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ABSTRACT
In this paper, we investigate large scale computers’ capability of
speeding up deep neural networks (DNN) training. Our approach
is to use large batch size, powered by the Layer-wise Adaptive Rate
Scaling (LARS) algorithm, for efficient usage of massive computing
resources. Our approach is generic, as we empirically evaluate
the effectiveness on two neural networks: AlexNet and ResNet-50
trained with the ImageNet-1k dataset while preserving the state-
of-the-art test accuracy. Compared to the baseline of a previous
study from a group of researchers at Facebook, our approach shows
higher test accuracy on batch sizes that are larger than 16K. Using
2,048 Intel Xeon Platinum 8160 processors, we reduce the 100-epoch
AlexNet training time from hours to 11 minutes. With 2,048
Intel Xeon Phi 7250 Processors, we reduce the 90-epochResNet-50
training time from hours to 20 minutes. Our implementation
is open source and has been released in the Intel distribution of
Caffe v1.0.7.
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1 INTRODUCTION
For deep learning applications, larger datasets and bigger mod-
els lead to significant improvements in accuracy [2], but at the
cost of longer training time. Moreover, many applications, such as
computational finance [14], autonomous driving [3], oil and gas
exploration [15], and medical imaging [11], will almost certainly
require training data-sets with billions of training elements and
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terabytes of data. Obtaining a working model for the above appli-
cations is often a repeated process of the training execution with
varying hyper parameter settings. For example, it takes a Nvidia
M40 GPU 14 days to finish just one 90-epoch ResNet-50 training
execution on the ImageNet-1k dataset. This long experiment turn-
around motivates the research of training time reduction of Deep
Neural Networks (DNN). The 90-epoch ResNet-50 training requires
1018 single precision operations in total. On the other hand, the
world’s current fastest supercomputer can finish 2 × 1017 single
precision operations per second [9]. So, if the 90-epoch ResNet-50
training can make full use of the computing capability of the fastest
supercomputer, it should be able to finish in five seconds.

So far, the best results on scaling ImageNet-1k training have used
the synchronous stochastic gradient descent method (synchronous
SGD) to enable parallelism. The synchronous SGD algorithm has
many inherent advantages, but at the root of these advantages is
determinism (modulo floating point round-off). Determinism en-
sures that all valid parallel implementations of the algorithm match
the behavior of the sequential version. This property is invaluable
during DNN design and during the debugging of optimization al-
gorithms. In parallel DNN training with synchronous SGD, larger
batch size is important to keep up machine efficiency, as it assigns
each processor sufficient amount of work in each iteration. For
example, engaging 512 processors with a batch size of 1k would
mean that each processor only gets a local batch of 2 images. In
contrast, a larger batch size of 32k assigns each processor 64 images
in each iteration. The latter case thus makes more efficient use of
the machines, as the computation to communication ratio is higher.

Over the last two years, we have seen the focus on increasing the
batch size and number of processors used in image classification
training, with a resulting reduction in training time. FireCaffe [16,
17] demonstrated scaling the training of GoogleNet to 128 Nvidia
K20 GPUs with a batch size of 1k and a total training time of 10.5
hours for 72 epochs. Although using a larger batch size naively can
lead to significant loss in test accuracy, with the warm-up technique
coupled with the linear scaling rule, researchers at Facebook [10]
were able to scale the training of ResNet-50 to 256 Nvidia P100
GPUs with a batch size of 8k and a total training time of one hour.
Using a more sophisticated approach to adapting the learning rate
in the Layer-wise Adaptive Rate Scaling (LARS) algorithm [32],
researchers were able to scale the batch size dramatically to 32k. On
eight Nvidia P100 GPUs, they reported a 3.4% reduction in accuracy
due to the absence of data augmentation.

Given the large batch sizes that the LARS algorithm enables, it
is natural to ask: how much further can we scale out the training
of DNN on the ImageNet-1k dataset? This is the investigation that
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led to this paper. At a high level, we find out that the 32k batch
size can efficiently scale DNN training on ImageNet-1k dataset up
to thousands of processors. In particular, we are able to finish the
100-epoch training with AlexNet in 11 minutes with 58.6%
top-1 test accuracy (defined in §2.4) on 2,048 Intel Xeon Platinum
8160 processors. With 2,048 Intel Xeon Phi 7250 Processors, we are
able to reduce the turnaround time of the 90-epoch ResNet-50
training to 20 minutes without losing accuracy, inside which
the top-1 test accuracy (defined in §2.4) converges to 74.9% at 64th
epoch (14 minutes from starting time).

