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Multiscale time-dependent density functional theory for a unified description of ultrafast dynamics:
Pulsed light, electron, and lattice motions in crystalline solids
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We have developed a multiscale computational scheme to describe coupled nonlinear dynamics of light
electromagnetic field, electrons, and lattice motions in crystalline solids, where first-principles molecular
dynamics based on time-dependent density-functional theory is used to describe the microscopic dynamics. The
method is applicable to wide phenomena in nonlinear and ultrafast optics. To show usefulness of the method,
we apply it to a pump-probe measurement of coherent phonon in diamond where a stimulated Raman wave is
generated and amplified during the propagation of the probe pulse.
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I. INTRODUCTION

Nonlinear optics in solids is the study of the interaction
of intense laser light with bulk materials [1–3]. It is intrinsi-
cally a complex phenomena arising from coupled nonlinear
dynamics of light electromagnetic fields, electrons, and lat-
tice motions. They are characterized by two different spatial
scales, micrometer for the wavelength of the light and less
than nanometer for the dynamics of electrons and ions.

In early development, nonlinear optics has developed
mainly in perturbative regime and in frequency domain [4,5].
However, it has changed rapidly and drastically. Nowadays,
measurements are carried out quite often in time domains us-
ing a pump-probe technique as a typical method and the time
resolution reaches a few tens of attoseconds [6,7]. Extremely
nonlinear phenomena have attracted interest such as high har-
monic generation in solids [8,9], ultrafast control of electron
motion in dielectrics that aims for future signal processing
using pulsed light [10–12], ultrafast coherent optical phonon
control [13–22], and photoinduced structural phase transition
of materials [23–26].

We report in this paper progress to develop a first-
principles computational method to describe nonlinear opti-
cal processes in solids that arise from coupled dynamics of
light electromagnetic fields, electrons, and lattice motions in
crystalline solids. In condensed matter physics and materi-
als sciences, first-principles computational approaches repre-
sented by density-functional theory have been widely used to
describe electronic structures and recognized as an indispens-
able tool [27]. Development of first-principles approaches in
optical sciences is, however, still in a premature stage due
to the complexity of the phenomena and the requirement of
describing time-dependent dynamics.

Our method utilizes time-dependent density-functional
theory (TDDFT) for microscopic dynamics of electrons
[28,29]. The TDDFT is an extension of the density-functional
theory so as to be applicable to electron dynamics in real time
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[30]. In the microscopic scale, ultrafast dynamics of electrons
have been successfully explored solving the time-dependent
Kohn-Sham (TDKS) equation, the basic equation of TDDFT,
in real time under light electric fields [31–33].

We have further developed a multiscale scheme to describe
a propagation of strong light electromagnetic fields in bulk
media [34]. Here the Maxwell equations are solved to describe
the macroscopic light propagation while the TDKS equation is
solved to describe the microscopic electron dynamics in unit
cells of solids. The method can faithfully mimic experimental
setups simulating pump-probe measurements. It has been
applied to investigate extremely nonlinear optical processes
in dielectrics using few-cycle femto- and attosecond pulses
[11,12].

In the present paper, we extend the multiscale approach
to incorporate lattice dynamics, combining a first-principles
Ehrenfest molecular dynamics (MD) approach [35]. The ex-
tended approach, namely Maxwell + TDDFT + MD mul-
tiscale simulation, will be capable of describing vast non-
linear optical phenomena involving lattice dynamics such as
stimulated Raman scattering [1–3]. We will later show a
simulation of the impulsively stimulated Raman scattering
(ISRS) spectroscopy as the first application of the method,
where the pump pulse generates coherent optical phonon over
the medium and the succeeding probe pulse interacts with the
coherent phonon to produce the transmission wave signals that
include the generation and the amplification of the stimulated
Raman scattering wave.

The organization of this paper is as follows. In Sec. II, we
present our formalism of the extended multiscale method. In
Sec. III, a system to demonstrate our method and numerical
details are explained. Results of the simulation of the pump-
probe measurement for coherent phonon are shown in Sec. IV.
In Sec. V, a summary will be presented.

II. FORMALISM

In the present paper, we develop a formalism to describe
a propagation of light electromagnetic fields in a medium
starting with the first-principles, microscopic calculations of
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FIG. 1. Schematic illustration of the multiscale scheme for a
one-dimensional light propagation through a thin-film medium. The
macroscopic spacial coordinate is expressed by X .

electronic and ionic motions extending our previous multi-
scale formalism [34]. In addition to electron dynamics cal-
culations in unit cells of a crystalline solid, we introduce
the classical lattice dynamics calculations using the Ehrenfest
approximation. We here describe the formalism emphasizing
extensions from the previous one. An overview of our formal-
ism is presented in Fig. 1.

