of density in spheres of radius r,
which is an integral of the power spectrum convolved with
a top-hat window, ∫ ∞

0

(dk/k)δ2
kW (kr)2 (3)

For a sphere of radius 100 Mpc/h, the variance is 0.068 of
the mean value for the standard model. This value scales

+
a

b

c

Figure 2: An illustration of background subtrac-
tion, which greatly improves the performance of the
treecode algorithm for nearly uniform mass distri-
butions (such as large-volume cosmological simula-
tions, especially at early times). The bodies inside
cell a interact with the bodies and cells inside the
gray shaded area as usual. Bodies inside cell a in-
teract with all other cells (b, for example) after the
background contribution of a uniform density cube
is subtracted from the multipole expansion. Empty
cell c (which would be ignored in the usual algo-
rithm) must have its background contribution sub-
tracted as well. The background contribution of the
gray shaded area to the calculated force and poten-
tial of the bodies in a is removed analytically.

with the growth of cosmic structure over time, so at the
beginning of a simulation it will be a factor of 50-100 lower.
At early times when we calculate the acceleration from a 100
Mpc cell in one direction, 99% of that value will cancel with
a cell in the opposite direction, leaving a small remainder
(the “peculiar” acceleration). This implies that the error
tolerance needed for these large cells is 100 times stricter
than for the short-range interactions. For larger volumes or
earlier starting times, even more accuracy is required. This
suggests that eliminating the background contribution from
the partial acceleration terms would be beneficial.

The mathematical equations describing the evolving Uni-
verse subtract the uniform background, accounting for it in
the evolution of the scale factor a(t). Fourier-based codes
do this automatically, since the DC component has no dy-
namical effect. For treecodes, the proper approach is less
obvious. Essentially, we wish to convert the always-positive
mass distribution into density perturbations δρ/ρ. These
density contrasts can be positive or negative, making the
gravitational problem analogous to an electrostatics prob-
lem, with positive and negative charges.

Since we wish to retain the particle-based representation
of the density, the background subtraction can be obtained
by adding the multipole expansion of a cube of uniform neg-
ative density to each interaction. Since the multipole ex-
pansion of a cube is fairly simple due to symmetries, this
can be done with a few operations if the multipole expan-
sions are with respect to the cell centers (rather than the
center of mass). This in turn adds a few operations to the

interaction routines, since dipole moments are now present.
At scales near the inter-particle separation, this approach
breaks down, since any empty cells which would be ignored
in a direct summation must be accounted for, as well as re-
quiring high-order expansions for neighboring cells with only
a few particles, which would normally be calculated with
cheaper monopole interactions. Rather than modify each
interaction for the near field, we define a larger cube which
approximately surrounds the local region of empty and sin-
gle particle cells and calculate the background acceleration
within the surrounding cell (Figure 2). This acceleration
term can be done with a multipole and local expansion, or
our current approach of using the analytic expression for the
force inside a uniform cube [59, 46].

A subtle point is that in the far-field we only want to
subtract the uniform background expansion up to the same
order as the multipole expansion of the matter to minimize
the error. If a cube of particles is expanded to order p = 4,
the p = 6 and higher multipoles from the background are
not included, so they should not be subtracted. Using back-
ground subtraction increases the cost of each interaction
somewhat, but results in a huge improvement in overall effi-
ciency, since many fewer interactions need to be computed.
At early times we have measured an improvement of a factor
of five. The multipole acceptance criterion (MAC) based on
an absolute error also becomes much better behaved, leading
to improved error behavior as well.

2.2.2 Multipole Error Bounds
A critical ingredient of any optimized multipole method is

the mathematical machinery to bound or estimate the error
in the interactions. The methods we previously developed
[45, 68] allow us to dynamically decide between using differ-
ent orders of expansion or refinement, automatically choos-
ing the most efficient method to achieve a given accuracy.

The expressions we derived in [68] support methods which
use both multipole and local expansions (cell-cell interac-
tions) and those which use only multipole expansions (cell-
body interactions with ∆ = 0). The scaling of these methods
with N depends on precisely how the error is constrained
while increasing N , but generally methods which support
cell-cell interactions scale as O(N) and those that do not
scale as O(N logN). Our experience has been that using
O(N)-type algorithms for cosmological simulation exposes
some undesirable behaviors. In particular, the behavior of
the errors near the outer regions of local expansions are
highly correlated. To suppress the accumulation of these er-
rors, the accuracy of the local expansion must be increased,
or their spatial scale reduced to the point where the benefit
of the O(N) method is questionable, at least at the mod-
est accuracies of current cosmological simulations. For this
reason, we have focused on the implementation and opti-
mization of an O(N logN) method.

Consider a configuration of sources as in Figure 3. The
sources are contained within a“source”cell, V of radius bmax,
while the field is evaluated at separation B(∆) from B(x)0

,
the center of “sink” cell W.

In terms of an arbitrary Green’s function, G, the field is:

φ(B(x)) =

∫
V
dB(y)G(B(x) −B(y))ρ(B(y)) (4)

Expanding G around B(R)0
= B(x)0

− B(y)0
in a Taylor

series leads to the Cartesian multipole expansion:

φ(B(x)) =

p∑
n=0

(−1)n

n!
∂(n)G(B(R)0

)�B(M)
(n)

(B(y)0
+B(∆)) + Φ(p)(B(x))

(5)

where Φ(p) is the error term, and the moment tensor is de-
fined relative to a center, B(z) as:

M (n)(B(z)) =

∫
dB(y)(B(y) −B(z))

(n)ρ(B(y)) (6)

We have used a notational shorthand in which B
(n)

(v) indicates

the n-fold outer product of the vector B(v) with itself, while
� indicates a tensor inner-product and ∂(n)G indicates the
rank-n tensor whose components are the partial derivatives
of G in the Cartesian directions. We can further expand the
result by writing B(M)

(n)(B(y)0
+B(∆)) as a sum over powers

of the components of B(∆), and then recollecting terms (see
Eqns 12-14 in [68]).

+
x0

x
+
y0

y

∆

∆max

bmax

R

R0

W V
Sink Cell Source Cell

Figure 3: An illustration of the relevant distances
used in the multipole expansion and error bound
equations.

While the mathematical notation above is compact, trans-
lating this representation to an optimized interaction routine
is non-trivial. The expression for the force with p = 8 in
three dimensions begins with 38 = 6561 terms. We resort
to metaprogramming, translating the intermediate represen-
tation of the computer algebra system [74] directly into C

code. This approach is capable of producing the necessary
interaction routines through p = 8 without human inter-
vention. A better approach would combine a compiler with
knowledge of the computing architecture into the symbolic
algebra system, allowing very high-level optimizations using
mathematical equivalences that are lost once the formulae
are expressed in a general programming language. To our
knowledge, no such system currently exists.

We have also investigated support for pseudo-particle [28]
and kernel-independent [76] approaches which abstract the
multipole interactions to more easily computed equations.
For instance, the pseudo-particle method allows one to rep-
resent the far field of many particles as a set of pseudo-
particle monopole interactions. We have found that such
approaches are not as efficient as a well-coded multipole in-
teraction routine in the case of gravitational or Coulombic
interactions, at least up to order p = 8.

