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Atomistic simulation of protein adsorption on a solid surface in aqueous environment is computationally
demanding, therefore the determination of preferred protein orientations on the solid surface usually
serves as an initial step in simulation studies. We have developed a hybrid multi-loop genetic-algo-
rithm/simplex/spatial-grid method to search for low adsorption-energy orientations of a protein molecule
on a solid surface. In this method, the surface and the protein molecule are treated as rigid bodies,
whereas the bulk fluid is represented by spatial grids. For each grid point, an effective interaction region
in the surface is defined by a cutoff distance, and the possible interaction energy between an atom at the
grid point and the surface is calculated and recorded in a database. In searching for the optimum posi-
tion and orientation, the protein molecule is translated and rotated as a rigid body with the configuration
obtained from a previous Molecular Dynamic simulation. The orientation-dependent protein–surface in-
teraction energy is obtained using the generated database of grid energies. The hybrid search procedure
consists of two interlinked loops. In the first loop A, a genetic algorithm (GA) is applied to identify
promising regions for the global energy minimum and a local optimizer with the derivative-free Nelder–
Mead simplex method is used to search for the lowest-energy orientation within the identified regions.
In the second loop B, a new population for GA is generated and competitive solution from loop A is
improved. Switching between the two loops is adaptively controlled by the use of similarity analysis. We
test the method for lysozyme adsorption on a hydrophobic hydrogen-terminated silicon (110) surface in
implicit water (i.e., a continuum distance-dependent dielectric constant). The results show that the hy-
brid search method has faster convergence and better solution accuracy compared with the conventional
genetic algorithm.

 2008 Elsevier B.V. All rights reserved.

1. Introduction

Protein adsorption on solid surfaces has been a focus of intense
research for more than three decades. In order to control and ma-
nipulate protein adsorption, the mechanisms which govern the ad-
sorption process need to be well understood. Atomistic Molecular
Dynamic (MD) simulation is an important computational technique
used to model the interatomic interactions realistically and to elu-
cidate the orientation alignments and conformation evolution of
an adsorbed protein molecule. Due to its large size, protein molec-
ular rotation is slow if compared with other dynamic events such
as segment relaxation and local conformational changes. Therefore,
the determination of the preferred protein orientations on the solid
surface usually serves as an initial step in simulation studies. Typ-
ically, brute-force search is applied to predict lysozyme retention
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behavior on a poly(vinylimidazole) polymer using detailed molecu-
lar models of protein and the surface and an implicit water model
[1]. Orientation-dependent free energy contours were developed
by searching the configurational space with the use of a quaternion
rotation and grid-based calculation method with an empirical en-
ergy function and implicit solvent models [2]. Alternatively, Monte
Carlo (MC) simulations can be employed to identify the lowest en-
ergy protein orientations in a continuum solvent medium prior to
conduction of actual MD simulation in explicit water medium [3].
Brownian dynamics simulation is also commonly used to study the
initial stages of protein adsorption behaviors [4].

Genetic algorithms (GAs) are intelligent stochastic methods, in-
spired by the Darwinian natural evolution principle of “survival
of the fittest”. GAs have wide applications as global optimization
methods with distinguishing characteristics such as being highly
parallel, robust and derivative-free. GAs exhibit great efficiency and
accuracy in studies involving molecular geometry optimization for
systems with a large number of atoms and a large number of local
energy minima, whereas conventional MD simulation and simu-
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lated annealing techniques can be trapped in local minima [5,6].
GA defines a genetic representation of the solution domain char-
acterized by a fitness function. A standard evolution proceeds in
cycles of initialization, selection and reproduction until termination
conditions have been reached. Standard GAs are known to be weak
in the exploration of optimum solutions and to suffer from “pre-
mature” convergence. A number of hybrid GAs have been proposed
to improve the performance of standard GA [7]. Intensive research
has been carried out to address the problem of premature conver-
gence in the application of GA in automatic protein/ligand docking
and structure-based design, with focuses on algorithm design [8],
the fitness function design [9,10], and the choice of operator com-
bination [11].

