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ABSTRACT
We report a Vlasov simulation of cosmic relic neutrinos combined
with N -body simulation of cold dark matter in the context of large-
scale structure formation in the Universe performed on Fugaku
supercomputer. Gravitational dynamics of the neutrinos is followed,
for the first time, by directly integrating the Vlasov equation in
a six-dimensional phase space. Our largest simulation combines
the Vlasov simulation on 400 trillion grids and 330 billion-body
calculations in a self-consistent manner, and reproduces accurately
the nonlinear dynamics of neutrinos in the Universe. The novel
high-order Vlasov solver is optimized by combining an array of
state-of-the-art numerical schemes and fully utilizing the SIMD
instructions on the A64FX processors. Time-To-Solution of our
simulation is an order of magnitude shorter than the largest N -
body simulations. The performance scales excellently with up to
147,456 nodes (7 million CPU cores) on Fugaku; the weak and strong
scaling efficiencies are 82% – 96% and 82% – 93%, respectively.
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1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE

We present a series of hybrid Vlasov/N -body simulation of the
large-scale structure formation in the Universe. This includes the
world’s first Vlasov simulation of cosmic relic neutrinos performed
on a full six-dimensional phase space domain, and the largest Vlasov
simulation ever conducted. This is also the first successful run in
the world that combines the complementary advantages of the
particle-based N -body simulation and the Vlasov simulation for a
mixture of different kinds of matter components. Our simulations
are performed on Fugaku supercomputer installed at RIKEN Center
for Computational Sciences with up to 147,456 nodes (7,077,888
CPU cores). We achieve very high scalability of Vlasov simulations
and also of the whole end-to-end simulations both for weak and
strong scaling efficiencies. At the same time, the time-to-solution
is improved by an order of magnitude to obtain numerical results
on the dynamics of massive neutrinos in the Universe with an
equivalent spatial resolution and with much superior discreteness
noise level to those of existing state-of-the-art particle-based N -
body simulations.

2 PERFORMANCE ATTRIBUTES

Category of achievement scalability, time-to-solution
Type of method used explicit
Results reported on the basis of whole application including I/O
Precision reported mixed precision
System scale measured on the full system
Measurement mechanism timers

3 OVERVIEW OF THE PROBLEM
Neutrinos are elementally particles that are assumed to be massless
like photons in the standard model of particle physics. Discovery
of neutrino oscillation [10] revealed, however, that neutrinos have
finite masses, suggesting some unknown physics beyond the stan-
dard model. Despite its fundamental importance in understanding
the origin of matter and anti-matter asymmetry, the absolute mass-
scale of neutrinos remains highly uncertain. So far, the neutrino
oscillation experiments provide only lower bounds on the neutrino
mass. Although several terrestrial particle experiments have been
conducted to measure the neutrino mass through tritium beta decay
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and neutrinoless double beta decay, such experiments place only
upper limits on the total absolute mass of neutrinos.

A promising approach is to measure the neutrino mass through
the dynamical effect on cosmic structure formation. The standard
cosmological model posits that the large-scale structure (LSS) of
the Universe formed through gravitational amplification of tiny
density fluctuations left over from the Big Bang. The model also
predicts that there exist ’relic’ neutrinos that permeate the Universe
from the early through to the present epoch. The fractional energy
density of the massive neutrinos scales with the total mass of the
three neutrino species, and is estimated to be of the order 10−3–
10−2. Despite the small contribution to the present-day cosmic
energy budget, relic neutrinos with finite mass (hereafter massive
neutrinos) influence significantly the LSS formation through gravi-
tational interaction with other non-relativistic matter dominated
by the so-called cold dark matter (CDM). The primary effect of mas-
sive neutrinos is to suppress the nonlinear growth of large-scale
density fluctuations through collisionless damping. The massive
neutrinos have very large velocity dispersion and effectively pre-
vent clustering of themselves and of other matter. Since the velocity
dispersion directly depends on the neutrino mass, we can, in prin-
ciple, constrain or measure the neutrino mass by detecting and
precisely modeling the collisionless damping effect imprinted in
the LSS. This offers a novel and promising method for measuring
the neutrino mass from cosmological observations such as galaxy
surveys.

So far, particle-based N -body methods have been a primary
choice in numerical simulations of the cosmic structure forma-
tion. The gravitational dynamics of CDM and massive neutrinos
are followed numerically by N -body methods with employing a
large number of particles [2, 3, 13, 14]. Unfortunately, there re-
main several intrinsic drawbacks in such N -body simulations. An
N -body simulation statistically samples the matter distribution
in the six-dimensional phase space (three-dimensional physical
space and three-dimensional velocity or momentum space) using a
finite number of discrete “super-particles” in a Monte-Carlo man-
ner. The numerical results are then susceptible to the well-known
shot noise. The discreteness noise critically compromises the re-
sults when a "hot" component with a very large velocity dispersion
like massive neutrinos is simulated (see our results in §5.4). Fur-
thermore, particle-based methods are not well-suited to accurately
reproduce collisionless damping, in which the high-velocity com-
ponent in the tail of the velocity distribution plays a crucial role.
Clearly, it is desirable to adopt a numerical scheme that accurately
represents the continuous and extended velocity distribution in a
multi-dimensional phase space.

Here, we propose a completely new approach that explicitly
follows the dynamics ofmassive neutrinos by solving time evolution
of their distribution function with the finite volume method. Our
approach eliminates the above-described numerical problems by
representing the massive neutrino as a continuous medium in the
six-dimensional phase space. This approach enables us to reproduce
the neutrino distributionwithout shot noise, even when the velocity
distribution has a broad, extended tail [26].