In Summary, we make the following contributions:
• We show the scaling capability of LARS up to thousands of
CPUs with no loss of accuracy. Meanwhile we demonstrate
that DNN can be successfully trained by CPU-based systems
instead of using GPUs. We achieved the best scaling results
on Intel hardware.
• We examine the generality of the LARS algorithm on both
AlexNet and ResNet-50, while many other works are ResNet-
50 specific.
• Empirically, we demonstrate that LARS is more robust than
the recent work [10] at a batch size of 32K on large-scale
computers.
• Our work has been open sourced and released in the Intel
distribution of Caffe v.1.0.7.

2 BACKGROUND AND RELATEDWORK
In this section, we discuss the details of data-parallel stochastic
gradient descent (SGD) method, the model parallel approach, and
similar work of parallelizing DNN training.

2.1 Data-Parallelism SGD
In the data parallelismmethod, the dataset is partitioned into P parts
stored on each machine, and each machine will have a local copy
of the neural network and the weights (w j ). In synchronized data
parallelism, the communication happens at two places: the sum of
local gradients and the broadcast of the global weights. For the first
part, each worker computes the local gradient ∇w j independently,
and sends the update to the master node. The master then updates
w̃ ← w̃ −η/P

∑P
j=1 ∇w

j after it gets all the gradients from workers.
Here, η is the algorithm’s learning rate. For the second part, the
master broadcasts w̃ to all workers.

There is another implementation for the communication part.
The 1 reduce + 1 broadcast pattern can be replaced by 1 all-
reduce operation. In this situation, each worker computes the local
gradient ∇w j independently, and then the system conducts an
all-reduce operation to send the sum of the gradients (

∑P
j=1 ∇w

j )
to all the machines. After that, each machine will do the weight
updating (w j ← w j − η/P

∑P
j=1 ∇w

j ) locally. In this paper, we use
the all-reduce method rather than the reduce-broadcast method.
This synchronized approach is a widely-used method on large-scale
systems [17].

Scaling synchronous SGD to more processors has two challenges.
The first is giving each processor enough useful work to do; this has
already been discussed in §1. The second challenge is the inherent
problem that after processing each local batch all processors must
synchronize their gradient updates via a barrier before proceeding.

This problem can be partially ameliorated by overlapping computa-
tion and communication [6, 10], but the inherent synchronization
barrier remains. A more radical approach to breaking this synchro-
nization barrier is to pursue a purely asynchronous method. A vari-
ety of asynchronous approaches have been proposed [19, 24, 27, 34].
The communication and updating rules differ in the asynchronous
approach and the synchronous approach. The simplest version of
the asynchronous approach is a master-worker scheme. At each
step, the master only communicates with one worker. The master
gets the gradients ∇w j from the j-th worker, updates the global
weights, and sends the global weight back to the j-th worker. The
order of workers is based on first-come-first-serve strategy. The
master machine is also called as parameter server. The idea of a
parameter server was used in real-world commercial applications
by the Downpour SGD approach [7], which has successfully scaled
to 16, 000 cores. However, Downpour’s performance on 1, 600 cores
for a globally connected network is not significantly better than a
single GPU [29].

2.2 Model Parallelism
Data parallelism replicates the neural network itself on each ma-
chine while model parallelism partitions the neural network into P
pieces. Partitioning the neural network means parallelizing the ma-
trix operations on the partitioned network. Thus, model parallelism
approach can get the same solution as trained by a single machine.
Model parallelism has been studied in [4, 22]. However, in many
cases, such as image classification, the input size (e.g. size of an
image) is relatively small, and the matrix operations are not large.
For example, parallelizing a 2048×1024×1024 matrix multiplication
only needs one or two machines. Thus, state-of-the-art methods
often use the data-parallelism approach [2, 5, 7, 28].

2.3 Other Work
A group of researchers at Facebook reported finishing the 90-epoch
ResNet-50 training on ImageNet-1k dataset with 256 Nvidia P100
GPUs within one hour [10]. Their work uses a batch size of 8k.
Though we are able to achieve faster training speed than the re-
ported case, our baseline’s accuracy is slightly lower than Face-
book’s version (76.2% vs 75.3%) due to our usage of weaker data
augmentation. However, our approach has a higher accuracy with
batch sizes that are larger than 16k, as shown in Figure 1.

Codreanu et al. 1 reported achieving 73.78% accuracy on ResNet-
50 (with data augmentation) in less than 40 minutes on 512 In-
tel Xeon Phi 7250 Processors. There are two things worth noting:
Firstly, their batch size is 8k. Secondly, that case only ran for 37
epochs. The complete 90-epoch training would take 80 minutes
with 75.25% accuracy.