Locating the optimum orientations of an adsorbed protein
molecule on a solid surface is a complicated global optimum
problem and needs to sample enormous space, similar to the pro-
tein/ligand docking problem. In this paper, we present an effective
method for searching the low energy protein location and orienta-
tions on a solid surface. The method combines an adaptive, hybrid
GA/NM-simplex search and spatial grid-based atom–surface inter-
action energy computations. Adsorption of lysozyme on a H–Si
(110) surface is studied as a model system. Chicken egg lysozyme
has been extensively studied [12] as a model protein in order to
understand the mechanism of protein structure, folding, function
and adsorption behavior. Hydrogen-terminated Si (H–Si) surfaces
are frequently used in adsorption studies because they can ef-
fectively suppress the formation of the oxidation layer and can
also be modified to vary the surface morphological, hydropho-
bic/hydrophilic and chemical properties [13–15]. We compare the
performances of the hybrid-GA loop search and a standard GA in
locating the optimum lysozyme orientations and distances from
the H–Si surface. The accuracy of the searches is verified by com-
parison to the results obtained by a brute-force contour search.

2. Method

In this paper, the surface and the protein molecule are treated
as rigid bodies. The surface is modeled as a hydrophobic (110)
silicon cleavage plane with dimensions 65.3 Å × 70.5 Å × 18 Å,
terminated by hydrogen atoms at the top. The lysozyme con-
figuration was previously deduced by a bulk all-atom MD sim-
ulation in explicit water at pH = 7.4. The simulated lysozyme
structure is in good agreement with solution NMR data (PDB
code: 1E8LA) [12], which was downloaded from the protein data
bank (http://www.rcsb.org/pdb/home/home.do). An implicit water
model (i.e., a continuum with distance-dependent dielectric con-
stant) is chosen to simulate the aqueous environment. The rigid
body and implicit water assumption are justified here because our
interest in this study is to establish the initial orientation and posi-
tion of a protein molecule on the surface as the first step to a full
MD simulation, in which water is explicitly modeled and protein
relaxation is permitted.

2.1. Empirical energy function and grid-based computation

The interatomic interaction energy between a lysozyme mole-
cule and the Si–H surface includes van der Waals (vdW) energy
and electrostatic energy represented by Consistent Valence Force
Field (CVFF) parameters [16]. The protein–surface interaction en-
ergy is obtained by summing over all protein atoms (Np) and all
surface atoms (Ns), as shown in Eqs. (1)–(3):

E =
Np∑

i=1

Ns∑

j=1

(
Ai, j

r12i, j
− Bi, j

r6i, j

)
+

Np∑

i=1

Ns∑

j=1

332(qi · q j)

Dr(ri, j)ri, j
, (1)

Ai, j =
√

Ai · A j, (2)

Fig. 1. Effective interaction region defined by a cutoff distance (Rcut = 18 Å) for
evaluating interaction energies between an atom at the grid position (x0, y0, z0) in
the bulk space and the surface.

Bi, j =
√
Bi · B j, (3)

where E is interaction energy between a lysozyme molecule and
the surface in kcal/mol; ri j is the interatomic distance (Å) between
atom i in the lysozyme molecule and atom j on the surface; Ai
and Bi are vdW energy parameters for atom i; Dr is the distance
dependent dielectric constant to approximate the effect of water
environment on the protein adsorption [2], given as follows:

Dr(ri, j) = DA + DB

1+ k · e−λ·DB ·ri, j , (4)

where DA = −8.5525, DB = ε0 − DA , ε0 = 78.4, k = 7.7839 and
λ = 0.03624 Å−1.

Because the Si–H surface is modeled as a rigid body, inter-
action energy computational efficiency can be improved by grid-
ing the bulk space above the surface and creating a database of
the absolute values of the three energy terms given by Eq. (5)–

(7): vdW repulsive potential (EvdW1(
⇀
r i)), vdW attractive potential

(EvdW2(
⇀
r i)) and electrostatic potential (Eelec(

⇀
r i)), associated with

each grid point:

EvdW1(
⇀
r i) =

Ns∑

j=1

√
A j

r12i, j
, (5)

EvdW2(
↼
r i) =

Ns∑

j=1

√
B j

r6i, j
, (6)

Eelec(
⇀
r i) =

Ns∑

j=1

332q j

Dr · ri, j
. (7)

For each bulk-space grid point, an effective interaction region in
the surface is defined by a cutoff distance as shown in Fig. 1, while
the three interaction energy terms (Eqs. (5)–(7)) between an atom
at the grid point and the Ns surface atoms in the effective interac-
tion region are calculated and recorded.