Since the cosmic relic neutrinos can be regarded as a collisionless
matter, the time evolution of their distribution function is described

by the collisionless Boltzmann equation or the Vlasov equation:

∂ f (x,u, t)
∂t

+
u

a(t)2
·
∂ f (x,u, t)
∂x

−
∂ϕ(x, t)
∂x

·
∂ f (x,u, t)
∂u

= 0,
(1)

where a(t) is the scale factor describing the time dependence of the
cosmic expansion, f (x,u, t) is the distribution function of massive
neutrinos as a function of the comoving spatial position x and the
canonical velocity u = a(t)2 Ûx. The gravitational potential ϕ(x)
satisfies the Poisson equation given by

∇2ϕ(x, t) = 4πGa(t)2[ρ(x, t) − ρ̄(t)], (2)

where G is the gravitational constant, and ρ(x, t) and ρ̄(t) are the
mass density field and its spatial average, respectively. Hereafter,
our approach that directly integrates equations (1) and (2) is referred
to as Vlasov simulation.

4 CURRENT STATE OF THE ART
The currently largest N -body simulation of the LSS in the Universe
that includes massive neutrinos is the TianNu simulation performed
on China’s Tianhe-2 supercomputer employing 69123 CDM par-
ticles and 138243 neutrino particles [7, 27]. Their numerical code,
CUBEP3M, adopts a variant of Particle–Particle–Particle–Mesh
(PPPM) scheme [11] which improves the force resolution by ap-
pending the gravitational force obtained with the Particle–Mesh
(PM) scheme with a short-range Particle–Particle (PP) force. In
CUBEP3M code, the PM scheme is further split into two-level PM
calculation to reduce the MPI communication required in solving
the gravitational potential. In the TianNu simulation, CDM parti-
cles are initialized at the cosmological redshift of 100, when the
age of the Universe is 16 million years. The neutrino particles are
placed later when the system has evolved over 1 billion years. The
two components are then evolved to the present Universe. Their
CUBEP3M code achieves 72% weak scaling efficiency on 13,824
computational nodes (331,776 cores) of Tianhe-2 supercomputer,
and the total wall clock time to complete their simulation is 52
hours.

5 INNOVATIONS REALIZED
5.1 Vlasov Simulation in Six-Dimensional

Phase Space and Combination with N -body
Simulation

5.1.1 Vlasov Simulation. One of our main innovations is comple-
tion of Vlasov simulation of collisionless self-gravitating matter in
the six-dimensional phase space. Historically, Vlasov simulations
have been used in studies of collisionless plasma as well as col-
lisionless self-gravitating systems [5, 8, 9, 15]. Unfortunately, the
applications are limited only to problems with spatially one- or two-
dimensions, because of an extremely large amount of memory and
computational cost necessary even for spatially two-dimensional
problems. Five-dimensional gyrokinetic Vlasov simulations per-
formed in numerical simulations of low-beta plasma [12, 25] are
the ones with the highest dimensionality ever conducted. The ad-
vent of exaflop-class supercomputers, together with significant
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advances in numerical techniques, finally allows us to perform
Vlasov simulations in the full six-dimensional phase space.

The Vlasov equation (1) is solvedwith a spatially fifth-order finite
volume method (see §5.2). The six-dimensional phase space volume
is discretized on a uniform Cartesian grid both in the spatial and
velocity domains. The number of grids in the spatial and velocity
spaces are referred to as Nx and Nu, respectively. We adopt the
directional splitting method [4], in which the Vlasov equation (1)
is split into six one-dimensional advection equations: three in the
physical space

∂ f

∂t
+

ui
a(t)2

∂ f

∂xi
= 0 (i = 1, 2, 3) (3)

and another set of three advection equations in the velocity space
∂ f

∂t
−
∂ϕ

∂xi

∂ f

∂ui
= 0 (i = 1, 2, 3), (4)

where (x1, x2, x3) = (x,y, z) and (u1,u2,u3) = (ux ,uy ,uz ).
The time evolution of the distribution function from t = tn to

tn+1 = tn + ∆t is performed as

f (x,u, tn+1) = Duz (∆t/2)Duy (∆t/2)Dux (∆t/2)
× Dx (∆t)Dy (∆t)Dz (∆t)

× Duz (∆/2)Duy (∆t/2)Dux (∆t/2)f (x,u, tn ),
(5)

whereDℓ(∆t) denotes an operator to advance an advection equation
along ℓ-direction. Details of the numerical scheme to advance an
advection equation and its implementation are described in §5.2
and §5.3, respectively. In our implementation, we adopt the single
precision floating point arithmetics for the Vlasov simulations.

5.1.2 Combination with N -body Simulation. Our simulations fol-
low structure formation in a realistic, observationally motivated
cosmological model where there exist both a dynamically cold
component (CDM) and a hot thermal relic (massive neutrino) that
mutually interact through gravity. Therefore, the dynamics of CDM
and massive neutrinos need to be solved simultaneously in a fully-
coupled and self-consistent manner. It is important to realize that
the CDM component can be appropriately treated by a conventional
N -body method, because CDM is literally “cold” and has a very
compact distribution in the velocity-space initially. We thus devise
a hybrid of N -body and Vlasov approaches, in which we adopt a
sophisticated N -body method to solve the equation of motion of
N -body particles that represent the CDM component, whereas we
directly integrate the Vlasov equation (1) for the massive neutrinos.
Note that both of the CDM and neutrino components share the
common gravitational potential; the mass density field ρ(x, t) in
equation (2) is the sum of CDM and massive neutrinos. The mass
density of CDM is obtained from the distribution of N -body parti-
cles, and that of massive neutrinos is obtained by integrating the
distribution function over the entire velocity space.