2.3 Time Integration
The original version of HOT integrated the equations of

motion using the leapfrog techniques described in [14], with
a logarithmic timestep at early times. This approach has

proven inadequate for high-accuracy simulations. Fortu-
nately, the theory for symplectic time integration in a co-
moving background was developed by [42], which we have
fully adopted. The advantages of this integrator are dis-
cussed in detail in [50]. We calculate the necessary inte-
grals for the “drift” and “kick” operators in arbitrary cos-
mologies with code added to the background calculations
in CLASS [30]. We additionally restrict the changes of the
timestep to exact factors of two, rather than allowing in-
cremental changes at early times. Any change of timestep
breaks the symplectic property of the integrator, but making
occasional larger adjustments rather than continuous small
adjustment (as is done in GADGET2 [50]) appears to pro-
vide slightly better convergence properties. We have also
modified 2HOT to save “checkpoint” files which maintain
the leapfrog offset between position and velocity. This al-
lows the code to maintain 2nd-order accuracy in the time
integration when restarting from a saved file. Otherwise,
the initial (first order) step in the leapfrog scheme can lead
to detectable errors after restarting at early times.

2.4 Boundary Conditions
Periodic boundary conditions have been applied to multi-

pole methods in a variety of ways, but most often are vari-
ants of the Ewald method [25]. For 2HOT, we have adopted
the approach described in [8], which is based on the central
result of Nijboer & De Wette (1957) [36]. Effectively the
same method in a Cartesian basis was first used in a cos-
mological simulation by Metchnik [35]. This method sums
the infinite series of each relevant combination of powers of
the co-ordinates, which can be taken outside the sum of pe-
riodic replicas (since the multipole expansion of each replica
is identical). These pre-computed coefficients are then used
in a local expansion about the center of the volume. We use
p = 8 and ws = 2, which accounts for the boundary effects
to near single-precision floating point accuracy (one part in
10−7). The computational expense of this approach is about
1% of the total force calculation for the local expansion, and
5-10% for the 124 boundary cubes, depending on the overall
accuracy tolerance.

2.5 Force Smoothing
The standard practice in cosmological N-body simulations

is to smooth the forces at small scales, usually with a Plum-
mer or spline [50] kernel. We have implemented these smooth-
ing kernels in 2HOT, as well as the additional kernels de-
scribed by Dehnen [13]. Dehnen concludes that the optimal
softening method uses a compensating kernel, with forces
that are higher than the Newtonian force at the outer edge
of the smoothing kernel, which compensates for the lower
forces in the interior and serves to reduce the bias in the
force calculation. Our tests confirm these conclusions, and
we use Dehnen’s K1 compensating kernel for our simula-
tions, except for the tests comparing directly to other codes.

3. COMPUTATIONAL APPROACH

3.1 Domain Decomposition
The space-filling curve domain decomposition approach

we proposed in WS93 has been widely adopted in both
application codes (e.g. [23, 50, 27, 75]) and more general
libraries [38, 32]. Our claim that such orderings are also
beneficial for improving memory hierarchy performance has

also been validated [50, 34]. We show an example of a 3-d
decomposition of 3072 processor domains in Figure 4.

Figure 4: A demonstration of our space-filling curve
domain decomposition for a highly evolved cosmo-
logical simulation on 3072 processors in a cube 1
Gpc/h across. We view one face of the 3-d com-
putational volume, cycling through 16 different col-
ors in turn for each processor domain. Starting in
the lower left, the sequence goes black, red, green,
blue, cyan, and then continues underneath in the z-
dimension (not visible), returning to the front face
with dark blue, brown, purple, white, etc.

The mapping of spatial co-ordinates to integer keys de-
scribed in WS93 converts the domain decomposition prob-
lem into a generalized parallel sort. The method we use is
similar to the sample sort described in [48], with the on-
node portion done with an American flag radix sort [33].
After using the samples to determine the edges of the pro-
cessor domains, in the initial HOT implementation the data
was moved using a loop over all pairs of processors need-
ing to exchange data. We converted the data exchange to
use MPI_Alltoall() for improved scalability. This exposed
problems in the implementation of Alltoall on large machines
for both OpenMPI and the Cray system MPI. The first“scal-
ability surprise”was related to the way buffers were managed
internally in OpenMPI, with the number of communication
buffers scaling as the number of processes squared. This did
not allow our code to run on more than 256 24-core nodes
using OpenMPI. We had to rewrite the implementation of
Alltoall using a hierarchical approach, with only one process
per node relaying messages to other nodes. The second was
a “performance surprise” as defined by [54], where replacing
the Cray system implementation of MPI_Alltoall() with
a trivial implementation using a loop over all pairs of pro-
cesses exchanging data led to a huge performance improve-
ment when using more than 32k processors. Note that after
the initial decomposition, the Alltoall communication pat-

tern is very sparse, since particles will only move to a small
number of neighboring domains during a timestep. This also
allows significant optimization of the sample sort, since the
samples can be well-placed with respect to the splits in the
previous decomposition.

3.2 Tree Construction and Traversal
The parallel tree construction in WS93 used a global con-

catenation of a set of “branch” nodes from each processor to
construct the tree at levels coarser than the individual pro-
cessor domains. While this is an adequate solution up to a
few thousand processors, at the level of tens of thousands of
domains and larger, it leads to unacceptable overhead. Most
of the nodes communicated and stored will never be used di-
rectly, since the local traversal will only probe that deeply in
the tree near its own spatial domain. Instead of a global con-
catenation, we proceed with a pairwise hierarchical aggrega-
tion loop over i up to log2 Nproc by exchanging branch nodes
between nearest neighbors in the 1-d space-filling curve, in-
crementally updating the tree with those nodes, then doing
the same with the 2i-th neighbor. This provides a minimal
set of shared upper-level nodes for each processor domain,
and has demonstrated its scalability to 256k processors.

In [68] we describe a tree traversal abstraction which en-
ables a variety of interactions to be expressed between“source”
and “sink” nodes in tree data structures. This abstraction
has since been termed dual-tree traversal [22, 77]. The dual-
tree traversal is a key component of our method to increase
the instruction-level parallelism in the code to better enable
new CPU and GPU architectures (see Section 3.3).

During the tree traversal we use the same request/reply
protocol described in WS93 using the global key labels as-
signed during the tree construction phase. Additional bits
to label the source processor have been added to the hcells
to support machines with up to 218 processors. Our initial
approach to hiding latency in the tree traversal was recast in
the form of an active message abstraction. We believe that
such event-driven handlers are more robust and less error-
prone to implement correctly [37]. We currently use our
own implementation of active messages within MPI, which
we call “Asynchronous Batched Messages” (ABM). ABM is
a key component of our ability to overlap communication
and computation and hide message latency. MPI has sup-
ported one-sided communications primitives for many years,
but their performance is often worse than regular point-to-
point communication. It is likely that synchronization and
locking overheads and complexity are to blame [3]. Newer
implementations of active messages [73] are an attractive
alternative, which we plan to implement as time allows.

3.3 Improving instruction-level parallelism
In WS93 we used the fact that particles which are spa-

tially near each other tend to have very similar cell inter-
action lists. By updating the particles in an order which
takes advantage of their spatial proximity, we improved the
performance of the memory hierarchy. Going beyond this
optimization with dual-tree traversal, we can bundle a set
of m source cells which have interactions in common with a
set of n sink particles (contained within a sink cell), and per-
form the full m× n interactions on this block. This further
improves cache behavior on CPU architectures, and enables
a simple way for GPU co-processors to provide reasonable
speedup, even in the face of limited peripheral bus band-

width. We can further perform data reorganization on the
source cells (such as swizzling from an array-of-structures to
a structure-of-arrays for SIMD processors) to improve per-
formance, and have this cost shared among the n sinks. In
an m×n interaction scheme, the interaction vector for a sin-
gle sink is computed in several stages, which requires writing
the intermediate results back to memory multiple times, in
contrast to the WS93 method which required only one write
per sink. For current architectures, the write bandwidth
available is easily sufficient to support the m× n blocking.