The interaction energy between each of the Np atoms in the
protein molecule and the Ns surface atoms in the interaction re-
gion is obtained by interpolation using the stored energy values
corresponding to the 8 nearest grid points [17]. The interaction
energy between the whole protein molecule and the surface is
calculated by summation over all the Np atoms in the protein
molecule as given in Eq. (8):

E =
Np∑

i=1

√
Ai EvdW1(

⇀
r i) −

Np∑

i=1

√
Bi EvdW2(

⇀
r i) +

Np∑

i=1

qi Eelec(
⇀
r i). (8)

Interpolation of the electrostatic energy from Eq. (7) can be cal-
culated with simple trilinear interpolation. However vdW potential
terms (Eqs. (5) and (6)) cannot be approximated by simple trilinear
interpolation due to the possible occurrence of large errors [17]. In
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Fig. 2. Protein’s three translational degrees of freedom (dy ,dx,dz ) on a Si–H surface.

this work, we calculate exactly the vdW potential terms for protein
atoms located in the close surface region (!2 Å) (see Fig. 1). For
protein atoms farther away from the surface (>2 Å), we employ a
modified trilinear interpolation scheme [17].

2.2. Protein translation and rotation on the surface

A complete search of the protein/surface minimum interaction
energy requires six degrees of freedom (3 rotations and 3 trans-
lations). As shown in Fig. 2, the three translational degrees of
freedoms are defined as the distance of the protein center of mass
(COM), dy , to the top surface layer atoms and the displacements,
dx and dz , of the protein COM on the plane parallel to the sur-
face layer. The distance to the top of surface, dy , is adjusted to
maintain the minimum protein/surface atomic distance (d) in the
range of 1.2 Å ! d ! 5 Å. Because Si surface is periodic and ho-
mogenously terminated with hydrogen atoms, the ranges of dx
and dz are defined as the unit cell dimensions of the crystal, i.e.,
0 Å ! dx ! 3.8396 Å, 0 Å ! dz ! 5.4307 Å. The protein orientation
is defined by a unique set of 3 consecutive rotations around its
center of mass represented by a set of Euler angles (Φ,θ,ψ ) [18]
in the ranges: 0 ! Φ < 2π ; −0.5π ! θ ! 0.5π ; 0 ! ψ < 2π .

2.3. Standard genetic algorithm

Standard GA is preformed by modifying the GA optimization
toolbox (Gaot) [19] developed by Houck et al. We first briefly de-
scribe the real-coded standard GA which will be compared with
the hybrid GA loop search scheme discussed in the next section.
The fitness in the GA and the object function for the local NM-
simplex search in the hybrid GA loop search are represented by
the negative total interaction energy (−E) in Eq. (1). For the stan-
dard GA, the initial solutions with population size (p) are ran-
domly generated. For the system studied, in evolution generation
of i, the solution is coded as a vector [ai1,ai2 . . .ai6], where aik
(k = 1–6) represents the COM displacement (dy,dx,dz) and ori-
entation (Φ,θ,ψ ) of the lysozyme molecule as defined in Sec-
tion 2.2. The usual normalized geometric selection operator [20],
arithmetic crossover operator [21] and non-uniform mutation oper-
ator [21] are implemented. Normalized geometric selection method
is a ranking selection method based on normalized geometric dis-
tribution. The probability of selecting the fittest individual at an
early stage of evolution is limited, and the least fit members of
population are gradually driven out of the population during the
evolution. The probability Pi of selecting a current individual from
the old population is defined as

Pi =
q

1− (1− q)p
· (1− q)r−1, (9)

where q is the possibility of selecting the best individual (set
q = 0.08), r is the rank of the individual, and p is the population
size, set at 100 in this study. The selected parents undergo the fol-
lowed reproduction (crossover and mutation). Arithmetic crossover
operator produces two offsprings, si+1

a and si+1
b in generation i+1,

which are complimentary linear combinations of parents, sia and
sib , in generation i according to:

si+1
a = Rand · sib + (1− Rand) · sia, (10)

si+1
b = Rand · sia + (1− Rand) · sib, (11)

where Rand is a uniform random number in the range [0,1]. The
non-uniform mutation operator has the capability of fine tuning.
For the element aik (k = 1–6) in the boundary range [LBk,UBk] of
a solution sia = [ai1,ai2 . . .ai6], the mutated element a′

ik is defined
as

a′
ik =

{
aik + )(i,UBk − aik), Rand " 0.5,

aik − )(i,aik − LBk), Rand < 0.5,
(12)

)(i, y) = y ·
(
Rand ·

(
1− i

Nmax

))m

, (13)

where i is the generation number; LBk and UBk represent lower
and upper boundaries of aik respectively; Nmax is the maximum
evolution generation number set at 1200 in this study, and m is a
shape parameter set at 2. An elitist model [21] is used to maintain
the best solution in the evolution process.