We employ the TreePM (Tree Particle-Mesh) method [1, 6] to per-
form the N -body simulation for the CDM component. The TreePM
scheme splits the gravitational force into two parts, short- and
long-range forces each of which is computed with the tree and
particle-mesh (PM) schemes, respectively. In the PM scheme, the
gravitational potential is computed on a regular mesh grid (here-
after, the PM mesh grid) for the mass density field contributed by
the CDM component and by the massive neutrinos. The long-range

gravitational force at an arbitrary position is computed by differen-
tiating and interpolating the gravitational potential defined on the
PM mesh grid. Since we impose periodic boundary conditions, we
solve the Poisson equation (2) with the convolution method [11]
using Fast Fourier Transform (FFT). The short-range gravitational
forces between N -body particles are computed with the tree algo-
rithm to improve the force resolution in the high density regions
which is otherwise missed in the conventional PM scheme. The
calculation of the short-range forces is computed by a highly opti-
mized gravity kernel, in which the force calculation is accelerated
with the aid of SIMD instructions. It is originally developed for x86
architecture with SSE and AVX instruction sets (see [17, 24]) and is
named “Phantom-GRAPE” after the API compatibility to GRAPE-
5[16]. We port Phantom-GRAPE to Fujitsu A64FX processors on
Fugaku supercomputer using the SIMD instruction set available on
an A64FX processor, the Scalable Vector Extension (SVE) instruc-
tion set. The details of the implementation using SIMD instructions
can be found in [24]. With the aid of the SVE instruction set, we
achieve the performance of 1.2 × 109 interactions/sec on a single
core of a A64FX processor, whereas that of implementation without
explicit use of the SVE instruction set is 2.4 × 107 interactions/sec.

For a simulation with NCDM particles for the CDM component,
we set the number of the PM mesh grid NPM to NPM = NCDM/33

so that the elapsed time required for the N -body part is the shortest.
We note that the positions and velocities of the N -body particles
are represented by double precision floating point numbers.

5.1.3 Domain Decomposition. We consider a six-dimensional phase
space domain defined on 0 ≤ x,y, z ≤ L and −V ≤ ux ,uy ,uz < V
in the Cartesian coordinate. We evenly decompose the physical
space along each spatial axis for parallelization with MPI, but the
velocity space is not decomposed. Each spatial grid point holds an
entire mesh grid for the velocity space so that the calculation of the
velocity moments of the distribution functions such as mass den-
sity, mean velocity and velocity dispersion tensor can be performed
without any data transfer among MPI processes. This efficient strat-
egy helps us with improving the overall performance of our code. In
what follows, let us denote the numbers of decomposed sub-domain
as nx , ny and nz per side along x , y and z axes, respectively, and
also the number of MPI processes as Nproc = nxnynz .

In the N -body calculation part, the distribution of N -body par-
ticles is decomposed into evenly spaced nx × ny × nz regions.
As for the PM scheme to compute the long-range gravitational
forces, the CDM density field is computed on the PM mesh grids in
each three-dimensionally decomposed domain, then is transferred
among MPI processes so that the entire density field is decomposed
into a two-dimensional manner, because the efficient parallel three-
dimensional FFT software library in the Fujitsu SSL II/MPI package
available on Fugaku supercomputer supports the two-dimensionally
decomposed data layout. Aside from the parallel FFT, the MPI data
communication in N -body part mainly takes place in computing
the mass density field contributed by the N -body particles and also
in computing the short-range forces of the N -body particles with
the tree method, both of which require N -body particle distribution
in the vicinity of adjacent domain boundaries.
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5.2 Spatially High-Order Advection Scheme
With A Single-Stage Time Integration

One of the potential drawbacks of our Vlasov simulation is the
large amount of memory required to configure mesh grids not
only in the physical space but also in the velocity space. Thus,
the spatial resolution of Vlasov simulations is limited compared to
conventional N -body simulations, even with currently available
state-of-the-art supercomputers. It is not practical to improve the
spatial and/or velocity resolutions by simply increasing the number
of mesh grids. Thus, it is important to adopt a numerical scheme
with spatially high-order accuracy and to effectively improve the
spatial resolution for a given number of mesh grid. It would be
also ideal to satisfy both monotonicity and positivity of numerical
solutions considering the physical and mathematical characteristics
of the Vlasov equation (1) and advection equations (3,4). Note that
numerical advection schemes with a spatially high-order accuracy
generally require high-order temporal accuracy as well, in order to
obtain numerically stable solutions. Hence one usually adopts a time
integration scheme with multiple stages such as temporally high
order TVD Runge-Kutta schemes [21] at the expense of increased
computational costs.

To realize spatially high order scheme with less computational
cost, we devise and adopt a novel numerical scheme, SL-MPP5 [23],
which has spatially fifth-order accuracy with the monotonicity and
positivity (MP) preservation and a temporally high-order time in-
tegration scheme with only a single stage. The coexistence of a
spatially high order MP preserving schemes and a single stage time
integration scheme is realized for the first time in our new scheme
by replacing the polynomially reconstructed numerical fluxes at
mesh boundaries in the standard MP preserving scheme [22] with
the ones constructed with the conservative semi-Lagrange schemes
[19, 20]. With this prescription, we are able to obtain numerically
stable solutions with spatially high order accuracy using compu-
tationally less expensive time integration scheme. This results in
significant reduction of the overall computational cost of the Vlasov
simulation. Spatially fifth order schemes with conventional time
integration schemes usually require temporally third order time
integration schemes. In other words, it would be necessary to per-
form calculations of numerical fluxes three times per step. Our new
scheme requires the calculation of numerical fluxes only once per
time step, and thus reduces the computational cost drastically.