Taking advantage of instruction-level parallelism is essen-
tial. In the past, obtaining good CPU performance for grav-
itational kernels often required hand-tuned assembly code.
Implementing the complex high-order multipole interactions
using assembly code would be extremely difficult. Fortu-
nately, the gcc compiler comes to the rescue with vector
intrinsics [51]. We use gcc’s vector_size attribute, which
directs the compiler to use SSE or AVX vector instructions for
the labeled variables. By providing the interaction functions
with the appropriately aligned and interleaved data, gcc is
able to obtain near optimal SIMD performance from C code.

We have also implemented our gravitational interaction
functions with both CUDA and OpenCL kernels on NVIDIA
GPUs, obtaining single-precision performance of over 2 Tflops
on a K20x (Table 3). We have implemented these kernels
within 2HOT and demonstrated a 3x speedup over using the
CPU alone. The ultimate performance of our code on hybrid
GPU architectures depends on the ability of the to perform
a highly irregular tree-traversal quickly enough to provide
the necessary flow of floating-point intensive gravitational
interactions. A parallel scan and sort based on our space-
filling curve key assignment is one example of a successful
approach [4].

We have generally achieved near 40% of peak (single-
precision) CPU performance on the supercomputers we have
ported our code to over the past 20 years. We are working
toward demonstrating the performance of 2HOT on Titan,
using 18,688 NVIDIA K20x GPUs. With 25% of peak per-
formance, we would obtain near 20 Tflops on that machine.

3.4 Managing the Simulation Pipeline
In order to better integrate the various codes involved,

and to simplify the management of the multiple configura-
tion files per simulation, we have developed a Python [58]
metaprogramming environment to translate a high-level de-
scription of a simulation into the specific text configuration
files and shell scripts required to execute the entire simu-
lation pipeline. Without this environment, it would be ex-
tremely difficult to guarantee consistency among the various
components, or to reproduce earlier simulations after new
features have been added to the individual software agents.
It also allows us to programatically generate the configura-
tion of thousands of simulations at once, that would previ-
ously have to be configured manually.

3.4.1 Task Management
Modern simulation pipelines present a complex task for

queueing systems. Given the flexibility of 2HOT, which can
run on an arbitrary number of processors, or be interrupted
with enough notice to write a checkpoint, we would like to
control our tasks using higher-level concepts. We wish to
specify the general constraints on a simulation task and have
the system perform it in an efficient manner with as little

human attention as possible. For example, “Please run our
simulation that will require 1 million core-hours using as
many jobs in sequence as necessary on at least 10,000 cores
at a time, but use up to 2x as many cores if the wait for them
to become available does not increase the overall wallclock
time, and allow our job to be pre-empted by higher-priority
jobs by sending a signal at least 600 seconds in advance.”
Optimal scheduling of such requests from hundreds of users
on a machine with hundreds of thousands of processors is
NP-hard, but there seems to be ample room for improve-
ment over the current systems, even without an “optimal”
solution.

Data analysis often requires many smaller tasks, which
queueing systems and MPI libraries have limited support
for as well. We have developed an additional Python tool
called stask. It allows us to maintain a queue inside a
larger PBS or Moab allocation which can perform multiple
smaller simulations or data analysis tasks. It has also proven
useful to manage tens of thousands of independent tasks
for MapReduce style jobs on HPC hardware. For instance,
we have used this approach to generate 6-dimensional grids
of cosmological power spectra, as well as perform Markov-
Chain Monte Carlo analyses.

3.4.2 Checkpoints and I/O
2HOT reads and writes single files using collective MPI/IO

routines. We use our own self-describing file format (SDF),
which consists of ASCII metadata describing raw binary
particle data structures. I/O requirements are driven pri-
marily by the frequency of checkpoints, which is in turn
set by the probability of failure during a run. For the pro-
duction simulations described here, we experience a hard-
ware failure which ends the job about every million CPU
hours (80 wallclock hours on 12288 CPUs). Writing a 69
billion particle file takes about 6 minutes, so checkpointing
every 4 hours with an expected failure every 80 hours costs
2 hours in I/O and saves 4-8 hours of re-computation from
the last permanently saved snapshot. At LANL, we typi-
cally obtain 5-10 Gbytes/sec on a Panasas filesystem. We
have demonstrated the ability to read and write in excess
of 20 Gbytes/sec across 160 Lustre OSTs on the filesystem
at ORNL. By modifying our internal I/O abstraction to use
MPI/IO across 4 separate files to bypass the Lustre OST
limits, we have obtained I/O rates of 45 Gbytes/sec across
512 OSTs. These rates are sufficient to support simulations
at the 1012 particle scale at ORNL, assuming the failure rate
is not excessive.

3.4.3 Version Control of Source Code and Data
To assure strict reproducibility of the code and scripts

used for any simulation and to better manage development
distributed among multiple supercomputer centers, we use
the git version control system [56] for all of the codes in
the simulation pipeline, as well as our Python configuration
system. We additionally automatically propagate the git

tags into the metadata included in the headers of the data
which is produced from the tagged software.

3.4.4 Generating Initial Conditions
We use the Boltzmann code CLASS [30, 7] to calculate

the power spectrum of density fluctuations for a particular
cosmological model. A particular realization of this power
spectrum is constructed using a version of 2LPTIC [12] we

have modified to support more than 231 particles and use
the FFTW3 library.

3.4.5 Data Analysis
One of the most important analysis tasks is generating

halo catalogs from the particle data by identifying and label-
ing groups of particles. We use vfind [40] implemented with
the HOT library to perform both friend-of-friends (FOF)
and isodensity halo finding. More recently, we have adopted
the ROCKSTAR halo finder [6], contributing some scalabil-
ity enhancements to that software, as well as interfacing it
with SDF. Our plans for future data analysis involve devel-
oping interfaces to the widely-adopted yt Project [57], as
well as contributing the parallel domain decomposition and
tree traversal technology described here to yt.

Many of the mathematical routines we developed over the
years as needed for our evolution or analysis codes have been
replaced with superior implementations. The GSL [20] and
FFTW [17] libraries have been particularly useful.

4. SCALABILITY AND PERFORMANCE
In Table 1 we show the performance of our N-body code

on a sample of the major supercomputer architectures of the
past two decades. It is perhaps interesting to note that now a
single core has more memory and floating-point performance
than the fastest computer in the world in 1992 (the Intel
Delta, on which we won our first Gordon Bell prize [66]).
We show a typical breakdown among different phases of our
code in Table 2, and single processor performance in Table 3.

Year Site Machine Procs Tflop/s

2012 OLCF Cray XT5 (Jaguar) 262144 1790
2012 LANL Appro (Mustang) 24576 163
2011 LANL SGI XE1300 4096 41.7
2006 LANL Linux Networx 448 1.88
2003 LANL HP/Compaq (QB) 3600 2.79
2002 NERSC IBM SP-3(375/W) 256 0.058
1996 Sandia Intel (ASCI Red) 6800 0.465
1995 JPL Cray T3D 256 0.008
1995 LANL TMC CM-5 512 0.014
1993 Caltech Intel Delta 512 0.010

Table 1: Performance of HOT on a variety of parallel
supercomputers spanning 20 years of time and five
decades of performance.

We present strong scaling results measured on Jaguar in
Figure 5. These benchmarks represent a single timestep,
but are representative of all aspects of a production simu-
lation, including domain decomposition, tree construction,
tree traversal, force calculation and time integration, but do
not include I/O (our development allocation was not suffi-
cient to perform this set of benchmarks if they had included
I/O). Also, note that these results were using the code prior
to the implementation of background subtraction, so the er-
ror tolerance was set to a value resulting in about 4 times as
many interactions as the current version of the code would
require for this system.