2.4. Hybrid genetic loop search scheme

Standard GA is expected to have good global search capability
and to be able to overcome potential barriers. However, in some
complicated cases, such as automated docking and protein adsorp-
tion, GA can become trapped in local potential wells (premature
convergence). In this paper, we study the protein introduce a GA
loop search coupled with a local search scheme to overcome this
problem. The search procedure consist of two loops (loop A and
loop B), as illustrated in the flowchart (Fig. 3). The hybrid GA
search is executed in loop A, which keeps the improvement of
the best solution. An additional loop search (loop B) is added to
enlarge the population diversity during the evolution in order to
avoid prevent premature convergence. The population number (p)
in the hybrid GA loop search is set at 100 as in the standard GA.

The Nelder–Mead (NM) simplex method, which is derivative-
free local search, is incorporated into the hybrid GA loop search
scheme. GA is used to maximize the fitness value of the popula-
tion, while NM simplex search is used to fine-tune the solutions in
loop A, as well as to prune the search space [22] for the GA loop
search in loop B.

In loop A, we combine a standard real-coded GA with NM sim-
plex method to search for the low energy protein orientations in
the generated grid energy database. The standard GA search proce-
dures (selection, crossover and mutation) are first performed, and
then local NM simplex search is executed. The frequency of the
execution of local search method is determined by the parame-
ter N_L (= 80 GA generations between consecutive NM simplex
searches in this work). For every local search, a 10-step NM sim-
plex search is used. The decision regarding whether to terminate a
GA loop search (loop A) and initiate a new one (loop B) is made
based on a Similarity Coefficient (SC) analysis [23]. SC analysis is
executed every N_S (= 20) generations. By using this adaptive con-
trol, we expect that the occurrence of GA premature convergence
can be reduced. The SC analysis is defined as follows. For a given
generation, an individual solution is represented by a real-number
vector, e.g., [ai1,ai2 . . .ain]. The similarity coefficient SCij between
individuals, i and j, for the same generation is defined as
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Fig. 3. Flow chart for the hybrid genetic algorithm.

SCij =
∑n

k=1 δ(aik,a jk)

n
, (14)

δ(aik,a jk) =
{
1, if

∣∣ aik−a jk
ā(i, j)k

∣∣ ! α,

0, otherwise,
(15)

where n is the total number of individuals per generation, ā(i, j)k is
the average of aik and a jk , and α is the threshold value of similar-
ity between αik and α jk , which is set as 0.999 in the program. The
average similarity, SC for this generation, is expressed as

SC =
∑n−1

i=1
∑n

j=i+1 SCij

n
. (16)

The value of similarity coefficient, SC, for all individuals in the
same generation is compared with threshold value β and is used
to control the loop iteration as
{
stop loop A, if SC > β,

repeat loop A, otherwise,
(17)

where β is 0.99 in the program. If SC is unsatisfactory (the solu-
tions do not converge) and cycle number of loop A is smaller than
the threshold value (N_max), loop A is repeated; otherwise, loop A
is terminated and loop B is initiated. The best solution from loop A
is recorded.

When the SC condition is satisfied, loop B is initiated to enlarge
the search space. In loop B search, a new population is randomly
generated and improved through combination of a global and a
local search for 80 generations. The worst solution (X_worst) in
loop B is replaced by the best solution (X ′_best) from the previ-
ous search of loop A, if the latter proves to be better fit than the
former. The solutions serve as the initial population to start a new
iteration of loop A, which is then re-executed until the number of
loop A passes reaches the maximum value (Max_Cycle).

Fig. 4. Comparison of standard GA and hybrid GA. Fitness is plotted as a function of
GA generations. The termination of 6 runs in the loop is adaptively controlled by SC
analysis. The numbers (1–6) within the plot denote 6 passes of loop A.