Akiba et al. [1] reported finishing the 90-epoch ResNet-50 train-
ing within 15 minutes on 1,024 Nvidia P100 GPUs. However, the
baseline accuracy is missing in the report, so it is difficult to tell how
much their 74.9% accuracy using the 32k batch size diverges from
the baseline. Secondly, both Akiba et al. and Facebook’s work [10]

1https://blog.surf.nl/en/imagenet-1k-training-on-intel-xeon-phi-in-less-than-40-
minutes/
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Figure 1: Top-1 Test Accuracy Comparison on Various Batch
Sizes between Our Approach and Facebook’s solution

are ResNet-50 specific, while we also show the generality of our ap-
proach with AlexNet. It is worth noting that our online preprint [33]
is two months earlier than Akiba et al.

2.4 Top-1 accuracy and Top-5 accuracy
In this section, we explain the difference between the top-1 accuracy
and the top-5 accuracy. Top-1 accuracy means the conventional
accuracy: the model’s prediction (the one with highest probability)
must be exactly the expected answer. Top-5 accuracy means that
any of your model’s five highest probability predictions match the
expected answer. For example, let us apply machine learning to
object recognition using a neural network. A picture of an airplane
is shown, and these are the outputs of our neural network:
• Car with 68% probability
• Train with 11% probability
• Bus with 10% probability
• Airplane with 9% probability
• Tank with 8% probability
• Gun with 2% probability
• Building with 1% probability

If we use top-1 accuracy, we count this output as false, because it
predicted a car. If we use top-5 accuracy, we count this output as
true, because airplane is among the top-5 guesses. In this example,
the dataset has seven classes. The ImageNet-1k dataset has 1,000
classes. All the accuracy in this paper means top-1 test accuracy.
Here, test accuracy is the prediction accuracy of the model on the
validation dataset, which the model is not trained on.

3 LARGE BATCH DNN TRAINING
In this section, we discuss the benefits and challenges of large
batch training, and the rational of our model selection along with a
learning rate profile study. Throughout the discussion, we focus on
the data-parallel synchronous SGD approach, as it is proven to be
stable for DNN training at scale [10]. In contrast, the asynchronous
methods using parameter server are not guaranteed to be stable in
a distributed environment [5].

3.1 Benefits of Large Batch Training
The prominent advantage of large batch training is that it
can reduce the overall training time. The idea is straightforward—
by using a large batch size for SGD, the work for each iteration can
be distributed to multiple processors. Consider the following ideal
case. ResNet-50 requires 7.72 billion single-precision operations to
process one 225x225 image. If we run 90 epochs on the ImageNet-
1k dataset of 1.28 × 106 images, the total number of operations is
90 ∗ 1.28 × 106 ∗ 7.72 × 109 ≈ 1018. Currently, the most powerful
supercomputer can finish 200 × 1015 single-precision operations
per second [9]. If there is an algorithm allowing us to make full use
of the fastest supercomputer, we can finish the ResNet-50 training
in 5 seconds.

To do so, we need to make the algorithm use more processors and
load more data at each iteration, which corresponds to increasing
the batch size in synchronous SGD. Ideally, if we fix total number
of data accesses and grow the batch size linearly with number of
processors, the number of SGD iterations will decrease linearly
and the time cost of each iteration remains constant, so the total
time will also reduce linearly with number of processors. A detailed
analytical study on the ResNet-50 training is shown in Table 1.

In the strong scaling situation, large batch does not change the
number of floating point operations (computation volume), as the
number of epochs is fixed. However, large batch can reduce the
overall communication volume. The reason is that larger batch size
results in less iterations thus less overall communication volume,
as the single iteration communication volume remains relatively
constant given the fact that it is only related to the model size and
the networking system. In this way, large batch size reduces the
overall DNN training time in a scalable manner.

A second benefit of large batch training is that it can keep
up the high machine utilization, which is especially important
in a distributed environment.

Let us use one Nvidia M40 GPU to illustrate this benefit on a
single machine. Figure 2 shows the M40 GPU performance mea-
surements (in images/sec) for AlexNet with varying batch size from
16 to 512. Increasing the batch size from 16 to 32, the performance
almost doubles. And from 128 to 512, the curve flattens, which
means the M40 GPU approaches its peak performance at the batch
size of 512. A large batch size, such as 8,192, can keep a 16 M40
GPU cluster at its peak performance during the training execution.

3.2 Model Selection
To scale out DNN training to many machines, a major overhead
is the communication among different machines [35]. Here we de-
fine the notion of scaling ratio as ratio between computation and
communication. For DNN models, the computation is proportional
to the number of floating point operations required for process-
ing an image. Since we focus on synchronous SGD approach, the
communication is proportional to model size (or the number of
parameters). Different DNN models have different scaling ratios. To
generalize our study, we pick two representative models: AlexNet
and ResNet-50. The reason is that they have different scaling ra-
tios. From Table 2, we see that ResNet-50’s scaling ratio is 12.5×
larger than that of AlexNet. This means scaling ResNet-50 is easier
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Table 1: An Analytical Scaling Performance Study with
ResNet-50 as the Example. t1 is the computation time and
t2 is communication time. We fix the number of epochs as
100. Larger batch size needs less iterations. We set batch size
as 512 per machine. Then we increase the number of ma-
chines. Since t1 ≫ t2 for using ImageNet-1k dataset to train
ResNet-50 on GPUs [10], the single iteration time is domi-
nant by the computation. Thus the total timewill be reduced
approximately linearly.