5. ERROR ANALYSIS
Verifying the correctness of a large simulation is a complex

and difficult process. Analogous to the “distance ladder” in

computation stage time (sec)
Domain Decomposition 12

Tree Build 24
Tree Traversal 212

Data Communication During Traversal 26
Force Evaluation 350
Load Imbalance 80

Total (56.8 Tflops) 704

Table 2: Breakdown of computation stages in a sin-
gle timestep from a recent 40963 particle simula-
tion using 2HOT on 12288 processors of Mustang
at LANL. The force evaluation consisted of 1.05e15
hexadecapole interactions, 1.46e15 quadrupole in-
teractions and 4.68e14 monopole interactions, for a
total of 582,000 floating point operations per par-
ticle. Reducing the accuracy parameter to a value
consistent with other methods would reduce the op-
eration count by more than a factor of three.

Processor Gflop/s

2530-MHz Intel P4 (icc) 1.17
2530-MHz Intel P4 (SSE) 6.51
2600-MHz AMD Opteron 8435 13.88
2660-MHz Intel Xeon E5430 16.34
2100-MHz AMD Opteron 6172 (Hopper) 14.25
PowerXCell 8i (single SPE) 16.36
2200-MHz AMD Opteron 6274 (Jaguar) 16.97
2600-MHz Intel Xeon E5-2670 (AVX) 28.41
1300-MHz NVIDIA M2090 GPU (16 SMs) 1097.00
732-MHz NVIDIA K20X GPU (15 SMs) 2243.00

Table 3: Single core/GPU performance in Gflop/s
obtained with our gravitational micro-kernel bench-
mark for the monopole interaction. All numbers are
for single-precision calculations, calculated using 28
flops per interaction.

astronomy, where no single technique can measure the dis-
tances at all scales encountered in cosmology, we must use a
variety of methods to check the results of our calculations.
As an example, using the straightforward Ewald summa-
tion method to calculate the force on a single particle in
a 40963 simulation requires over 1014 floating point opera-
tions (potentially using 128-bit quadruple precision), so it
is impractical to use for more than a very small sample of
particles. However, it can be used to verify a faster method,
and the faster method can be used to check the accuracy of
the forces in a much larger system. Eventually, we reach the
stage where we can use 2HOT itself to check lower-accuracy
results by adjusting the accuracy parameter within the code
(as long as we are willing to pay the extra cost in computer
time for higher accuracy).

Additionally, writing simple tests to verify the behavior of
individual functions is essential. We have used Cython [5]
to wrap the functions in 2HOT, allowing them to be tested
from within a more flexible and efficient Python environ-
ment. In Figure 6 we show one such example, showing the
expected behavior of various orders of multipole interactions
vs distance.

We also can compare the results of 2HOT with other
codes, and investigate the convergence properties of various

104 105

Number of cores

102

103

Tfl
op

s

Cores Tflops Eff.
256k 1518 0.86
128k 852 0.96

64k 442 1.00
32k 222 1.00
16k 111 1.00

HOT Strong Scaling on Jaguar, 16384-262144 cores

Ideal scaling
128G particles

Figure 5: Scaling on Jaguar measured in June 2012.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

R
e
la

ti
v
e
 E

rr
o
r

(ε
)

Multipole error

p=0
p=2
p=4
p=6
p=8
(float32)

12 10 8 6 4 2
log10(ε) for r=4

0

20

40

60

80

100

120

C
o
u
n
t

p=0 (monopole)
p=2 (quadrupole)
p=4
p=6
p=8
direct sum (float32)

Figure 6: Error behavior for multipoles of various
order (p) for 512 particles randomly distributed in a
cube of size 1 at distance r. A single p = 8 multipole
is more accurate than direct summation in single
precision at r = 4.

parameters. One must always keep in mind that convergence
testing is necessary, but not sufficient, to prove correctness.
In a complex system there may be hidden parameters that
are not controlled for, or variables that interact in an un-
expected way, reducing the value of such tests. Having two
methods agree also does not prove that they are correct,
only that they are consistent.

In Figure 7 we show the sensitivity of the power spec-
trum to adjustments in various code parameters, as well
as comparing with the widely used GADGET2 [50] code.
The power spectrum is a sensitive diagnostic of errors at all
spatial scales, and can detect deficiencies in both the time
integration and force accuracy. We can conclude from these
graphs that 2HOT with the settings used for our scientific
results (an error tolerance of 10−5) produces power spectra
accurate to 1 part in 1000 at intermediate and large scales,
with parameters such as the smoothing length and start-
ing redshift dominating over the force errors at small scales.
2HOT also systematically differs from GADGET2 at scales
corresponding to the switch between tree and particle-mesh,
an effect also observed when comparing GADGET2 with
perturbation theory results at high redshift [52].

6. SCIENTIFIC RESULTS
The number of objects in the Universe of a given mass is

a fundamental statistic called the mass function. The mass
function is sensitive to cosmological parameters such as the
matter density, Ωm, the initial power spectrum of density
fluctuations, and the dark energy equation of state. Es-
pecially for very massive clusters (above 1015 solar masses
[M�/h]) the mass function is a sensitive probe of cosmol-
ogy. For these reasons, the mass function is a major target
of current observational programs [10]. Precisely modeling
the mass function at these scales is an enormous challenge
for numerical simulations, since both statistical and system-
atic errors conspire to prevent the emergence of an accu-
rate theoretical model (see [43] and references therein). The
dynamic range in mass and convergence tests necessary to
model systematic errors require multiple simulations at dif-
ferent resolutions, since even a 1012 particle simulation does
not have sufficient statistical power by itself.

1011 1012 1013 1014 1015 1016

M200 [M¯/h]

0.95

1.00

1.05

1.10

1.15

N
(M

)/
T
in

ke
r0

8

DS2013 Mass Function, Planck Cosmology, N =40963

L0 = 1 Gpc/h
L0 = 2 Gpc/h
L0 = 4 Gpc/h
L0 = 8 Gpc/h
L0 = 4 Gpc/h, WMAP1

Figure 8: A plot of the mass function from four
recent 40963 particle simulations computed with
2HOT. The scale of the computational volume
changes by a factor of two between each simulation
(so the particle mass changes by factors of 8). We
plot our data divided by the fit of Tinker08 [55] on
a linear y-axis. The figure shows the simulations are
internally consistent but deviate from the Tinker08
fit at large scales. Open symbols are used for halos
with 100-1000 particles, showing consistency at the
1% level down to 200 particles per halo.

Our HOT code was an instrumental part of the first cal-
culations to constrain the mass function at the 10% level
[61] with a series of sixteen 10243 simulations performed in
2005, accounting for about 4 × 1018 floating point opera-
tions. These results were further refined to a 5% level of
accuracy with the addition of simulations from other codes,
and the use of a more observationally relevant spherical over-
density (SO) mass definition [55]. With our suite of simula-
tions (twelve 40963 simulations, with an aggregate volume
of thousands of cubic Gpc, using roughly 20 million core-
hours and accounting for 4×1020 floating point operations),
we are able to probe effects at the 1% level in the SO mass
function above 1015M�/h for the first time.