5.3 Efficient SIMD Vectorization in Vlasov
Simulation

In order to realize the best possible performance on modern proces-
sor architectures, SIMD vectorization is indispensable for optimiza-
tion. Fujitsu A64FX processor in Fugaku supercomputer also has
the SIMD instruction set named Scalable Vector Extension (SVE),
and can perform eight and 16 operations of 64-bit and 32-bit data
elements in parallel, respectively. We explicitly utilize the SIMD
instructions in implementing the advection schemes described in
§5.2.

Here, we describe our approach in two dimensions as a clear-cut
case. It can be readily extended to six-dimensional cases. Let us

  
……

float f[NX][NY];

f[0][0] f[0][NY-1] f[1][0] f[1][NY-1] f[2][0]

Figure 1: Schematic illustration of SIMD vectorization in ad-
vancing the Equation (7). Colored boxes show the data lay-
out loaded to individual SIMD registers, where the vector
width is set to four. Note that the data in a SIMD register
have continuous memory addresses. See the data layout in
the bottom panel.

consider a two-dimensional advection equation
∂ f (x,y, t)

∂t
+vx

∂ f (x,y, t)

∂x
+vy

∂ f (x,y, t)

∂y
= 0, (6)

where vx and vy are the advection velocities along x and y axes,
respectively. We adopt the directional splitting method to solve this
equation; we sequentially advance an advection equation along
x-direction

∂ f (x,y, t)

∂t
+vx

∂ f (x,y, t)

∂x
= 0 (7)

and one along y-direction
∂ f (x,y, t)

∂t
+vy

∂ f (x,y, t)

∂y
= 0. (8)

Suppose that the function f (x,y, t) is regularly discretized on the
xy-plane with the mesh grid as shown in Figure 1. In numerically
advancing the advection equation (7) along the x-axis, it is straight-
forward to perform the time integration for multiple rows with
SIMD instructions. Since the discretized data along the y-axis have
continuous memory addresses, the data aligned along the y-axis
(enclosed by each colored boxes in Figure 1) can be loaded to a SIMD
register with a single instruction. We can then solve (7) in parallel
for multiple indices of the y-coordinate with SIMD instructions.

The time integration along the y-axis with SIMD instructions is
not as simple as that along the x-axis. In order to exploit SIMD in-
structions to integrate (8) in parallel for multiple columns, we need
to load a set of data in discontinuous memory addresses into SIMD
registers as shown in Figure 2. This introduces significant overhead
of memory operations and hampers efficient SIMD workflows.
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float f[NX][NY];

……

f[0][0] f[0][NY-1] f[1][0] f[1][NY-1] f[2][0]

Figure 2: Illustration of the data layout on SIMD registers re-
quired to perform SIMDvectorization in advancing (8) along
the y-axis for multiple columns. Data in discontinuous ad-
dresses should be packed into individual SIMD registers (col-
ored boxes).

We utilize an efficient approach named “load and transpose”
(LAT) method to use the SIMD instruction set in solving equation
(8) along the y-axis. First, we load the data along the y-axis in the
same manner as integrating (7) along the x-axis, as shown in the
left panel of Figure 3. In the case with the SIMD width of n, the
discretized data in n contiguous columns are loaded to n SIMD
registers. Then, the layout of n × n data elements on the n SIMD
registers are transposed as shown in the right panel of Figure 3.
The transpose of data on SIMD registers can be done “in-place” by
repeatedly shuffling the data elements between SIMD registers. 64
SIMD instructions is required to transpose 16×16 data layout on 16
SIMD registers. The resulting data layouts on the SIMD registers
are the same as depicted in Figure 2, which are suitable to perform
advancing equation (8) in parallel for multiple columns with SIMD
instructions. Since the shuffle operations on SIMD registers can
be performed very quickly compared with memory operations on
cache and on themainmemory, we can perform the time integration
of equation (8) using SIMD instructions with a significantly small
overhead of memory operations. The LAT method is effective in
solving advection equations not only in the two-dimensional space
but also in higher dimensional cases, and can be extended to our
Vlasov simulations in the six-dimensional phase space.

List 1: Structure of discretized distribution function
1 struct _df {

2 float dens , ux_mean , uy_mean , uz_mean;

3 float dfv[NUX][NUY][NUZ];

4 };

5
6 struct _df *df = (struct _df *) \\

7 malloc(sizeof(struct _df)*NX*NY*NZ);

  

f[0][0]

f[0][1]

f[0][2]

f[0][3]

f[1][0]

f[1][1]

f[1][2]

f[1][3]

f[2][0]

f[2][1]

f[2][2]

f[2][3]

f[3][0]

f[3][1]

f[3][2]

f[3][3]

f[0][0]

f[1][0]

f[2][0]

f[3][0]

f[0][1]

f[1][1]

f[2][1]

f[3][1]

f[0][2]

f[1][2]

f[2][2]

f[3][2]

f[0][3]

f[1][3]

f[2][3]

f[3][3]

Figure 3: Transpose of 4×4 elements on four SIMD registers
to re-arrange data layout. This is optimal to performparallel
advancing of equation (8) with SIMD instructions. Colored
boxes indicate SIMD registers.