A. Macroscopic description

As in ordinary electromagnetism in macroscopic media,
we separate two spatial scales. In optical phenomena, a
wavelength of a pulsed light that is the order of μm sets
the macroscopic spatial scale. Motions of electrons and ions
induced by the light are typically the order of 10−1nm for
which we call the microscopic spatial scale.

We start with considering microscopic scalar and vector
potentials of the electromagnetic fields. As in our previous
development [34], we use the so-called Weyl gauge in which
the scalar potential φ is set to zero. The Maxwell equations
for the vector potential are given as follows:

1

c2

∂2

∂t2
�A(�r, t ) − ∇2 �A(�r, t ) + �∇( �∇ · �A(�r, t ))

= −4πe

c
( �je(�r, t ) − �jion(�r, t )). (1)

We denote number current densities of electrons and ions as
�je and �jion, respectively. We will describe electronic motion
by the TDDFT and ionic motion by Newtonian mechanics.

We separate the vector potential into macroscopic and
microscopic components utilizing the usual course-graining
procedure. In the following, we introduce a macroscopic
coordinate R to express spatial dependence of macroscopic
quantities. For example, the macroscopic vector potential is
expressed as �AR(t ). The equation for �AR(t ) is given as

1

c2

∂2

∂t2
�AR(t ) − ∇2

R �AR(t ) + �∇R( �∇R · �AR(t ))

= −4πe

c
( �Je,R(t ) − �Jion,R(t )), (2)

where �Je,R and �Jion,R express macroscopic counterparts of �je

and �jion, respectively. The relations between �Je,R and �je, and
�Jion,R and �jion will be shown later.

B. Microscopic description

To solve the macroscopic Eq. (2), we need to establish a
relation between the vector potential �AR(t ) and the current
densities, �Jion,R(t ) and �Je,R(t ). For this purpose, we introduce
several approximations and assumptions in the microscopic
dynamics.

We first introduce a locally uniform approximation as
described below that should be justified by the different
spatial scales between the macroscopic and the microscopic
dynamics. At each point R, we consider a uniform and in-
finitely periodic system and calculate microscopic dynamics
of electrons and ions under a spatially uniform electric field,
�E (t ) = −(1/c)d �AR(t )/dt , where R is regarded as a parameter
in the microscopic dynamics. Second, we assume that the
transverse component of the vector potential can be ignored in
the microscopic dynamics. We then express the microscopic
electric field around R using a scalar potential φR(�r, t ) instead
of the vector potential, which has the same periodicity as the
lattice in the microscopic scale. Third, we assume that the
medium can be treated as charge-neutral in the microscopic
calculations.

Recently, we have examined the validity of the assump-
tions mentioned above by comparing calculations with and
without the assumptions for thin films of silicon [36]. There
we compared calculations solving the Maxwell and the TDKS
equations simultaneously using spatial grids of different (mul-
tiple) scales and common (single) scale. The results indicate
that both calculations coincide with each other in high accu-
racy for films of thickness equal to or larger than 5 nm.

Under the above assumptions and approximations, the
microscopic dynamics of electrons and ions in a unit cell of
the medium is described as follows. The electron dynamics is
described by the TDKS equation:

ih̄
∂

∂t
ψi,R(�r, t ) =

[
1

2m

{
−ih̄ �∇ �r + e

c
�AR(t )

}2
− eφR(�r, t )

+ δEXC[ne,R]

δne,R

]
ψi,R(�r, t ). (3)

As noted above, the vector potential �AR(t ) is treated as
a spatially uniform field in the unit cell. Namely, R is
treated as a parameter, independent of the microscopic co-
ordinate �r. The scalar potential φR(�r, t ) follows the Poisson
equation,

�∇2

�r φR(�r, t ) = −4πe[−ne,R(�r, t ) + nion,R(�r, t )], (4)

where ne,R(�r, t ) and nion,R(�r, t ) represent number densities
of electrons and ions, respectively. Their expressions will be
given later. The scalar potential may be decomposed into
Hartree and ionic potentials:

−eφR(�r, t ) = VH,R(�r, t ) + Vion,R(�r, t ). (5)

For the ionic dynamics, we adopt the Ehrenfest dynamics.
Namely, we consider Newtonian dynamics for ions using the
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average force produced by the electron density distribution
of ne,R(�r, t ). Thus the ionic motion is treated classically in
the present framework, and no quantum nature of phonons is
taken into account. Denoting the coordinate of the αth ion by
�sα , the Newtonian equation is given by