10-2 10-1 100

k [h/Mpc]

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1.010

P
(k

)/
P

re
f(

k)

Np =10243, zi =49, L0 =1024 Mpc/h, 20483 FFT

2HOT, errtol=10−6 , dt/4 (reference)

2HOT, errtol=10−5 (standard parameters)

2HOT, errtol=10−4

2HOT, no DEC

2HOT, no DEC

2HOT, no 2LPTIC, no DEC

GADGET2, ErrTolForceAcc=0.005

10-2 10-1 100

k [h/Mpc]

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1.010

P
(k

)/
P

re
f(

k)

Np =5123, zi =49, L0 =1000 Mpc/h, 20483 FFT

2HOT, errtol=10−6 , dt/4 (reference)

2HOT, errtol=10−5 (standard parameters)

2HOT, errtol=10−4

2HOT, 1.4x smoothing

2HOT, Dehnen K1 smoothing

2HOT, z_i=99

GADGET2, ErrTolForceAcc=0.005

GADGET2, ErrTolForceAcc=0.002

GADGET2, ErrTolForceAcc=0.005, PMGRID=1024

Figure 7: We show the difference between the power spectra at z=0 using 2HOT and GADGET2 on 10243

particles in a 1Gpc/h box, as well as variations due to using the 2LPT correction to the initial conditions
and discretization error correction (DEC) of the same form as a cloud-in-cell deconvolution.. GADGET2 and
2HOT agree within 0.1% on large spatial scales, but GADGET2 is about 1% lower at k=1, in its TreePM
transition region. With a relaxed error tolerance of 10−4 (10x the value used for our scientific results, which
results in a 3x reduction in the number of interactions) 2HOT demonstrates errors at the 0.5% level at large
scales, with errors at the 0.1% level at small scales. Not using 2LPTIC initial conditions reduces the power
spectrum at k=1 by more than 2% (blue curve). The lower panel shows the same graphs using a lower 5123

particle resolution (8x higher particle mass). We note the GADGET2 results differ among themselves at
the 0.5% level, depending on the chosen parameters. The change in resolution moves the TreePM transition
region for GADGET2 to a spatial scale 2x as large (k reduced a factor of 2) compared with the previous
figure. The effects of changing the smoothing kernel (blue) and smoothing length (green) are also shown.

Some highlights of our scientific results for the mass func-
tion of dark matter halos (Figure 8) are:

• We provide the first mass function calculated from a
suite of simulations using the new standard Planck
2013 cosmology (with a 40963 particle simulation and
six 20483 simulations completed and shared with our
collaborators within 30 days of the publication of the
Planck 2013 results). Changes in the parameters from
the previous WMAP7 model are large enough that ex-
trapolations from the other cosmologies [2, 1] are likely
subject to systematic errors which are large compared

to the statistical precision of our results.

• We find the Tinker08 [55] result underestimates the
mass function at scales of 1015M�/h by about 5%
when compared with the older WMAP1 cosmological
model it was calibrated against.

• For the Planck 2013 cosmology, the Tinker08 mass
function is 10-15% low at large scales, due to the added
systematic effect of non-universality in the underlying
theoretical model.

• We identify a systematic error stemming from the im-

proper growth of modes near the Nyquist frequency,
due to the discrete representation of the continuous
Fourier modes in the ideal input power spectrum with
a fixed number of particles. This is a resolution depen-
dent effect which is most apparent when using particle
masses larger than 1011M� (corresponding to using
less than 1 particle per cubic Mpc/h). Uncertainty
in the appropriate correction and consequences of this
effect appear to be the dominant source of system-
atic error in our results, where statistical uncertainties
prevent us from ruling out a 1% underestimate of the
mass function at scales of 2×1015M�/h and larger. If
uncontrolled, this discretization error confounds con-
vergence tests which attempt to isolate the effects of
the starting redshift of the simulation [31, 43], since
the error becomes larger at higher starting redshifts.

• We are in direct conflict with recent results [71] (see
their Figure 13) which find the SO mass function to
be lower than the the Tinker08 result at high masses.
Potential explanations would be insufficient force ac-
curacy of the CUBEP3M code [24] (c.f. their Figure 7
showing force errors of order 50% at a separation of
a few mesh cells), with a secondary contribution from
initial conditions that did not use 2LPT [12] correc-
tions (more recent simulations in [72] appear consistent
with our results up to 2× 1015M�/h).

7. CONCLUSION
Using the background subtraction technique described in

Section 2.2.1 improved the efficiency of our treecode algo-
rithm for cosmological simulations by about a factor of three
when using a relatively strict tolerance (10−5), resulting in a
total absolute force error of about 0.1% of the typical force.
We have evidence that accuracy at this level is required for
high-precision scientific results, and we have used that toler-
ance for the results presented here. That accuracy requires
about 600,000 floating point operations per particle (com-
ing mostly from∼2000 hexadecapole interactions). Relaxing
the error parameter by a factor of 10 (reducing the total ab-
solute error by a factor of three) reduces the operation count
per particle to 200,000.

We can compare our computational efficiency with the
2012 Gordon Bell Prize winning TreePM N-body applica-
tion [26] which used 140,000 floating point operations per
particle. The θ parameter for the Barnes-Hut algorithm in
that work was not specified, so it is difficult to estimate the
effective force accuracy in their simulation. Modulo being
able to precisely compare codes at the same accuracy, this
work demonstrates that a pure treecode can be competitive
with TreePM codes in large periodic cosmological volumes.
The advantage of pure treecodes grows significantly as appli-
cations move to higher resolutions in smaller volumes, use
simulations with multiple hierarchical resolutions, and re-
quire non-periodic boundary conditions.

Our experience with HOT over the past twenty years per-
haps provides a reasonable baseline to extrapolate for the
next ten years. The Intel Delta machine provided 512 single
processor nodes running at 40 MHz and no instruction-level
parallelism (concurrency of 512). The benchmark we ran on
Jaguar had 16,384 16-core nodes running at 2.2GHz and 4-
wide single-precision multiply-add SSE instructions (concur-
rency of 2.1 million). The performance difference for HOT

of 180,000 between these machines is nicely explained from a
factor of 55 in clock rate, a factor of 4096 in concurrency, and
the loss of about 20% in efficiency. (Most of the efficiency
loss is simply the fact that the gravitational inner loop can
not balance multiplies and adds, so FMA instructions can
not be fully utilized).

Looking to the future, if we guess clock rates go down a
factor of two for better power utilization, and we lose up to
a factor of two in efficiency, we would need an additional
factor of 2000 in concurrency to reach an exaflop. A factor
of 64 is gained going to 256-wide vector operations, leaving
us with 32x as many cores. A machine with 8 million cores
is daunting, but measured logarithmically the jump from
log2(512) = 9 on the Delta to log2(262144) = 18 on Jaguar
is twice as large as the jump from Jaguar to an exaflop ma-
chine with log2(Ncores) of 23. Assuming the hardware de-
signers make sufficient progress on power and fault-tolerance
challenges, the basic architecture of 2HOT should continue
to serve at the exascale level.

8. ACKNOWLEDGMENTS
We gratefully acknowledge John Salmon for his many con-

tributions to the initial version of HOT, and helpful com-
ments on a draft version of this manuscript. We thank Mark
Galassi for his memory management improvements to 2HOT
and Ben Bergen for assistance with the OpenCL implemen-
tation. We thank the Institutional Computing Program at
LANL for providing the computing resources used for our
production simulations. This research used resources of the
Oak Ridge Leadership Computing Facility at Oak Ridge Na-
tional Laboratory, which is supported by the Office of Sci-
ence of the Department of Energy under Contract DE-AC05-
00OR22725. This research also used resources of the Na-
tional Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. This
research was performed under the auspices of the National
Nuclear Security Administration of the U. S. Department of
Energy under Contract DE-AC52-06NA25396.

9. REFERENCES

[1] R. E. Angulo, V. Springel, S. D. M. White, A. Jenk-
ins, C. M. Baugh, and C. S. Frenk. Scaling relations
for galaxy clusters in the Millennium-XXL simulation.
arXiv:1203.3216, 2012.

[2] R. E. Angulo and S. D. M. White. One simulation to
fit them all – changing the background parameters of
a cosmological N-body simulation. Monthly Notices of
the Royal Astronomical Society, 405(1):143–154, 2010.

[3] P. Balaji, et al. MPI on millions of cores. Parallel
Processing Letters, 21(01):45–60, 2011.

[4] J. Bédorf, E. Gaburov, and S. Portegies Zwart. A sparse
octree gravitational N-body code that runs entirely on
the GPU processor. Journal of Computational Physics,
231(7):2825–2839, 2012.