Table 1: Performance of Vlasov simulation per CMG with
and without SIMD instructions and the LAT method.

Direction w/o SIMD inst. w/ SIMD inst. w/ LAT method

ux 4.84 [Gflops] 176.7 [Gflops] –
uy 7.14 [Gflops] 233.3 [Gflops] –
uz 7.44 [Gflops] 17.9 [Gflops] 224.2 [Gflops]
x 5.51 [Gflops] 150.0 [Gflops] –
y 6.88 [Gflops] 154.1 [Gflops] –
z 6.50 [Gflops] 149.2 [Gflops] –

Whenwe solve the Vlasov equation, the discretized six-dimensional
distribution function is defined as shown in List 1, where NX, NY and
NZ are the numbers of spatial mesh grids along x ,y and z-directions,
and NUX, NUY and NUZ are those of velocity mesh grids along ux ,
uy and uz directions, respectively. Time integration of the Vlasov
equation along a direction is implemented in the form of a sextuple
loop. The SIMD vectorization in solving the advection equations
along all the directions except for the uz -axis can be done in the
same manner as depicted in Figure 1 by running the second inner-
most loop over the index associated with the uz -axis. Advection
along the uz -axis corresponds to the case shown in Figure 2.

We show the performance gain with the aid of the SIMD in-
struction set and the LAT method on a A64FX processor in Table 1.
There, we list the performance per core memory group (CMG, see
below for the details) of A64FX processor (see §6) measured in a set
of Vlasov simulations with Nx = 323 and Nu = 643 performed on
two nodes with and without the explicit use of SIMD instructions
and the LAT method. Clearly, the explicit use of SIMD instructions
improves the performances by a factor of 30 in the velocity space
except for the one along the uz -axis, and by a factor of 18 in the
physical space. Note that the performance along the uz -axis is sig-
nificantly lower even with the explicit use of the SIMD instructions.
This is owing to the inefficient load operations to SIMD registers.
With the use of the LAT method in solving the advection equation
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along the uz -axis, we have significantly improved the efficiency of
data load into SIMD registers. The resulting performance is as good
as those along the other axes in the velocity space.

It is clearly seen that the performances in the velocity space (the
upper three items in Table 1) is better than those in the physical
space (lower three items). This is because the operations in the
advection in the physical space include the data copy from/to the
ghost mesh grid for the MPI communication. Therefore, the per-
formance of the velocity space advection can be regarded as an
“uncontaminated” sustained performance of our scheme on a single
CMG, and achieves 12 − 15% of the theoretical peak performance
in a single precision arithmetics (1.54 Tflops/CMG).

5.4 Superiority to N -body simulation
Figure 4 compares the density field of the CDM component, massive
neutrinos obtained with our hybrid Vlasov/N -body simulation (the
run M24 listed in Table 2). The distribution of massive neutrinos
is quite diffuse compared with that of the CDM component owing
to their very large velocity dispersion. The neutrino distribution
roughly traces that of CDM on a large scale, suggesting higher
neutrino densities in and around high density regions of CDM.
The smoother distribution of the neutrinos prevents the nonlinear
growth of the small-scale clustering of CDM (and hence galaxies),
which is expected to be observed by future galaxy surveys. We
also show the density fields of massive neutrinos simulated with
different neutrino masses ofMν = 0.2 eV and 0.4 eV, whereMν is
the sum over three mass eigenvalues of neutrinos. The distribution
of massive neutrinos depends on their massMν , and those of CDM
and galaxies are strongly affected by the neutrino distribution.

Figure 5 shows the local velocity distribution function of massive
neutrinos at a random position in our Vlasov/N -body simulation
and the corresponding one in the N -body simulation starting from
the equivalent initial condition. Our Vlasov/N -body simulation
reproduces a smooth, long-tailed distribution as well as the de-
formation (substructure) in the low velocity patch, but the coarse
sampling in the N -body simulation (denoted by open circles) does
not allow us even to discern such features.

In Figure 6, we show the comparison of density fields, velocity
fields and velocity dispersion of massive neutrinos simulated with
one of our Vlasov/N -body hybrid simulations (the same as shown in
Figure 4) and their counterparts obtained by an N -body simulation
originated from the same initial condition, in which we employ
7683 particles for the CDM component and 8 × 7683 particles for
the massive neutrinos. The neutrino density field obtained with our
Vlasov/N -body simulation is smooth and resolves fine structures
uniformly across the entire computational domain, whereas the
counterpart in the N -body simulation is compromised by the shot
noise; the fine structures resolved in the Vlasov/N -body simulation
are missed and heavily contaminated by the shot noise. The poor
representation of the velocity structure in the N -body simulation
seen in Figure 5 also affects higher order velocity moments of
the distribution function, such as the velocity field and velocity
dispersion more seriously, as can be seen in Figure 6. It should be
noted that required wall time to complete these two simulations
using the same amount of computational resources are almost
comparable, indicating that our Vlasov/N -body simulation is clearly

superior to conventional particle-based N -body ones in simulating
the dynamics of massive neutrinos.