Mα

d2 �sα,R

dt2
= −eZα

c

d �AR

dt
− ∂

∂ �sα,R

∫
�

d �r[enion,RφR]. (6)

The second term on the right-hand-side can be written in the
following form:

− ∂

∂ �sα,R

∫
�

d �r
[
enion,RφR

]

= − ∂

∂ �sα,R

⎡
⎣∑

β

ZαZβe2

|�sα,R − �sβ,R| −
∫

�

d �r Zαne,R(�r, t )e2

|�sα,R − �r|

⎤
⎦,

(7)

where β sum runs over all ions. Zα is the charge number of
the αth ion. This expression shows that the force acting on αth
ion is given by the sum of the Coulomb force from electrons
and other ions, and the force by the macroscopic electric field.
In practical calculations, we observe that the second term in
Eq. (6) dominates in the stimulated Raman scattering process
that will be shown later.

The density and the current density in the microscopic
scale are given as follows. For ions, they are given by

nion,R(�r, t ) =
∑

α

Zαδ
(
�r − �sα,R(t )

)
, (8)

�jion,R(�r, t ) =
∑

α

Zαδ
(
�r − �sα,R(t )

)d �sα,R

dt
. (9)

For electrons, they are given by

ne,R(�r, t ) =
∑

i

|ψi,R(�r, t )|2, (10)

�je,R(�r, t ) = 1

2m

∑
i

{
ψ∗

i,R(�r, t )
[
−ih̄ �∇ �r + e

c
�AR(t )

]

×ψi,R(�r, t ) + c.c
}
. (11)

The macroscopic density and current density are obtained by
taking an average over the unit cell volume, �. The current
density is explicitly given by

�Jion,R(t ) = 1

�

∫
�

d �r �jion,R(�r, t ) = 1

�

∑
α∈�

Zα

d �sα

dt
, (12)

�Je,R(t ) = 1

�

∫
�

d �r je,R(�r, t ). (13)

To carry out time evolution calculations for light electro-
magnetic fields, electrons, and ions, we solve the coupled
Eqs. (2), (3), and (6), simultaneously. For the Kohn-Sham
orbital ψi,R(�r, t ), we introduce the time-dependent Bloch
orbital un �k,R(�r, t ) by ψi,R(�r, t ) = ei �k·�run �k,R(�r, t ) and solve the
equation for un �k,R(�r, t ) in practice.

In the present scheme, nonlinear effects originated from
various physical mechanisms are incorporated. If the elec-
tromagnetic fields are strong, the electric field may induce
nonlinear electron dynamics in the microscopic scale. Since
we solve the TDKS equation without any perturbative ap-
proximations, this scheme can treat even extremely nonlinear
regimes close to the damage threshold. If the amplitude of the
lattice motion is large, nonlinearity arising from anharmonic-
ity of interatomic potential may become significant. The effect
is included since we solve the Newtonian equation without
harmonic approximation for the ionic motion. If the electro-
magnetic fields are not very strong and the amplitude of the
lattice motion is not substantial, the present scheme is capable
of describing ordinary nonlinear optical phenomena involving
lattice dynamics such as the stimulated Raman scattering
that will be discussed later. Finally, if we freeze the ionic
positions and the electromagnetic fields are sufficiently weak,
the present scheme results in ordinary electromagnetism with
a linear constitutive relation in which the dielectric function is
provided from the TDDFT.

C. Lagrangian and conserved energy

It is possible to write a Lagrangian that provides the
equations of motion presented in the previous subsection:

L =
∫

dR

[∫
�

d �r
∑

i

{
ψ∗

i,Rih̄
∂

∂t
ψi,R

− 1

2m

∣∣∣∣
(

− ih̄ �∇ �r + e

c
�AR

)
ψi,R

∣∣∣∣
2}

−
∫

�

d �r{e(nion,R − ne,R )φR + EXC[ne,R]}

+ 1

8π

∫
�

d �r( �∇ �rφR )2 + �

8πc2

(
∂ �AR

dt

)2

− �

8π
( �∇R × �AR )2 +

∑
α

Mα

2

(
d �sα,R

dt

)2

+
∑

α

Zαe

c

d �sα,R

dt
· �AR,

]
, (14)

where α sum runs for ions in the unit cell. The variation
with respect to the Kohn-Sham orbital ψi,R gives the TDKS
Eq. (3), the variation with respect to the scalar potential φR
gives the Poisson Eq. (4), the variation with respect to the
vector potential �AR gives the wave Eq. (2), and the variation
with respect to the ionic coordinate �sα,R gives the Newtonian
Eq. (6).