3. Results and discussion

We apply the hybrid-GA loop method to the examination of
lysozyme adsorption on a hydrophobic H–Si(110) surface in im-
plicit water. The performance of the hybrid GA in a 6 degrees-
of-freedom (3 translational plus 3 rotational) search is compared
with that of the standard GA in Fig. 4. The cumulative number
of generations for loop A of the hybrid-GA loop search is shown
in Fig. 4, while the additional 80 generations per every loop B
cycle is not included. In the hybrid GA loop search, the SC con-
dition has been satisfied 6 times and loop B has been executed
5 times. The length of each pass of loop A is adaptively con-
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Table 1
Comparison of the standard GA, hybrid-GA loop and brute-force searches.

(dy ,dx,dz)
(Å)

(Φ,θ,ψ)
(radians)

Fitness, −E
(kcal/mol)

Runtimea

(min)

Standard GA search (1.5144,−1.9198,−2.0234) (2.6125,1.5149,1.9797) 24.929 52
Hybrid GA search (1.2305,−0.8206,−0.3489) (0.6720,1.2204,6.2562) 29.878 85
Brute-force search fixed at (1.2305,−0.8206,−0.3489) (0.6981,1.222,6.2831) 29.886 771

a This computation is carried out on single core Pentium IV, 3.0 GHz.

trolled by SC analysis. Compared with the initial pass of loop A,
the length of subsequent passes of loop A is shorter. This is un-
derstandable because, as the optimum solution is approached, the
converge becomes easier as the program fine-tunes the solutions.
We see that the local exploration capability is enhanced when NM
simplex search is employed. The premature convergence of the GA
is effectively prevented without sacrificing the computational effi-
ciency. In contrast, the standard GA clearly suffers from premature
convergence.

In order to confirm that the optimum orientation is indeed de-
tected by the hybrid GA search, a brute-force exact calculation is
carried out. The protein molecule center of mass location is fixed
at the optimum (dx,dy,dz), which is obtained from the 6-degrees-
of-freedom hybrid GA search, whereas the 3 angles, Φ,θ and ψ ,
are systematically altered over the complete relevant range in in-
tervals of 4◦ . The results are sorted according to their fitness. The
lowest energy (best fitness) results are compared in Table 1. We
see that the 6-degrees-of-freedom hybrid GA yields results very
close to the (exact) brute-force results, whereas the standard GA
is stranded at a local minimum (at about −25 kcal/mol) far away
from the optimum (at about −30 kcal/mol). The more accurate re-
sult of the hybrid GA is accompanied by computational overhead
(additional calculations in loop B cycles, the periodic execution of
NM simplex local searches, and the SC analysis), which is only 85%
of the computational time of the standard GA, whereas the hybrid
GA is 8 times faster than the brute-force search (in intervals of 4◦

of the three Euler angles) with nearly identical results. The result
in Fig. 4 and Table 1 demonstrate the high accuracy and efficiency
of the hybrid-GA loop search.

Fig. 5(A) shows the lysozyme position and orientation on the
surface corresponding to the converged result of the hybrid-GA
search. The active site associated with lysozyme’s catalytic ability
is seen pointing away from the surface. Fig. 5(B) shows the cen-
ter of mass distance of each amino acid residue from the surface.
The distribution indicates that residues 40–80, which are predom-
inantly involved in turn structure, are located close to the surface.

It should be noted that, in order to determine the equilibrium
conformation and orientation of the protein on the surface, a full
MD simulation is needed, using the optimum positions and orien-
tations located in this work as a starting point.

4. Summary

We have developed a hybrid genetic-algorithm method that
combines both local and global search capabilities in two inter-
linked search loops. The switching between the two loops is adap-
tively controlled by the use of similarity coefficient analysis. The
method is applied to the search of the optimum center of mass lo-
cation and molecular orientation of lysozyme on H-terminated Si
surface. Comparisons are made among the hybrid GA, the standard
GA and a brute-force search. The results show that the standard
GA algorithm suffers from premature convergence (converging to
a local minimum), whereas the hybrid GA loop search successfully
locates the global minimum without sacrificing rapid convergence.
The optimality of the solution has been validated by comparing
it with brute-force search. The optimum orientation and position

(A)

(B)

Fig. 5. Lowest-energy lysozyme orientation on Si–H surface: (A) graphical repre-
sentation showing lysozyme activity and secondary structures: α-helix (yellow),
β-sheet (red), turn (green), random coil (purple); (B) lysozyme amino acid residue
distribution relative to the surface, where each amino acid residue is represented
by a dot.

found in this research will serve as the initial values for further
all-atom MD simulations.
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