6 HOW PERFORMANCEWAS MEASURED
6.1 Platform and Setup
We perform our numerical simulations on Fugaku supercomputer
which consists of 158,976 computational nodes, each of which has
an Fujitsu A64FX processor based on ARMv8-A ISA. The A64FX
processor has four sets of CMGs, each of which comprises of 12
compute cores and 8 GB HBM2 memory, and thus 48 compute cores
and 32 GB memory in total. The four CMGs in a chip are connected
via a ring bus network with a bandwidth of 115 GB/s. Theoretical
peak performance per CMG is 0.77 and 1.54 Tflops for double and
single precision arithmetics, respectively. Computational nodes are
connected via Tofu interconnect D, a six-dimensional torus network
with a mesh size of 24 × 23 × 24 × 2 × 3 × 2. In what follows, each
MPI process is assigned to a single or two CMGs depending on the
problem size. Therefore, the number of MPI processes is two or
four times as many as the number of computational nodes. MPI
processes are allocated on the six-dimensional torus network so
that MPI communications between physically adjacent domains
are kept fenced within a single hop.

For the measurement of the scalability, we conduct numerical
simulations with the box size of L = 200h−1 mega parsec (Mpc) per
side for the standard cosmological model determined by the recent
observation of the cosmic microwave background (CMB) [18]. Here,
h is the normalized Hubble constant in units of 100 km/sec/Mpc.
We assume the total mass of neutrino over three mass eigenstates
to be 0.4 eV, which is close to the upper limit placed by the CMB
observation [18]. The performance is evaluated in terms of wall
clock elapsed time measured with the clock_gettime() system
call. For each run listed in Table 2, we run the simulations by 40
steps and take the median values of the 40 measured elapsed times.

As for the measurement of time-to-solution, we setup an initial
condition with the box size of 1200h−1 Mpc at a cosmological red-
shift of 10, similar to that of the existing state-of-the-art simulation
[7]. We measure the total end-to-end elapsed time including that
for I/O with the clock_gettime() system call.

7 PERFORMANCE RESULTS
In this section, we present the performance of our hybrid Vlasov/N -
body simulation in terms of scalability and time-to-solution. Table 2
lists the parameters of runs presented in this section, where we
show the number of mesh grids in Vlasov simulation and N -body
particles, the number of computational nodes, the number of MPI
processes along each axis of domain decomposition, and the num-
ber of MPI processes per node. We adopt a naming convention of
these runs in which the first letters S, M, L, H and U denote the
number of spatial mesh grids of the Vlasov simulation Nx = 963,
1923, 3843, 7683 and 11523, respectively, followed by the number of
computational nodes in units of 144 nodes. The number of N -body
particles for the CDM component is proportional to that of Vlasov
mesh grids as NCDM = 93Nx, except for that of the largest run
(U1024), in which NCDM is same as that in the H run group and
set to NCDM = 69123. Note that H1024 and U1024 employ 147,456
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Figure 4: Densitymaps of the CDM component andmassive neutrinos simulated with Vlasov simulations. Our accurate Vlasov
simulations are able to reproduce the difference in the large-scale distribution of massive neutrinos with mass of 0.4 eV (mid-
dle) and 0.2 eV (right).
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Figure 5: The velocity distribution function of massive neu-
trinos at a single Vlasov mesh (physical position) in our
Vlasov simulation (color). The inset shows the distribution
in the low-velocity portion in linear color scale, showing de-
formed, fine structure in the velocity distribution. Open cir-
cles are the neutrino particles in the same region in the cor-
responding particle-based simulation.

computational nodes out of Fugaku’s entire system (158,976 com-
putational nodes), and thus they can be effectively regarded as full
system runs of Fugaku supercomputer.

7.1 Scalability
In order to measure the weak and strong scalings of our hybrid
Vlasov/N-body simulations, we perform 17 runs in S, M, L and H
run groups listed in Table 2. We measure the elapsed time per step
for integrating the Vlasov equation (Vlasov part), for computing
short-range forces of N -body particles using the tree method (tree

Table 2: Runs formeasurements of weak and strong scalings
and time-to-solution.

ID (Nx, Nu) NCDM Nnode (nx ,ny ,nz )
Nproc

Nnode

S1 (963, 643) 8643 144 (12, 12, 2) 2

S2 (963, 643) 8643 288 (12, 12, 4) 2

S4 (963, 643) 8643 576 (12, 12, 8) 2

M8 (1923, 643) 17283 1152 (24, 24, 4) 2

M12 (1923, 643) 17283 1728 (24, 24, 6) 2

M16 (1923, 643) 17283 2304 (24, 24, 8) 2

M24 (1923, 643) 17283 3456 (24, 24, 12) 2

M32 (1923, 643) 17283 3456 (24, 24, 16) 2

L48 (3843, 643) 34563 6912 (48, 48, 6) 2

L64 (3843, 643) 34563 9216 (48, 48, 8) 2

L96 (3843, 643) 34563 13824 (48, 48, 12) 2

L128 (3843, 643) 34563 18432 (48, 48, 16) 2

L256 (3843, 643) 34563 36864 (48, 48, 32) 2

H384 (7683, 643) 69123 55296 (96, 96, 24) 4

H512 (7683, 643) 69123 73728 (96, 96, 32) 4

H768 (7683, 643) 69123 110592 (96, 96, 48) 4

H1024 (7683, 643) 69123 147456 (96, 96, 64) 4

U1024 (11523, 643) 69123 147456 (48, 48, 128) 2

part), and for solving the Poisson equation with the PM scheme
(PM part), separately as well as the ones for communicating data
between MPI processes required in the Vlasov and tree parts in a
manner described in §6. Figure 7 depicts the decomposed elapsed
time per step as well as the total elapsed time per step measured



SC ’21, November 14–19, 2021, St. Louis, MO, USA Kohji Yoshikawa, Satoshi Tanaka, and Naoki Yoshida
L

=
2
00

[h
−

1
M

p
c]

Vlasov N-body

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

lo
g(
ρ
ν
/
ρ̄
ν
)

neutrino density

L
=

20
0

[h
−

1
M

p
c]

Vlasov N-body

0

50

100

150

200

250

| ~ u
ν
|

[k
m
/
s]

neutrino velocity

L
=

2
00

[h
−

1
M

p
c]

Vlasov N-body

0.97

0.98

0.99

1.00

1.01

1.02

1.03

σ
ν
/σ̄

ν

neutrino velocity dispersion

Figure 6: Comparisons of mass density, velocity field and velocity dispersion of neutrinos between Vlasov and N -body simula-
tions. Note that the map of velocity dispersion obtained in the N -body simulation is coarse-grained (smoothed) to reduce the
shot-noise.