One of the advantages of the Lagrangian formalism is that
it is possible to construct an expression of the conserved
energy:

E =
∫

dR
[ ∫

�

d �r
∑

i

{
1

2m

∣∣∣(−ih̄ �∇ �r + e

c
�AR

)
ψi,R

∣∣∣2
}

+
∫

�

d �r{e(nion,R − ne,R )φR+EXC[ne,R]}
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+ �

8πc2

(
∂ �AR

dt

)2

+ �

8π
( �∇R × �AR )2

+
∑

α

Mα

2

(
d �sα,R

dt

)2

+
∑

α

Zαe

c

d �sα,R

dt
· �AR

]
(15)

In practical calculations, the conservation of this en-
ergy provides a useful check of the accuracy of the
calculation.

D. One-dimensional propagation

Later in the present paper, we will show a calculation
in which a pulsed light irradiates normally on a thin film.
In this setting, the light propagation can be treated as a
one-dimensional problem. We denote the one-dimensional
macroscopic coordinate as X . We write below the equations
for this case.

The Maxwell equation for the macroscopic vector potential
�AX (t ) is expressed as[

1

c2

∂2

∂t2
− ∂2

∂X 2

]
�AX (t ) = −4πe

c
[ �Je,X (t ) − �Jion,X (t )]. (16)

The current density coming from electron motion is expressed
using Kohn-Sham orbitals:

�Je,X (t ) = 1

m�

∫
�

d �r
{
ψ∗

i,X

[
−ih̄ �∇ �r + e

c
�AX (t )

]
ψi,X

}
. (17)

The current density coming from ionic motion is given by

�Jion,X (t ) = 1

�

∑
α∈�

Zα

d �sα,X

dt
. (18)

The TDKS equation for ψi,X is given as

ih̄
∂

∂t
ψi,X (�r, t ) =

[
1

2m

{
−ih̄ �∇ �r + e

c
�AX (t )

}2
− eφX (�r, t )

+ δEXC[ne,X ]

δne,X

]
ψi,X (�r, t ), (19)

The Poission equation is given by

∇2φX = 4πe[ne,X − nion,X ]. (20)

Finally, the Newtonian equation for �sα,X is

Mα

d2 �sα,X

dt2
= −eZα

c

d �AX

dt
− ∂

∂ �sα,X

∫
�

d �r[enion,X φX ]. (21)

III. SETUP OF SIMULATION SYSTEM AND
NUMERICAL DETAILS

A. Coherent phonon and impulsively stimulated
Raman scattering spectroscopy

To demonstrate how the method works in typical nonlinear
optical phenomena in crystalline solids, we apply the method
to describe a pump-probe measurement of coherent optical
phonons [19]. Coherent phonons are generated by an irra-
diation of a strong and ultrashort laser pulse on condensed
media. They are characterized by coherent lattice motion in a
macroscopic spatial area with a common phase. We consider

the case in which the pulse frequency is below the band-gap
energy. In that case, the driving force of the phonon is an
impulsive force that is generated by a virtual and temporal
change of the electronic state and that only exerts during the
irradiation of the pulse. To excite the lattice dynamics by
the impulsive force, the pulse duration must be much shorter
than the period of the optical phonon. This nonlinear process
of the coherent phonon generation is known as the ISRS
mechanism.

As a material, we consider a diamond thin film. Two ultra-
short pulses with the same frequency ω = 1.55 eV/h̄, which
is well below the band gap of the diamond, are successively
irradiated normally on the surface along the [100] axis. The
pulse has a cosine-square envelope with the full time duration
of 18 fs, which corresponds to 6.5 fs in full width at half
maximum (FWHM). This is shorter than the period of the
optical phonon of diamond, which is about 25 fs.

First, a strong pump pulse that is linearly polarized along
the [011] direction is irradiated. It generates the coherent
optical phonon with atomic displacements in the [100] di-
rection. Next, a weak probe pulse that is polarized along
the [010] direction is used to detect the coherent phonon.
Accompanying the probe pulse, an impulsively stimulated
Raman-scattered wave that is polarized along the [001] direc-
tion is generated and amplified by the nonlinear interaction
between the lattice motion and the probe pulse. Usually, this
process is described using the Raman tensor of the diamond
[37]. Our simulation automatically includes the effect solving
the dynamical equations. The Raman wave as well as the
propagated probe pulse appear as transmission signals after
they get out of the thin film.

The light propagation in the present setting can be
described by the one-dimensional equations presented in
Sec. II D. In the calculation, we set the crystalline abc axes
of the cubic diamond to coincide with the xyz axes of the
Cartesian coordinates, respectively.