Batch Epochs Iters GPUs IterationTime TotalTime

512 100 250k 1 t1 250kt1
1024 100 125k 2 t1 + log(2)t2 125k(t1 + log(2)t2)
2048 100 62500 4 t1 + log(4)t2 62500(t1 + log(4)t2)
4096 100 31250 8 t1 + log(8)t2 31250(t1 + log(8)t2)
8192 100 15625 16 t1 + log(16)t2 15625(t1 + log(16)t2)
... ... ... ...

1.28M 100 100 2500 t1 + log(2500)t2 100(t1 + log(2500)t2)

Figure 2: AlexNet Training Performance on Various Batch
Sizes on a Nvidia M40 GPU. Peak performance is reached
with the batch size of 512, while a 1,024 batch size runs out
of memory.

than scaling AlexNet. Our experiments in Figures 10, 11, 12, and 13
confirmed this conclusion.

Table 2: Scaling Ratio for AlexNet and ResNet50.

Model comm: comp: comp/comm
parameters flops per image scaling ratio

AlexNet 61 million 1.5 billion 24.6
ResNet50 25 million 7.7 billion 308

3.3 Challenges of Large Batch Training
Large batch size comeswith the benefits of shorter training time and
high machine utilization. However, naively using synchronous SGD
with large batch size usually achieves test accuracy degradation
compared to smaller batch sizes with a fixed number of epochs.

Unfortunately, there is no algorithm allowing us to effectively use
unlimitedly large batch sizes [20]. Table 3 shows the target test
accuracy by standard benchmarks. For example, when we set the
batch size of AlexNet larger than 1,024 or the batch size of ResNet-
50 larger than 8,192, the test accuracy will be significantly degraded,
as shown in Table 4 and Figure 3, respectively.

Table 3: Standard Benchmarks for ImageNet-1k training.

Model Epochs Test Top-1 Accuracy

AlexNet 100 58% [17]
ResNet-50 90 75.3% [13]

Table 4: AlexNet Test Accuracy with Varying Batch Size.
Current approaches (linear scaling + warmup) do not work
for AlexNet with a batch size larger than 1k. We tune the
warmup epochs from 0 to 10 and pick the one with highest
accuracy. According to linear scaling, the optimal learning
rate (LR) of batch size 4k should be 0.16. We use the poly
learning rate policy, and the poly power is 2. The momen-
tum is 0.9 and the weight decay is 0.0005.

Batch Size Base LR warmup epochs test accuracy

512 0.02 N/A 100 0.583

1k 0.02 no 100 0.582

4k 0.01 yes 100 0.509

4k 0.02 yes 100 0.527

4k 0.03 yes 100 0.520

4k 0.04 yes 100 0.530

4k 0.05 yes 100 0.531

4k 0.06 yes 100 0.516

4k 0.07 yes 100 0.001

... ... ... ... ...

4k 0.16 yes 100 0.001

For large batch training, it is essential to keep up the test accuracy
with smaller batches under the constraint of the same number of
epochs. Here we fix the number of epochs because: Statistically,
one epoch means the algorithm touches the entire dataset once;
and computationally, fixing the number of epochs means fixing the
number of floating point operations. State-of-the-art techniques for
large batch training to remedy the test accuracy degradation issue
include:

(1) Linear Scaling [21]: With an increase of the batch size from
B to kB, we should also increase the learning rate from η to kη.

(2)Warmup Scheme [10]: With a large learning rate (η), should
start from a small η and increase it to the large η in the first few
epochs.

The intuition of linear scaling is related to the number of itera-
tions. Let us use B, η, and I to denote the batch size, the learning
rate, and the number of iterations. If we increase the the batch
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size from B to kB, then the number of iterations is reduced from
I to I/k . This indicates that the frequency of weight updating is
reduced by k times. Thus, we make the updating of each iteration
k× more efficient by enlarging the learning rate by k times. The
purpose of a warmup scheme is to avoid the situation in which the
algorithm diverges at the beginning because we have to use a very
large learning rate based on linear scaling. With these techniques,
researchers can use the relatively large batch in a certain range (Ta-
ble 5). However, we observe that these state-of-the-art approaches
can only scale batch size to 1k for AlexNet and 8k for ResNet-50.
With the batch size of 4k for AlexNet, we can only achieve a 53.1%
test accuracy in 100 epochs (Table 4). Our target is to preserve the
58% test accuracy even when using large batch sizes, such as 32k.