[5] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Selje-
botn, and K. Smith. Cython: The best of both worlds.
Computing in Science Engineering, 13(2):31–39, 2011.

[6] P. S. Behroozi, R. H. Wechsler, and H. Wu. The ROCK-
STAR phase-space temporal halo finder and the veloc-
ity offsets of cluster cores. The Astrophysical Journal,
762(2):109, 2013.

http://arxiv.org/abs/1203.3216
http://arxiv.org/abs/1203.3216
http://arxiv.org/abs/0912.4277
http://arxiv.org/abs/0912.4277
http://arxiv.org/abs/0912.4277
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000060?journalCode=ppl
http://www.sciencedirect.com/science/article/pii/S0021999111007364
http://www.sciencedirect.com/science/article/pii/S0021999111007364
http://www.sciencedirect.com/science/article/pii/S0021999111007364
http://www.cython.org
http://iopscience.iop.org/0004-637X/762/2/109
http://iopscience.iop.org/0004-637X/762/2/109
http://iopscience.iop.org/0004-637X/762/2/109

[7] D. Blas, J. Lesgourgues, and T. Tram. The cosmic
linear anisotropy solving system (CLASS). part II: ap-
proximation schemes. Journal of Cosmology and As-
troparticle Physics, 2011(07):034, 2011.

[8] M. Challacombe, C. White, and M. Head-Gordon.
Periodic boundary conditions and the fast multi-
pole method. The Journal of Chemical Physics,
107(23):10131–10140, 1997.

[9] Planck Collaboration. Planck 2013 results. XVI. cos-
mological parameters. arXiv:1303.5076, 2013.

[10] Planck Collaboration. Planck 2013 results. XX.
cosmology from Sunyaev-Zeldovich cluster counts.
arXiv:1303.5080, 2013.

[11] National Research Council. New worlds, new horizons
in astronomy and astrophysics. National Academies
Press, 2010.

[12] M. Crocce, S. Pueblas, and R. Scoccimarro. Tran-
sients from initial conditions in cosmological simula-
tions. Monthly Notices of the Royal Astronomical Soci-
ety, 373(1):369–381, 2006.

[13] W. Dehnen. Towards optimal softening in three-
dimensional N-body codes – I. minimizing the force er-
ror. Monthly Notices of the Royal Astronomical Society,
324(2):273–291, 2001.

[14] G. Efstathiou, M. Davis, S. D. M. White, and C. S.
Frenk. Numerical techniques for large cosmological N-
body simulations. The Astrophysical Journal Supple-
ment Series, 57:241–260, 1985.

[15] C. I. Ellinger, P. A. Young, C. L. Fryer, and G. Rock-
efeller. A case study of small scale structure formation
in 3D supernova simulations. arXiv:1206.1834, 2012.

[16] W. Feng. Making a case for efficient supercomputing.
Queue, 1(7):54–64, 2003.

[17] M. Frigo and S. G. Johnson. FFTW: an adaptive soft-
ware architecture for the FFT. In Acoustics, Speech
and Signal Processing, 1998. Proceedings of the 1998
IEEE International Conference on, volume 3, page
1381–1384. 1998.

[18] C. L. Fryer, G. Rockefeller, and M. S. Warren. SNSPH:
a parallel three-dimensional smoothed particle radia-
tion hydrodynamics code. The Astrophysical Journal,
643(1):292, 2006.

[19] C. L. Fryer and M. S. Warren. Modeling Core-Collapse
supernovae in three dimensions. The Astrophysical
Journal Letters, 574(1):L65, 2002.

[20] M. Galassi, et al. GNU scientific library. Network The-
ory, 2007.

[21] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wan-
delt, F. K. Hansen, M. Reinecke, and M. Bartelmann.
HEALPix: a framework for high-resolution discretiza-
tion and fast analysis of data distributed on the sphere.
The Astrophysical Journal, 622(2):759, 2005.

[22] A. G. Gray and A. W. Moore. N-Body problems in sta-
tistical learning. Advances in neural information pro-
cessing systems, page 521–527, 2001.

[23] M. Griebel and G. Zumbusch. Parallel multigrid in an
adaptive PDE solver based on hashing and space-filling
curves. Parallel Computing, 25(7):827–843, 1999.

[24] J. Harnois-Deraps, U. Pen, I. T. Iliev, H. Merz, J. D.
Emberson, and V. Desjacques. High performance P3M
N-body code: CUBEP3M. arXiv:1208.5098, 2012.

[25] L. Hernquist, F. R. Bouchet, and Y. Suto. Application
of the ewald method to cosmological N-body simula-

tions. The Astrophysical Journal Supplement Series,
75:231–240, 1991.

[26] T. Ishiyama, K. Nitadori, and J. Makino. 4.45 pflops
astrophysical N-Body simulation on K computer – the
gravitational Trillion-Body problem. arXiv:1211.4406,
2012.

[27] P. Jetley, F. Gioachin, C. Mendes, L. Kale, and
T. Quinn. Massively parallel cosmological simulations
with ChaNGa. In IEEE International Symposium on
Parallel and Distributed Processing, 2008. IPDPS 2008,
pages 1–12. 2008.

[28] A. Kawai and J. Makino. Pseudoparticle multipole
method: A simple method to implement a high-
accuracy tree code. The Astrophysical Journal Letters,
550(2):L143, 2001.

[29] M. Kuhlen, M. Vogelsberger, and R. Angulo. Numerical
simulations of the dark universe: State of the art and
the next decade. arXiv:1209.5745, 2012.

[30] J. Lesgourgues. The cosmic linear anisotropy solving
system (CLASS) I: Overview. arXiv:1104.2932, 2011.

[31] Z. Lukić, K. Heitmann, S. Habib, S. Bashinsky, and
P. M. Ricker. The halo mass function: High-Redshift
evolution and universality. The Astrophysical Journal,
671(2):1160, 2007.

[32] P. MacNeice, K. M. Olson, C. Mobarry,
R. de Fainchtein, and C. Packer. PARAMESH: a
parallel adaptive mesh refinement community toolkit.
Computer physics communications, 126(3):330–354,
2000.

[33] P. M. Mcllroy, K. Bostic, and M. D. Mcllroy. Engineer-
ing radix sort. Computing systems, 6(1):5–27, 1993.

[34] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Im-
proving memory hierarchy performance for irregular
applications. In Proceedings of the 13th international
conference on Supercomputing, ICS ’99, page 425–433.
ACM, New York, NY, USA, 1999.

[35] M. Metchnik. A Fast N-Body Scheme for Computa-
tional Cosmology. Ph.D. thesis, U. Arizona., 2009.

[36] B. Nijboer and F. De Wette. On the calculation of
lattice sums. Physica, 23(1–5):309–321, 1957.

[37] J. Ousterhout. Why threads are a bad idea (for most
purposes). In Presentation given at the 1996 Usenix
Annual Technical Conference, volume 5. 1996.

[38] M. Parashar and J. Browne. On partitioning dynamic
adaptive grid hierarchies. In System Sciences, 1996.,
Proceedings of the Twenty-Ninth Hawaii International
Conference on ,, volume 1, pages 604–613 vol.1. 1996.

[39] P. J. E. Peebles. Large-Scale Structure of the Universe.
Princeton University Press, 1980.

[40] D. W. Pfitzner, J. K. Salmon, T. Sterling, P. Stolorz,
and R. Musick. Halo world: Tools for parallel clus-
ter finding in astrophysical N-body simulations. In
P. Stolorz and R. Musick, editors, Scalable High Perfor-
mance Computing for Knowledge Discovery and Data
Mining, pages 81–100. Springer US, 1998.