Although it is in principle possible to carry out calculations
of the pump and the probe pulse propagations in a single
calculation, we separate them in two to avoid the complexity
coming from the reflection of the pump pulse at the back
surface of the thin film. First, we carry out the calculation
of the pump pulse, aiming to describe the generation of the
coherent optical phonon. At this stage, we carry out the
calculation for a sufficiently thick film so no reflections appear
at the back surface. In practice, we make a calculation for a
diamond thin film of 10 μm thickness and for a time duration
of 80 fs. At the end of this calculation, the pump pulse locates
in the spatial region 6 μm < X < 10 μm. We extract the
lattice dynamics of the spatial region 0 < X < 6 μm from
this calculation and use it in the next calculation of the probe
stage.

For the probe-stage calculation, we consider a thin film
of 6 μm thickness. The probe simulation starts with the
following initial condition: First, we set the positions of ions
at each macroscopic grid point to the final positions of the
pump-stage calculation. We also set the initial velocity of ions.
Then, electronic ground-state calculation is carried out for the
shifted ionic positions at each macroscopic point. The probe
pulse is then irradiated at the surface.
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For the vector potential of the incident pulses, we use the
following time profile. For the pump pulse, it is given by

�Apump(t ) = �e[011]A
pump
0 cos2

(
πt

T

)
cos ωt,

(0 < t < T ), (22)

where �e[011] is the unit vector of the polarization direction,
Apump

0 specifies the amplitude, T specifies the full duration,
and ω specifies the average frequency. The probe pulse is
given by a similar expression. As mentioned previously,
the polarization direction of �e[010] is used, and we choose the
common frequency ω = 1.55 eV/h̄ and the pulse duration
T = 18 fs for the pump and the probe pulses. Some other
pump frequencies are also used later. The amplitude Apump

0

and Aprobe
0 are so chosen that the maximum intensity of the

incident pump pulse is 2 × 1012 W/cm2 and that of the probe
pulse is 1 × 1010 W/cm2. The probe pulse is sufficiently weak
so that there occurs no significant nonlinear effects related to
the intensity of the probe pulse and that it brings any changes
in the lattice dynamics.

The vector potential is initially set to

�AX (t ) = �Apump

(
t − X

c

)
(23)

for the pump-stage calculation, and set to

�AX (t ) = �Aprobe

(
t − X

c
− τ

)
(24)

for the probe-stage calculation, where τ specifies the time
difference between the pump and the probe pulses.

For the exchange-correlation potential, we adopt the adia-
batic local density approximation (ALDA). It is well known
that ALDA has deficiencies in describing optical responses
of dielectrics, such as the underestimation of the band-gap
energies. However, since the present paper aims to demon-
strate the feasibility of the calculation including lattice mo-
tion, we adopt the ALDA as the simplest choice. We also
note that there exist exchange-correlation effects that can
only be treated using a vector potential, as formulated in
the time-dependent current density-functional theory [38,39].
We ignore the contribution for simplicity in the present
paper.

To describe microscopic electron motion in a unit cell,
norm-conserving pseudpotential [40] is used for the electron-
ion interaction with a separable approximation [41]. It should
be noted that the nonlocal component of the pseudopotential
inducesan additional contribution in the electron current den-
sity in Eq. (11) [42].

To show the quality of the microscopic calculation, we
show the dielectric function of the diamond calculated by
linear response TDDFT. In the calculation, the same real-time
numerical scheme as that used for the microscopic electron
dynamics calculation is used to obtain the dielectric function.
The result is shown in Fig. 2. Although the band gap is
substantially underestimated in the ALDA, an overall shape
of the dielectric function is in reasonable agreement with the
experimental data. At frequency region below 1 eV, a tiny
structure is seen in the imaginary part. This is not physical
since the band gap of the diamond is 4.8 eV in the LDA and

FIG. 2. Calculated (a) real and (b) imaginary parts of the dielec-
tric function of diamond (the red lines). The experimental measure-
ments [43] (the black lines) are also plotted as a reference.

comes from a numerical artifact of the calculation of a finite
time period.

B. Numerical details

We implement our method to the open source software
SALMON [44] that is developed mainly in our research
group. SALMON is downloadable from our website [45].

In the one-dimensional macroscopic space, the X coordi-
nate is discretized using the spacing of 15 nm. For a film of
6 μm thickness, 400 macroscopic grid points are employed.
At each macroscopic grid point, we prepare a microscopic
grid system. The cubic unit cell of the diamond used in the
present paper includes eight carbon atoms. The side length
of the cubic unit cell that is equal to 3.567 Å is discretized
into 16 spatial grid points. The Brillouin zone is discretized
into uniform grids of 123 k points. The three equations of
motion are integrated with the common time step of 2 as.
We note that the microscopic Kohn-Sham Hamiltonian needs
to be updated. While the Hartree potential is updated every
time step, the ionic potential is updated every five time steps.
This is because the ionic displacement is very small as we see
below and the update of the nonlocal pseudopotential requires
large computational resources.