Table 5: State-of-the-art Large Batch Training and Test Accu-
racy. Batch1 means baseline batch size. Batch2 means large
batch size. Accuracy1 means baseline accuracy. Accuracy2
means large-batch accuracy.

Team Model Batch1 Batch2 Accuracy1 Accuracy2

Google [21] AlexNet 128 1024 57.7% 56.7%
Amazon [23] ResNet-152 256 5120 77.8% 77.8%
Facebook [10] ResNet-50 256 8192 76.40% 76.26%

3.4 Scaling up Batch Size
To improve the accuracy for large batch training, a new rule of
learning rate (LR) schedule was developed. As discussed in §2.1, we
use w = w − η∇w to update the weights. Each layer has its own
weightw and gradient ∇w . Standard SGD algorithm uses the same
LR (η) for all the layers. However, from our experiments, we observe
that different layers may need different LRs. The reason is that the
ratio between | |w | |2 and | |∇w | |2 varies significantly for different
layers. From example, we observe that | |w | |2/| |∇w | |2 is only 20 for
conv1.1 layer (Table 6). However, | |w | |2/| |∇w | |2 is 3,690 for fc6.1
layer. To speedup the convergence for fc6.1 layer, the users need
to use a large LR. However, this large LR may lead to divergence
on the conv1.1 layer. We believe this is an important reason of the
optimization difficulty in large batch training.

Goyal et al [10] proposed the warmup scheme to solve this prob-
lem. The warmup scheme works well for ResNet-50 training with a
batch size ≤ 8k. However, only using this recipe does not work for
AlexNet with batch size > 10k and ResNet-50 with batch size > 8k.

Together with researchers at Nvdia, we proposed Layer-wise
Adaptive Rate Scaling (LARS) algorithm [32] to improve large batch
training’s test accuracy. The base LR rule is defined in Equation
(1). l is the scaling factor, which we set as 0.001 for AlexNet and
ResNet training. γ is a tuning parameter for users. Usually γ can be
chosen by linear scaling.

η = l × γ ×
||w | |2
| |∇w | |2

(1)

In this formulation, different layers can have different LRs. In
practice, we add momentum (denoted as µ) and weight decay (de-
noted as β) to SGD, and use the following sequence for LARS:

(1) get the local LR for each learnable parameter by α = l ×
||w | |2/(| |∇w | |2 + β | |∇w | |2);

Table 6: The ratios between | |w | |2 and | |∇w | |2 for different
layers of AlexNet with batch size = 4k after at 1st epoch. We
observe that they are very different from each other. fc is the
fully connected layer and conv is the convolutional layer. x.0
is a layer’s weight. x.1 is a layer’s bias.

Layers | |w | |2 | |∇w | |2 | |w | |2/ | |∇w | |2

fc8.0 20.24 0.078445 258
fc8.1 0.316 0.006147 51
fc7.0 20.48 0.110949 184
fc7.1 6.400 0.004939 1296
fc6.0 30.72 0.097996 314
fc6.1 6.400 0.001734 3690

conv5.0 6.644 0.034447 193
conv5.1 0.160 0.000961 166
conv4.0 8.149 0.039939 204
conv4.1 0.196 0.000486 403
conv3.0 9.404 0.049182 191
conv3.1 0.196 0.000511 384
conv2.0 5.545 0.057997 96
conv2.1 0.160 0.000649 247
conv1.0 1.866 0.071503 26
conv1.1 0.098 0.004909 20

(2) get the LR for each layer by η = γ × α ;
(3) update the gradients by ∇w = ∇w + βw ;
(4) update acceleration term a by a = µa + η∇w ;
(4) update the weights byw = w − a.
Using this approach together with the warmup technique, SGD

with large batch can achieve identical test accuracy with the batch
size of 32k as the baseline for AlexNet (Table 7). Technically, we
change the local response normalization (LRN) to batch normaliza-
tion (BN). We add BN after each convolutional layer. As shown in
Figure 3, we can see that the LARS algorithm can keep up the test
accuracy for ResNet-50 using 32k batch with the baseline of ∼73%
without data augmentation. In comparison, the current approaches
of combining linear scaling and warmup has lower accuracy on
ResNet-50 for batch size of 16k and 32k (68% and 56%, respectively).

Table 7: Test Accuracy of AlexNet with Batch Size of 32k us-
ing KNLNodes on Stampede2.We use ploy learning rate pol-
icy, and the poly power is 2. The momentum is 0.9 and the
weight decay is 0.0005. For a batch size of 32K, we changed
local response norm in AlexNet to batch norm. Specifically,
we use the refined AlexNet model by B. Ginsburg1.