[41] P. Ploumhans, G. Winckelmans, J. Salmon, A. Leonard,
and M. Warren. Vortex methods for direct numerical
simulation of Three-Dimensional bluff body flows: Ap-
plication to the sphere at re=300, 500, and 1000. Jour-
nal of Computational Physics, 178(2):427–463, 2002.

[42] T. Quinn, N. Katz, J. Stadel, and G. Lake. Time
stepping N-body simulations. arXiv:astro-ph/9710043,
1997.

http://iopscience.iop.org/1475-7516/2011/07/034
http://iopscience.iop.org/1475-7516/2011/07/034
http://iopscience.iop.org/1475-7516/2011/07/034
http://jcp.aip.org/resource/1/jcpsa6/v107/i23/p10131_s1
http://jcp.aip.org/resource/1/jcpsa6/v107/i23/p10131_s1
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1303.5080
http://arxiv.org/abs/1303.5080
http://www.nap.edu/catalog.php?record_id=12951
http://www.nap.edu/catalog.php?record_id=12951
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2006.11040.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2006.11040.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2006.11040.x/abstract
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-8711.2001.04237.x/abstract
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-8711.2001.04237.x/abstract
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-8711.2001.04237.x/abstract
http://adsabs.harvard.edu/abs/1985ApJS...57..241E
http://adsabs.harvard.edu/abs/1985ApJS...57..241E
http://arxiv.org/abs/1206.1834
http://arxiv.org/abs/1206.1834
http://doi.acm.org/10.1145/957717.957772
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=681704
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=681704
http://iopscience.iop.org/0004-637X/643/1/292
http://iopscience.iop.org/0004-637X/643/1/292
http://iopscience.iop.org/0004-637X/643/1/292
http://iopscience.iop.org/1538-4357/574/1/L65
http://iopscience.iop.org/1538-4357/574/1/L65
http://www.gnu.org/software/gsl
http://iopscience.iop.org/0004-637X/622/2/759
http://iopscience.iop.org/0004-637X/622/2/759
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.7138&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.7138&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S0167819199000204
http://www.sciencedirect.com/science/article/pii/S0167819199000204
http://www.sciencedirect.com/science/article/pii/S0167819199000204
http://arxiv.org/abs/1208.5098
http://arxiv.org/abs/1208.5098
http://adsabs.harvard.edu/full/1991ApJS...75..231H
http://adsabs.harvard.edu/full/1991ApJS...75..231H
http://adsabs.harvard.edu/full/1991ApJS...75..231H
http://arxiv.org/abs/1211.4406
http://arxiv.org/abs/1211.4406
http://arxiv.org/abs/1211.4406
http://charm.cs.uiuc.edu/newPapers/08-03/paper.pdf
http://charm.cs.uiuc.edu/newPapers/08-03/paper.pdf
http://iopscience.iop.org/1538-4357/550/2/L143
http://iopscience.iop.org/1538-4357/550/2/L143
http://iopscience.iop.org/1538-4357/550/2/L143
http://arxiv.org/abs/1209.5745
http://arxiv.org/abs/1209.5745
http://arxiv.org/abs/1209.5745
http://arxiv.org/abs/1104.2932
http://arxiv.org/abs/1104.2932
http://iopscience.iop.org/0004-637X/671/2/1160
http://iopscience.iop.org/0004-637X/671/2/1160
https://www.usenix.org/publications/compsystems/1993/win_mcilroy.pdf
https://www.usenix.org/publications/compsystems/1993/win_mcilroy.pdf
http://doi.acm.org/10.1145/305138.305228
http://doi.acm.org/10.1145/305138.305228
http://doi.acm.org/10.1145/305138.305228
http://www.sciencedirect.com/science/article/pii/S0031891457921249
http://www.sciencedirect.com/science/article/pii/S0031891457921249
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS06/V_MW/Uebung/doc/ouster.ps
http://www4.informatik.uni-erlangen.de/DE/Lehre/WS06/V_MW/Uebung/doc/ouster.ps
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.7987&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.7987&rep=rep1&type=pdf
http://link.springer.com/chapter/10.1007/978-1-4615-5669-5_4
http://link.springer.com/chapter/10.1007/978-1-4615-5669-5_4
http://www.sciencedirect.com/science/article/pii/S002199910297035X
http://www.sciencedirect.com/science/article/pii/S002199910297035X
http://www.sciencedirect.com/science/article/pii/S002199910297035X
http://arxiv.org/abs/astro-ph/9710043
http://arxiv.org/abs/astro-ph/9710043

[43] D. S. Reed, R. E. Smith, D. Potter, A. Schneider,
J. Stadel, and B. Moore. Toward an accurate mass func-
tion for precision cosmology. arXiv:1206.5302, 2012.

[44] A. G. Riess, et al. Type ia supernova discoveries at z
> 1 from the hubble space telescope: Evidence for past
deceleration and constraints on dark energy evolution.
The Astrophysical Journal, 607(2):665, 2004.

[45] J. K. Salmon and M. S. Warren. Skeletons from the
treecode closet. Journal of Computational Physics,
111(1):136–155, 1994.

[46] Z. F. Seidov and P. I. Skvirsky. Gravitational potential
and energy of homogeneous rectangular parallelepiped.
arXiv:astro-ph/0002496, 2000.

[47] G. F. Smoot, et al. Structure in the COBE differential
microwave radiometer first-year maps. The Astrophys-
ical Journal, 396:L1–L5, 1992.

[48] E. Solomonik and L. Kale. Highly scalable parallel sort-
ing. In 2010 IEEE International Symposium on Parallel
Distributed Processing (IPDPS), pages 1–12. 2010.

[49] D. N. Spergel, et al. First-year wilkinson microwave
anisotropy probe (WMAP) observations: determina-
tion of cosmological parameters. The Astrophysical
Journal Supplement Series, 148(1):175, 2003.

[50] V. Springel. The cosmological simulation code gadget-
2. Monthly Notices of the Royal Astronomical Society,
364(4):1105–1134, 2005.

[51] R. M. Stallman. Using and porting the gnu compiler
collection. Free Software Foundation, 1989.

[52] A. Taruya, F. Bernardeau, T. Nishimichi, and
S. Codis. RegPT: direct and fast calculation of regu-
larized cosmological power spectrum at two-loop order.
arXiv:1208.1191, 2012.

[53] M. Tegmark, et al. Cosmological parameters from SDSS
and WMAP. Physical Review D, 69(10):103501, 2004.

[54] R. Thakur, et al. MPI at exascale. Procceedings of
SciDAC, 2010.

[55] J. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian,
M. Warren, G. Yepes, S. Gottlöber, and D. E. Holz.
Toward a halo mass function for precision cosmology:
The limits of universality. The Astrophysical Journal,
688(2):709, 2008.

[56] L. Torvalds and J. Hamano. GIT-fast version control
system. 2005.

[57] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W.
Skillman, T. Abel, and M. L. Norman. yt: A multi-code
analysis toolkit for astrophysical simulation data. The
Astrophysical Journal Supplement Series, 192:9, 2011.

[58] G. Van Rossum and F. L. Drake Jr. Python reference
manual. Centrum voor Wiskunde en Informatica, 1995.

[59] J. Waldvogel. The newtonian potential of a homoge-
neous cube. Zeitschrift für angewandte Mathematik und
Physik ZAMP, 27(6):867–871, 1976.

[60] M. Warren, J. Salmon, D. Becker, M. Goda, T. Sterling,
and W. Winckelmans. Pentium pro inside: I. a treecode
at 430 gigaflops on ASCI red, II. Price/Performance
of $50/mflop on Loki and Hyglac. In Supercomputing,
ACM/IEEE 1997 Conference, pages 61–61. 1997.