Table 3: Weak scaling efficiencies for the whole and each
part of the simulation.

S2–M16 S2–L128 S2–H1024

total 96.0 % 91.1% 82.3%
Vlasov 99.0% 99.2% 94.4%
tree 88.4% 76.8% 82.0%
PM 79.5% 48.7% 17.1%

against number of nodes for S, M, L and H run groups listed in
Table 2. The elapsed time for the Vlasov part amounts to about
70% of the total, and is the most dominant in the whole simulation.
In the left panel, we present the elapsed time of each part and
that of the whole simulation for a sequences of runs, S2, M16,
L128, and H1024. It shows a measure of weak scaling efficiency
and summarized in Table 3. The weak scaling efficiency of the
Vlasov part is higher than 90% for up to nearly full system (147,456
nodes) of Fugaku supercomputer. We note that the scaling of the
PM part is not excellent because the FFT calculations involved in
the PM part is parallelized only in a two-dimensional manner with
nxny MPI processes, although it has a minor impact on the whole
performance.

Comparisons of the elapsed time per step between runs in each
of S, M, L and H run groups depicted in the right panel of Figure 7
show the strong scaling efficiencies for the Vlasov, tree and PM parts
and the whole simulation. which are summarized in Table 4. The
strong scaling efficiencies of the most time-consuming Vlasov part
are excellent and better than 90% for M, L and H run groups. The
PM part appears slightly less efficient, but it can be ascribed to the
compromised parallel efficiency of the FFT calculation mentioned
above. Note that the degree of parallelism for the FFT calculation,
nxny , is constant within each run group. Despite this, the overall
strong scaling efficiencies are excellent in all the run groups.

Table 4: Strong scaling efficiencies for the whole and each
part of the simulation

S M L H

total 87.7% 93.3% 91.1% 82.4%
Vlasov 87.5% 93.9% 99.6% 93.0%
tree 90.9% 97.1% 85.7% 77.5%
PM 72.9% 60.6% 36.2% 34.1%

7.2 Time-To-Solution
No other simulations ever conducted can be directly compared
with ours since this is the first Vlasov simulation in the full six-
dimensional phase space domain. As a time-to-solution reference,
we choose the largest particle-based N -body simulation of massive
neutrinos in the LSS formation, which shares the common scientific
motivation and numerical outcomes with our simulations. The
largest particle-based N -body simulation of the LSS formation with
massive neutrinos was the TianNu simulation performed on Tianhe-
2 supercomputer[7]. A wall clock time of 52 hours was required to
complete the simulation with 69123 CDM particles and 8 × 69123

neutrino particles [7].
It is not straightforward to compare the numerical results ob-

tained from a particle-basedN -body simulation and from our Vlasov
simulation. It would be appropriate and fair to examine the follow-
ing two important quantities: the spatial resolution and the level of
shot noise. In N -body simulations, important physical quantities
such as density and velocity fields are calculated by averaging the
mass and velocity of individual N -body particles over a certain
volume or a certain number of particles. Smoothing over a large
number of particles lowers the level of shot noise in the local phys-
ical quantities, but it inevitably compromises the effective spatial
resolution. Simply, by averaging over Ns particles, one obtain the
spatial resolution of ∆L ≃ N

1/3
s × L/N

1/3
ν , where L is the size of a

cubic simulation box and Nν is the number of particles for massive
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Figure 7: Weak (left) and strong (right) scaling efficiencies of Vlasov, tree and PM parts as well as the total scaling efficiency.
Dashed line shows the ideal scaling.

neutrinos, and the shot noise level is estimated to be 1/N 1/2
s . In

terms of the signal-to-noise ratio S/N , it is related as S/N = N
1/2
s

following the simple Poisson statistics. Thus, the largest TianNu
N -body simulation has an effective spatial resolution of neutrino
distribution given by

∆L =
L

13824
(S/N )2/3 (9)

≃
L

640

(
S/N

100

)2/3
≃

L

1018

(
S/N

50

)2/3
(10)

as a function of S/N . For a sufficiently small shot noise level of
1%, or equivalently S/N = 100, for example, the effective spatial
resolution is ∆L ≃ L/640 and is almost the same as the resolution of
our H run group with Nx = 7683. Hence the TianNu simulation can
be regarded to be “equivalent” to the H run group in terms of spatial
resolution. If we conservatively allow the shot noise level to be up
to 2% (S/N = 50), the effective spatial resolution is ∆L = L/1018,
which corresponds to that of the U run group with Nx = 11523.