Batch Size LR rule warmup Epochs test accuracy
512 regular N/A 100 0.583
4096 LARS 13 epochs 100 0.584
8192 LARS 8 epochs 100 0.583
32768 LARS 5 epochs 100 0.585

4 PERFORMANCE EVALUATION
In this section, we evaluate the 100-epoch AlexNet and 90-epoch
ResNet-50 training on a number of platforms with different hard-
ware. We will briefly introduce the hardware and software settings,
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(a) Batch Size=16k

(b) Batch Size=32k

Figure 3: Test Accuracy Comparison between Large Batch
Training, Large Batch Training with LARS, and the Base-
line. The base learning rate of Batch 256 is 0.2 with poly
policy (power=2). For the version without LARS, we use the
state-of-the-art approach [10]: 5-epoch warmup and linear
scaling for LR. For the version with LARS, we also use 5-
epoch warmup. Clearly, the existing method does not work
for Batch Size larger than 8K. LARS algorithm can help the
large batch to achieve the same accuracywith baseline in the
same number of epochs.

and present the comparison baseline and code change. In addition
to performance results, we will also discuss the communication
overhead analysis in details.

4.1 Hardware
Throughout this section, we run experiments on three types of
hardware. The Intel Xeon Phi 7250 Processors and the Intel Xeon
Platinum 8160 processors are part of the Stampede2 supercomputer
hosted at Texas Advanced Computing Center2. The eight Nvidia
P100 GPU cluster is locally hosted.

2portal.tacc.utexas.edu/user-guides/stampede2

We perform the large batch scaling efficiency study on the eight
Nvidia P100 GPU cluster. Each P100 GPU has the performance of
10.6 teraflops and has 16 GB memory.

The Intel Xeon Phi 7250 Processor (referred as KNL) is the latest
version of Intel’s general-purpose accelerator. It is a self-hosted
platform running CentOS 7 on our testbed. Each processor has
68 physical cores, and four hardware threads per core. All cores
are running at 1.4 GHz clock rate. On Stampede2, 3,696 out of the
total 4,200 KNL nodes are configured in the following way: On
each node, there is one processor with 96 GB DDR4 RAM, 16 GB
MCDRAM, and a 200 GB local Solid State Drive, of which 144 GB
is available. The memory is configured as cache-quadrant mode,
where MCDRAM is used as an L3 cache.

The Intel Xeon Platinum 8160 processors (referred as SKX) are
part of Intel Xeon Scalable Processors collection. Each SKX node
in Stampede2 has two such processors with 48 physical cores in
total. Each cores is documented with a 2.1 GHz clock rate, however,
the clock rate varies from 1.4 GHz to 3.7 GHz depending on the
instruction set and the number of active cores. Our measured run-
time clock rate for AlexNet and ResNet-50 are 2.1 GHz and 2.0 GHz,
respectively. Each SKX node is equipped with 192 GB RAM and a
200 GB Solid State Drive, of which 144 GB is available. There are
1,600 SKX nodes (3,200 processors) on Stampede2.

4.2 Software
On Nvidia GPUs, we used the Nvidia distribution of Caffe 3. And
on Intel processors, we used two variants of the official Caffe [18]:
1) our customized parallel implementation that uses MPI [12] for
the communication across nodes and 2) the Intel distribution of
Caffe v1.0.3 4, which supports multi-node training by Intel Machine
Learning Scaling Library (MLSL) v2017.1.016 5.

4.3 Data and Baseline
Throughout the performance evaluation, we use the ImageNet-
1k [8] dataset. The dataset has 1.28 million images for training and
50,000 images for testing. There are two top-1 test accuracy baseline
for ResNet-50 in 90 epochs: the case without data augmentation is
73% while the case with data augmentation is 75.3%. The top-1 test
accuracy baseline for AlexNet in 100 epochs is about 58%.

4.4 Scaling Efficiency of Large Batches
As discussed in §3.1, using large batch size can reduce the commu-
nication volume with less iterations, thus yielding higher scaling
efficiency than small batch size. Here, we present an analytical
study and the empirical performance evaluation to validate this
hypothesis.

Communication often is the major bottleneck for efficient scal-
ing for applications across many processors (Table 8). On a dis-
tributed system, communication means moving the data over the
network (e.g. master machine broadcast its data to all the worker
machines). In DNN training, communication across nodes is in
the form of a all-reduce (sum of local gradients). These commu-
nication patterns have a higher scaling overhead than the matrix

3https://github.com/NVIDIA/caffe
4https://github.com/intel/caffe
5https://github.com/intel/MLSL
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computations (i.e. the matrix computations on each machine can
be finished independently). In particular, the all-reduce on N nodes
have the scaling factor of O(logN ) or O(N ) depending on the net-
work topology [25, 26, 30, 31]. And the scaling factor of broadcast
is O(logN ). In contrast, the matrix computation in DNN training
can be distributed almost evenly to N nodes with the scaling factor
of O(1/N ).