Our approach is computationally expensive since calcula-
tions of the microscopic electronic and ionic dynamics are
required on a number of macroscopic grid points. Therefore,
efficient parallelization is essential to carry out the calcula-
tion. We employ a hybrid parallelization scheme using both
MPI and OpenMP parallelizations. We use a supercomputer
Oakforest-PACS operated jointly by University of Tokyo and
University of Tsukuba. It is composed of next-generation
Intel Xeon-Phi many-core processors (68 cores/node). In our
typical calculation using 400 macroscopic grid points, we
utilize 400 nodes of the Oakforest-PACS. By MPI paral-
lelization, each node carries out calculations of microscopic
dynamics of one macroscopic grid point. Inside the node, MPI
parallelization is again adopted for k points. OpenMP is then
adopted for the calculations of electron orbitals. A typical
time evolution calculation of 80 fs costs about 10 h using 400
nodes.
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IV. PUMP-PROBE SIMULATIONS

A. Pump process: Coherent phonon generation

We first show the calculation for the generation of coherent
phonons in diamond by the pump pulse. Figure 3(a) shows
the propagation of the pump light by red lines and the dis-
placement of the ions at different macroscopic points of X
by green-filled circles. When the field enters the medium,
first the ions at the left edge point of the medium start to
move by the light-matter interaction. After that, as the pump
pulse propagates through the medium, the harmonic motion
of ions is generated in turn at each macroscopic grid point. In
Fig. 3(a), a wavelike behavior of the ionic displacement is seen
along the X axis. The amplitude of the ionic displacement
is rather small, typically 10−4 Å. This reflects the fact that
there is no resonant energy transfer from the pump pulse
to electrons since the pulse frequency is much below the
band-gap energy.

It is noted that the wavelike bahavior is not an ordinary
propagation of the lattice wave. The period of the oscillation
at each X point is equal to the period of the optical phonon,
25 fs for diamond. However, since the wave is generated by
the pump pulse that propagates with the speed of light in the
medium, c/n, with the index of refraction n, the front edge
of the wave moves with the same speed. This is orders of
magnitude larger than the phase velocity of the lattice wave
which is determined by the phonon dispersion curve. The
amplitude of the oscillation does not attenuate in the medium
since the pump pulse is not absorbed during the propagation.
Although there is a small energy transfer from the pulsed light
to the lattice motion, the energy transfer is very small as will
be shown later.

In Fig. 3(b), the generation processes of the optical phonon
at X = 0 and 2 μm are shown as a function of time. We
first look at the case of X = 0 μm. Immediately after the
light electric field arrives at the position, the force that is
proportional to the square of the electric field appears. It
then generates the ionic displacement corresponding to the
coherent phonon. As the ions start to move, the restoring force
begins to work. The ionic displacements show a sine shape at
times after the center of the pump-pulse envelope (i.e., t >

9 fs). These behaviors of the force and the generation process
of the coherent phonon is consistent with the picture of the
ISRS mechanism [19]. After the pump field passes away, a
simple harmonic motion of ions continues without decay. The
same generation process is seen at X = 2 μm in Fig. 3(b) after
the pump field arrives at the position.

The driving force for ions is generated through the change
in the electron density, not from the direct field-ion inter-
action. In Figs. 3(c) and 3(d), electron density in the (011)
plane of diamond is shown for the ground state in Fig. 3(c)
and changes in density at times t = 4.0 fs, 8.0 fs, and 8.6 fs
in Fig. 3(d). In the ground state, the covalent bonds appear
between ions as seen in Fig. 3(c). The pump field induces a
shift of bonding electrons along the bond direction toward the
direction of the electric field. The larger changes in the density
are observed under the stronger field. Although the direction
of the shift of electrons changes when the direction of the field
becomes opposite, the direction of the force on ions does not
change because all bonds in the (011) plane are weakened

FIG. 3. (a) Snapshots of the electric field of the pump pulse (red
lines) and the ionic displacement (green filled circles) are shown
along the macroscopic grid points of X coordinate. (b) Electric field
of the pump pulse (red line), the force acting on the ion (black line),
and the ionic displacement (green line) are shown as a function of
time at X = 0 and 2 μm. (c) The ground-state electron density in the
(011) plane of the unit cell. (d) The changes in the electron density
from the ground state are shown at t = 4.0, 8.0, and 8.6 fs at X= 0
μm.

irrespective of the direction of the electric field. This gives
rise to the driving force of ions along the [100] axis during the
pump pulse.
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FIG. 4. Energies per unit area integrated over the propagation
direction are shown as a function of time during the propagation of
the pump pulse. The total energy (the black line) is decomposed into
the energy of the electromagnetic field (the green line), the energy
of electronic excitations (the red line), and the kinetic energy of the
ions (the blue line).