[61] M. S. Warren, K. Abazajian, D. E. Holz, and
L. Teodoro. Precision determination of the mass func-
tion of dark matter halos. The Astrophysical Journal,
646(2):881, 2006.

[62] M. S. Warren, D. J. Becker, M. P. Goda, J. K. Salmon,
and T. Sterling. Parallel supercomputing with com-

modity components. In Proceedings of the Interna-
tional Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’97), page
1372–1381. 1997.

[63] M. S. Warren and B. Bergen. Poster: The hashed Oct-
Tree N-Body algorithm at a petaflop. In High Perfor-
mance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, page 1442–1442. 2012.

[64] M. S. Warren, C. L. Fryer, and M. P. Goda. The space
simulator: Modeling the universe from supernovae to
cosmology. In Proceedings of the 2003 ACM/IEEE con-
ference on Supercomputing, SC ’03, page 30–. ACM,
New York, NY, USA, 2003.

[65] M. S. Warren, T. C. Germann, P. S. Lomdahl, D. M.
Beazley, and J. K. Salmon. Avalon: an Alpha/Linux
cluster achieves 10 gflops for $150k. In Proceedings of
the 1998 ACM/IEEE conference on Supercomputing,
Supercomputing ’98, page 1–11. IEEE Computer So-
ciety, Washington, DC, USA, 1998.

[66] M. S. Warren and J. K. Salmon. Astrophysical N-body
simulations using hierarchical tree data structures. In
Supercomputing ’92. Proceedings, page 570–576. 1992.

[67] M. S. Warren and J. K. Salmon. A parallel hashed
Oct-Tree N-body algorithm. In Proceedings of the 1993
ACM/IEEE conference on Supercomputing, Supercom-
puting ’93, page 12–21. ACM, New York, NY, USA,
1993.

[68] M. S. Warren and J. K. Salmon. A portable parallel
particle program. Computer Physics Communications,
87(1–2):266–290, 1995.

[69] M. S. Warren, E. H. Weigle, and W. Feng. High-density
computing: a 240-processor beowulf in one cubic meter.
In Supercomputing, ACM/IEEE 2002 Conference, page
61–61. 2002.

[70] M. S. Warren, W. Zurek, P. Quinn, and J. Salmon.
The shape of the invisible halo: N-body simulations on
parallel supercomputers. AIP Conference Proceedings,
222:216, 1991.

[71] W. A. Watson, I. T. Iliev, A. D’Aloisio, A. Knebe, P. R.
Shapiro, and G. Yepes. The halo mass function through
the cosmic ages. arXiv:1212.0095, 2012.

[72] W. A. Watson, I. T. Iliev, J. M. Diego, S. Gottlöber,
A. Knebe, E. Mart́ınez-González, and G. Yepes. Statis-
tics of extreme objects in the juropa hubble volume sim-
ulation. arXiv e-print 1305.1976, 2013.

[73] J. J. Willcock, T. Hoefler, N. G. Edmonds, and
A. Lumsdaine. AM++: a generalized active message
framework. In Proceedings of the 19th international
conference on Parallel architectures and compilation
techniques, PACT ’10, page 401–410. 2010.

[74] S. Wolfram. The MATHEMATICA R© Book, Version
4. Cambridge University Press, 4 edition, 1999.

[75] J. Wu, Z. Lan, X. Xiong, N. Y. Gnedin, and A. V.
Kravtsov. Hierarchical task mapping of cell-based AMR
cosmology simulations. In SC ’12, page 75:1–75:10.
IEEE Computer Society Press, Los Alamitos, CA, USA,
2012.

[76] L. Ying, G. Biros, and D. Zorin. A kernel-
independent adaptive fast multipole algorithm in two
and three dimensions. Journal of Computational
Physics, 196(2):591–626, 2004.

[77] R. Yokota. An FMM based on dual tree traversal for
many-core architectures. arXiv:1209.3516, 2012.

http://arxiv.org/abs/1206.5302
http://arxiv.org/abs/1206.5302
http://iopscience.iop.org/0004-637X/607/2/665
http://iopscience.iop.org/0004-637X/607/2/665
http://iopscience.iop.org/0004-637X/607/2/665
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://arxiv.org/abs/astro-ph/0002496
http://arxiv.org/abs/astro-ph/0002496
http://adsabs.harvard.edu/full/1992ApJ...396L...1S
http://adsabs.harvard.edu/full/1992ApJ...396L...1S
http://iopscience.iop.org/0067-0049/148/1/175
http://iopscience.iop.org/0067-0049/148/1/175
http://iopscience.iop.org/0067-0049/148/1/175
http://arxiv.org/abs/astro-ph/0505010
http://arxiv.org/abs/astro-ph/0505010
http://gcc.gnu.org
http://gcc.gnu.org
http://arxiv.org/abs/1208.1191
http://arxiv.org/abs/1208.1191
http://link.aps.org/doi/10.1103/PhysRevD.69.103501
http://link.aps.org/doi/10.1103/PhysRevD.69.103501
http://aegjcef.unixer.de/publications/img/mpi_exascale.pdf
http://iopscience.iop.org/0004-637X/688/2/709
http://iopscience.iop.org/0004-637X/688/2/709
http://git-scm.com
http://git-scm.com
http://adsabs.harvard.edu/abs/2011ApJS..192....9T
http://adsabs.harvard.edu/abs/2011ApJS..192....9T
http://link.springer.com/article/10.1007/BF01595137
http://link.springer.com/article/10.1007/BF01595137
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.6235&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.6235&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.6235&rep=rep1&type=pdf
http://iopscience.iop.org/0004-637X/646/2/881
http://iopscience.iop.org/0004-637X/646/2/881
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.2019&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.2019&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6496028
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6496028
http://doi.acm.org/10.1145/1048935.1050181
http://doi.acm.org/10.1145/1048935.1050181
http://doi.acm.org/10.1145/1048935.1050181
http://dl.acm.org/citation.cfm?id=509058.509130
http://dl.acm.org/citation.cfm?id=509058.509130
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.1721&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.1721&rep=rep1&type=pdf
http://doi.acm.org/10.1145/169627.169640
http://doi.acm.org/10.1145/169627.169640
http://www.sciencedirect.com/science/article/pii/0010465594001774
http://www.sciencedirect.com/science/article/pii/0010465594001774
http://www.lanl.gov/radiant/pubs/sss/sc2002-sss.pdf
http://www.lanl.gov/radiant/pubs/sss/sc2002-sss.pdf
http://arxiv.org/abs/1212.0095
http://arxiv.org/abs/1212.0095
http://arxiv.org/abs/1305.1976
http://arxiv.org/abs/1305.1976
http://arxiv.org/abs/1305.1976
http://doi.acm.org/10.1145/1854273.1854323
http://doi.acm.org/10.1145/1854273.1854323
http://dl.acm.org/citation.cfm?id=2388996.2389098
http://dl.acm.org/citation.cfm?id=2388996.2389098
http://www.sciencedirect.com/science/article/pii/S0021999103006090
http://www.sciencedirect.com/science/article/pii/S0021999103006090
http://www.sciencedirect.com/science/article/pii/S0021999103006090
http://arxiv.org/abs/1209.3516
http://arxiv.org/abs/1209.3516

	Introduction
	Mathematical Approach
	Equations of Motion
	Multipole Methods
	Background Subtraction
	Multipole Error Bounds

	Time Integration
	Boundary Conditions
	Force Smoothing

	Computational Approach
	Domain Decomposition
	Tree Construction and Traversal
	Improving instruction-level parallelism
	Managing the Simulation Pipeline
	Task Management
	Checkpoints and I/O
	Version Control of Source Code and Data
	Generating Initial Conditions
	Data Analysis

	Scalability and Performance
	Error Analysis
	Scientific Results
	Conclusion
	Acknowledgments
	References