For finishing the same number of epochs, the communication
overhead is lower in the large batch version than in the small
batch version, as the large batch version sends fewer messages
(latency overhead) and moves less data (bandwidth overhead). For
synchronous SGD, the algorithm needs to conduct an all-reduce
operation (sum of gradients on all machines) in each iteration. The
number of messages sent is linear with the number of iterations.
And for each iteration, the communication volume is constant
regardless of the batch size, as the gradients has identical size as
the model weights (|W |).

Let us use the following notations for the analytical evaluation:
E the number of epochs
n the total number of images in the training dataset
B the batch size

Then the number of iterations is E × n/B. Holding E and n con-
stant, with the large batch size, the program finishes with less
iterations. By fixing E, the number of epochs, it is fixing the total
number of floating point operations. Meanwhile, the number of
iterations is consistent with the communication frequency of the
training process. Let us denote |W | as the neural network model
size. Then we can get the communication volume is |W | × E × n/B.

Thus, the large batch version transfers less data than the small
batch version to finish the same number of floating point operations.
In summary, the number of floating point operations remain con-
stant when the number of epochs is fixed. The larger batch size
increases the computation-communication ratio because it
reduces the communication frequency. As a result, the larger
batch size makes the algorithm more scalable on distributed sys-
tems.

Table 8: Communication unit is much slower than compu-
tation unit because time-per-flop (γ ) ≪ 1/ bandwidth (β) ≪
latency (α ). For example, γ = 0.9 × 10−13s for NVIDIA P100
GPUs.

Network α (latency) β (1/bandwidth)
Mellanox 56Gb/s FDR IB 0.7 × 10−6s 0.2 × 10−9s
Intel 40Gb/s QDR IB 1.2 × 10−6s 0.3 × 10−9s

Intel 10GbE NetEffect NE020 7.2 × 10−6s 0.9 × 10−9s

For the empirical performance evaluation, we use the ImageNet-
1k training with AlexNet-BN on eight P100 GPUs in this experiment.
The baseline’s batch size is 512 and is referred as the small batch
size. The large batch size is 4k. In this example, we focus on the
the communication across GPUs. Firstly, the experiment results
confirm that the large batch size achieves the same test accuracy
as the small batch size in 100 epochs, as shown in Figure 4. Fixing
the number of epochs implies fixing the number of floating point
operations. Thus, large batch size achieves the same test accuracy

as the small batch size in fixed number of floating point operations
(Figure 5).

We observed a 3x reduction in training time with the large batch
size compared to that of the small batch size, as shown in Figure 6.
The number of iterations in large-batch training is much less than
small-batch training (Figure 7). The number of messages is equal to
the number of iterations. Our experimental results also confirmed
that large batch will reduce the accumulated latency overhead
(Figure 8) and bandwidth overhead (Figure 9).

Figure 4: Test Accuracy Comparison between the Small
Batch Size and the Large Batch Size. The 512 small batch size
is the baseline.

Figure 5: Increasing the batch size does not increase the num-
ber of floating point operations. Large batch can achieve the
same accuracy in the fixed number of floating point opera-
tions.

4.5 ImageNet training with AlexNet
In this experiment, we use the AlexNet training case to evaluate
our approach’s effectiveness in scaling DNN training at large scale.

Previously, Nvidia reported that using one DGX-1 station they
were able to finish 90-epoch ImageNet-1k training with AlexNet
in two hours6. However, they used half-precision or FP16, whose
6www.nextplatform.com/2016/04/06/dgx-1-nvidias-deep-learning-system-newbies
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Figure 6: Time-to-solution Comparison between the Small
Batch Size and the large Batch Size. To achieve the 58% accu-
racy, the large batch size of 4k only needs about two hours
while the smaller batch size of 512 needs about six hours.

Figure 7: When we fix the number of epochs and increase
the batch size, we need much less iterations.

cost is half of the standard single-precision operation. We run the
AlexNet training with standard single-precision. It takes 6 hours 9
minutes with the batch size of 512 on one NVIDIA DGX-1 station.
With our approach, using the large batch size of 4k achieves similar
test accuracy as the small batch size case (Line 2 in Table 7), and it
finishes in two hours and ten minutes on the same station. Thus,
using large batch size can significantly speedup DNN training on
GPU cluster.

Then we scale the same AlexNet training case with a batch size
of 32k, and run it on multiple scales of the KNL nodes and the SKX
nodes on the Stampede2 supercomputer. Figure 10 and 11 show the
strong scaling performance on each type of nodes with the ideal
scaling curve relative to the performance of 128 nodes in each case.