In Fig. 4, the energy per unit area is shown as a function of
time during the pump-pulse propagation. The energy compo-
nents of the electromagnetic fields, electronic excitations, and
lattice motions as well as the total energy that is the sum of the
three energies are shown. When the light pulse gets into the
medium, the energy components start to change in time. After
the light pulse fully gets into the medium region, the energy
components change very little. The lattice energy is always
small because the amplitude of the lattice motion is small, as
was seen in Fig. 3. Magnifying the plot of the energy of the
lattice motion, a stepwise increase of energy is observed. This
reflects the fact that the lattice motion takes place in more
wide spatial regions as the pump pulse propagates through
the medium. During the process, the conservation of the total
energy is satisfied in high accuracy, supporting the numerical
accuracy of the calculation.

B. Different pump-pulse frequencies

We next show in Fig. 5 the generation of coherent
phonons by pump pulses of three different frequencies. In the

FIG. 5. Coherent phonon generation by pump pulses of three
different frequencies, h̄ω = (a) 1.55, (b) 3.5, and (c) 6.0 eV. Ionic dis-
placements as a function of time are shown at selected macroscopic
points of X (the left panels) and those along the coordinate X at
specific times (the right panels). Note that the vertical and horizontal
scale of (c) is different from those of (a) and (b).

calculations, smaller macroscopic grid spacing is used for
shorter wavelengths of the pump pulse in the medium, 15,
10, and 5 nm in (a), (b), and (c), respectively. Figure 5(a)
shows the generation with ω = 1.55 eV/h̄, the same as
that shown in Fig. 3(a). Figure 5(b) shows the generation
with ω = 3.5 eV/h̄. Although the pump frequency is still
below the optical gap energy, the phonon amplitude decays
with X , whereas the amplitude of the lattice oscillation at
each X point does not decay with time. This is caused by
the attenuation of the pump pulse as it propagates through
the medium. Since the pump pulse is rather strong with the
intensity, 2 × 1012 W/cm2, the pump pulse excites electrons
by the two-photon absorption process and loses the energy
as it propagates through the medium. Although the same
intensity is used for the case of ω = 1.55 eV/h̄, no absorption
is seen because at least four photons are required to exceed
the band-gap energy.

At ω = 6 eV/h̄ that is above the optical gap energy, the
amplitude of the lattice motion at the surface is one order
of magnitude larger than the nonresonant cases, as seen in
Fig. 5(c), The displacement of ions shows a harmonic mo-
tion of the cosine shape, namely the oscillation takes place
around the shifted equilibrium position. This is due to the
change of the generation mechanism of coherent phonons,
from ISRS to the displacive excitations of coherent phonon
(DECP) [19]. Thus, the coherent phonons by both ISRS and
DECP mechanisms can be described in the present formalism.
These results are consistent with Ref. [33], where generation
mechanisms of coherent phonons are discussed using TDDFT
without coupling to the light propagation. The amplitude of
the lattice motion decays with X since the field attenuates by
the absorption of the pulse.

C. Probe process: Generation and amplification
of stimulated Raman wave

We next proceed to the simulations for the propagation
of probe pulses. As mentioned previously, we make separate
calculations from those of the pump pulse that generates the
coherent phonon.

The polarization of the probe pulse is set to [010] direction.
The time delay between the pump and the probe pulses are
specified by τ in Eq. (24). Two simulations are performed with
τ = 83.0 and 89.5 fs. We note that the calculation of the pump
stage ends at t = 80 fs. In the calculation of τ = 83.0 fs, the
ionic displacement at the surface is maximum when the probe
pulse reaches the surface of the medium. In the calculation of
τ = 89.5 fs, the ionic displacement at the surface is almost
zero when the probe pulse reaches the surface of the medium.

In Fig. 6(a), the propagation of the probe pulse as well
as the generation of the impulsive stimulated Raman wave
are shown for the case of the pump-probe time delay of
τ = 83.0 fs. As seen from the figure, the probe pulse shown
by the red line propagates with the same speed as the wave of
the ionic displacement, at the position of the maximum ionic
displacement. This is because the lattice motion proceeds with
the speed of the pump pulse, c/n, as noted previously, and
the probe pulse also propagates with the same speed since
we chose the same frequency for the pump and the probe
pulses.
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FIG. 6. Simulation results of the probe process with τ = 83 fs.
(a) Snapshots of the electric field of the probe pulse in [010] (red
line) and in [001] (blue line) directions, and the ionic displacement
(green filled circles) are shown along the macroscopic coordinate X .
(b) Plots of the same quantities as a function of time at X = 0, 2, and
4.8 μm. The time t is set to 0 when the front edge of the probe pulse
reaches the surface of the medium.