We perform two end-to-end runs, H1024 and U1024, with Nx =
7683 and 11523, respectively, on 147,456 nodes, nearly full system
of Fugaku supercomputer. The initial condition is set up at a red-
shift of z = 10 with a size of simulation box of 1200h−1 Mpc, and
evolved to the current Universe (z = 0). It should be noted that
the TianNu simulation introduces the dynamical effect of massive
neutrinos after a redshift of z = 5, later than the epoch in our
simulation. Also the superior resolution in the velocity space of our
Vlasov simulation (Fig. 5 and 6) is not considered here. Hence our
simulation is more elaborate and accurate. The end-to-end elapsed
time to complete these simulations including I/O are 1.92 hours
(6183 seconds for the execution and 733 seconds for I/O) for the
H1024 run and 5.86 hours (20342 seconds for the execution and 782
seconds for I/O) for the U1024 run, which are improved by a factor
of 27 and 8.9, respectively, making a great leap compared with the
state-of-the-art TianNu N -body simulation.

8 IMPLICATIONS
We have presented the results of the world’s first and largest Vlasov
simulation of massive neutrinos in the six-dimensional phase space
coupled with particle-based N -body simulation of cold dark matter
in the context of cosmic structure formation. Our simulation follows
the gravitational dynamics of massive neutrinos in a self-consistent,
fully coupled manner with the LSS formation. Our novel method
provides a promising solution for simulations of collisionless sys-
tems with large or arbitrary thermal motions.

The Vlasov simulation allows us to study the nonlinear effect
of massive neutrinos during the LSS formation. Without being
compromised by particle shot noise, our simulations accurately
reproduce the observational signatures of massive neutrinos that
are to be detected by ongoing and future wide-field galaxy surveys.
The observations utilizing ground-based telescopes such as Vera
C. Rubin Telescope and space-borne ones such as NASA’s Nancy
Grace Roman Telescope and ESA’s Euclid will ultimately lead to
precise determination of the absolute mass of neutrinos.

An array of state-of-the-art techniques are integrated to directly
solve the six-dimensional Vlasov equation. Our novel advection
scheme enables us to achieve spatially high-order (less diffusive)
solutions with computationally light weight time integration. The
whole implementation of this innovative scheme is highly optimized
by exploiting SIMD instructions in the best possible manner. To this
end, we introduce a novel LAT method to pack regularly discretized
data into SIMD registers efficiently. The concerted use of themodern
techniques and the SIMD instructions significantly reduces the total
computational cost that is otherwise needed.

The parallel efficiency of our simulation is remarkably excel-
lent for both the weak and strong scalings. This is partially in
virtue of relatively monolithic, high-bandwidth and low-latency
interconnect, the Tofu interconnect D, equipped with Fugaku super-
computer which directly connect sets of CMG and HBM2 memory
embedded in a A64FX processor. Although stencil computations
like Vlasov simulations are basically memory-bandwidth limited



SC ’21, November 14–19, 2021, St. Louis, MO, USA Kohji Yoshikawa, Satoshi Tanaka, and Naoki Yoshida

1200 h−1 Mpc300 h−1 Mpc120 h−1 Mpc

CDM

lo
g
(ρ

C
D

M
/ρ̄

C
D

M
)

1200 h−1 Mpc300 h−1 Mpc120 h−1 Mpc

neutrino

lo
g(
ρ
ν
/ρ̄

ν
)

Figure 8: Density maps of CDM (upper), and massive neutrinos (bottom) obtained in our largest Vlasov/N -body simulation
(run ID U1024).

and may appear better suited to be performed on GPU-like proces-
sors, parallel efficiency on amassive parallel environment with such
processors can be hampered by the multi-layered network stack.
The very combination of our innovative numerical scheme, highly
optimized implementation and Fugaku supercomputer achieves
the high parallel efficiency and high computational performance
simultaneously.

The Vlasov equation (1) and the full Boltzmann equation are
classical first-principle equations that describe the collective and
statistical behavior of many-particle systems in which the motion
of particles is characterized by a certain Hamiltonian. Our scheme
presented here can be applied to many other physical problems
such as electrostatic and magnetized plasma phenomena and self-
gravitating systems. Despite the huge computational cost, Vlasov
simulations hold a clear advantage that the velocity distribution
function is represented as a continuous function, and thus are well
suited to simulate physical systems where kinematic phenomena
play an important role.

As an application of Vlasov simulations, one of the promising tar-
gets would be numerical simulations of astrophysical magnetized
plasma such as interactions between inter-planetary plasma and

planetary magnetospheres, and high energy plasma around astro-
physical compact objects (black holes and neutron stars), in which
a variety of kinematic phenomena such as particle acceleration
induced in collisionless shock waves, magneto-rotational instabil-
ity and magnetic reconnection play critical roles in the dynamical
evolution of these objects. Although particle-based Particle-In-Cell
(PIC) simulations have a very successful history in this field, there
exist several long standing and intrinsic difficulties arising from the
discreteness of numerical super-particles and the associated shot
noise. The Vlasov simulation of a magnetized plasma which inte-
grate the Vlasov equation coupled with the Maxwell equations can
be an interesting and straightforward extension of our approach.

In numerical cosmology, our hybrid approach consisting of Vlasov
and particle-based N -body simulations places a milestone. This ap-
proach takes the best advantage of both the particle-based and
Vlasov simulations in a complementary manner, so that the sim-
ulated volume of our largest run covers a significant fraction of
the entire observable Universe, while resolving nonlinear objects
such as galaxy clusters. The same approach can also be applied to
plasma physics. For instance, the dynamics of heavy ions can be
followed by a particle-based method whereas the electron dynamics
is followed by the Vlasov simulation. We foresee that the hybrid
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approach opens a new paradigm in computational physics in the
era of exa-scale supercomputing.
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