During the propagation of the probe pulse, the stimulated
Raman wave that is shown by the blue line appears in the
[001] direction, perpendicular to both directions of the ionic
displacements and the probe polarization. The stimulated
Raman wave has the phase shift of π/2 with respect to the
probe pulse, and its amplitude increases linearly with the trav-
eled distance. These features are consistent with the standard
theoretical description for the stimulated Raman scattering
using the property of the Raman tensor [19,46].

The probe pulse and the stimulated Raman wave as a func-
tion of time are shown at X= 0, 2, and 4.8 μm in Fig. 6(b).
It is seen that two waves exist in the timing of the maximum
displacement of the ions and have almost the same envelope
shape with common center positions. At X = 4.8 μm, the
probe and the stimulated Raman waves reflected at the back
surface of the medium are seen around t = 75 fs.

In Fig. 7(a), the propagation of the probe pulse with the
time delay of τ = 89.5 fs is shown. Here, the probe pulse
moves with the nodal point of the lattice motion during
the propagation in the medium. As is seen from the figure,
there appears a clear difference in the pulse shape of the

FIG. 7. Simulation results of the probe process with τ = 89.5 fs.
Same plots as those in Fig. 6.

stimulated Raman scattering wave from that of the case of
τ = 83.0 fs.

In Fig. 8, we show the pulse shape of the transmitted waves
in time domain for the two cases of different time delays.

FIG. 8. Transmitted probe [Ey(t )] and stimulated Raman waves
[Ez(t )] in the right vacuum region for τ = 83.0 fs are shown in (a),
and their power spectra are shown in (b). Those with τ = 89.5 fs are
shown in (c) and (d).
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Figures 8(a) and 8(c) are the cases of τ = 83.0 and 89.5 fs,
respectively. In the case of τ = 83.0 fs, the pulse shape of
the stimulated Raman wave [Ez(t )] is similar to the shape
of the probe pulse [Ey(t )] except for the phase difference
of π/2. On the other hand, in the case of τ = 89.5 fs, the
pulse shape of the stimulated Raman wave is very different
from the shape of the probe pulse. This difference can be
understood as originating from the difference of the electric
current density that produced the stimulated Raman wave.
The electric current density that produces the Raman wave
is given by JRaman(t ) ∝ Q(t )Eprobe(t ) [19,46], where Eprobe(t )
is the electric field of the probe pulse and Q(t ) is the phonon
amplitude that is expressed by the linear combination of the
ionic displacements. When the probe pulse enters the medium
at the maximum of the phonon amplitude, Q(t ) may be
regarded as roughly a constant and JRaman(t ) has a similar
time profile to that of Eprobe(t ) since the half period of the
lattice motion is assumed to be longer than the duration of
the probe pulse. However, when the probe pulse moves with
the nodal position of the lattice motion, the phonon amplitude
may be approximated by a linear function of time. Then, we
have JRaman(t ) ∝ tEprobe(t ), and the lattice motion produces
one extra node to the electric current density. This explains
the shape change of the stimulated Raman wave shown in
Fig. 8(c).

We show the power spectra of the stimulated Raman waves
in Figs. 8(b) and 8(d). Reflecting the different profiles in
time domain, they show distinct structures: the double-peak
structure appears in the power spectrum of the stimulated
Raman wave when it propagates at the nodal point of the
lattice motion. We note that such a double-peak structure is

indeed related to the recent pump-probe measurement of the
coherent phonon in diamond and other insulators [14,17].
We will report our analysis for this problem in a separate
publication.

V. SUMMARY

We have developed a computational approach for nonlin-
ear light-matter interaction in solids involving lattice motion
based on first-principles TDDFT. A multiscale scheme is
developed simultaneously solving the Maxwell equations for
light propagation, the TDKS equation for electrons, and the
Newtonian equation for ions. As a test example, a pump-probe
measurement of coherent phonon generation in diamond is
simulated where an amplification of the stimulated Raman
wave is observed for the probe stage. It is shown that sub-
stantially different shapes of the stimulated Raman waves
are obtained, depending on the pump-probe time delays. We
expect the method will be useful for a wide phenomena of
nonlinear and ultrafast optics in solids.
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