Despite the 11-minute training time on 1,024 SKX nodes (2,048
Intel Xeon Platinum 8160 processors), the AlexNet training does not
scale well beyond 512 nodes in both cases. The inefficient scaling
performance is due to its low scaling ratio, as defined in §3.2. On the
other hand, on 512 KNL nodes (512 Intel Xeon Phi 7250 processors),
the AlexNet training finished in 24 minutes.

Figure 8:Whenwefix the number of epochs and increase the
batch size, we needmuch less iterations. The number of iter-
ations is inear with the number of messages the algorithm
sent.

Figure 9: The number of iterations is linear with the num-
ber of messages the algorithm sent. Let us denote |W | as the
neural network model size. Then we can get the communi-
cation volume is |W | ×E×n/B. Thus, the larger batch version
needs to move much less data than the smaller batch when
they finish the number of floating point operations.

The minute-level training performance is remarkable given the
current practice, a comparison against known performance is pre-
sented in Table 9.

Table 9: Time-to-solution Comparison against Other Pub-
lished Performance

Batch Size epochs Accuracy hardware time
256 100 58.7% CPU + K20 GPU 144h
512 100 58.8% DGX-1 station 6h 10m
4096 100 58.4% DGX-1 station 2h 19m
32768 100 58.5% 512 KNLs 24m
32768 100 58.6% 1024 CPUs 11m
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Figure 10: Strong Scaling Performance of AlexNet with 32k
Batch Size on KNL Nodes

Figure 11: Strong Scaling Performance of AlexNet with 32k
Batch Size on SKX Nodes

4.6 ImageNet training with ResNet-50
In this experiment, we use the ResNet-50 training case to evaluate
the effectiveness of our approach in scalable DNN training. We use
the ResNet-50 training on the ImageNet-1k dataset for 90 epochs
with the batch size of 32k as the test case, run it at multiple scales
on the KNL and SKX nodes on Stampede2, then compare the test
accuracy and time-to-solution to the published results.

Figure 12 and 13 show the strong scaling performance of the
ResNet-50 case at various scales. Compared to AlexNet, ResNet-50
scales more efficiently to 1,024 KNL nodes and 1,600 SKX nodes.
This is because ResNet-50 has a relatively higher scaling ratio. In
particular, the ResNet-50 case finishes in 32 minutes on 1,600 SKX
nodes (3,200 Intel Xeon Platinum 8160 processors) and 20 minutes
on 2,048 KNL nodes (2,048 Intel Xeon Phi 7250 processors).

A comprehensive result comparison against existing results is
presented in Table 10. Codreanu et al. reported their experience
on using Intel KNL clusters to speed up ImageNet-1k training by
a blogpost7. They reported a 73.78% accuracy (with data augmen-
tation) in less than 40 minutes on 512 KNL nodes with the batch
size of 8k. However, this case only ran for 37 epochs. The complete
90-epoch training would take 80 minutes with a 75.25% accuracy.
7https://blog.surf.nl/en/imagenet-1k-training-on-intel-xeon-phi-in-less-than-40-
minutes/

Figure 12: Strong Scaling Performance of ResNet-50 with
32k Batch Size on KNL Nodes

Figure 13: Strong Scaling Performance of ResNet-50 with
32k Batch Size on SKX Nodes

Table 10: ResNet-50 Result Comparison. DA means Data
Augmentation

Batch DA epochs accuracy hardware time
256 NO 90 73.0% DGX-1 station 21h
256 YES 90 75.3% 16 KNLs 45h
8k NO 90 72.7% DGX-1 station 21h
8k NO 90 72.7% 256 P100 GPUs 1h
8k YES 90 75.3% 256 P100 GPUs 1h
16k YES 90 75.3% 1024 SKX nodes 52m
16k YES 90 75.3% 1600 SKX nodes 31m
32k NO 90 72.6% 512 KNL nodes 1h
32k YES 90 75.4% 512 KNL nodes 1h
32k YES 90 75.4% 1024 SKX nodes 48m
32k YES 90 74.2% 1600 SKX nodes 32m
32k YES 90 75.4% 2048 KNL nodes 20m

Based on the original ResNet-50 model [13], we added data aug-
mentation to our baseline. Our baseline is 75.3% top-1 test accuracy
in 90 epochs. We failed to reproduce the reported 76.24% top-1 test
accuracy form a group of Facebook researchers, as the model is not
open sourced. The model we used is available upon request. The test
accuracy comparison is shown in Table 11. Although our baseline’s
accuracy is lower than Facebook’s, we achieve a correspondingly
higher accuracy with batch sizes that are greater than 10k.
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Table 11: Comparison by 90-epoch ResNet50 Accuracy. DA
means Data Augmentation

Batch Size 256 8K 16K 32K 64K DA
MSRA 75.3% 75.3% — — — weak
IBM — 75.0% — — — —

SURFsara — 75.3% — — — —
Facebook 76.3% 76.2% 75.2% 72.4% 66.0% heavy

Our 73.0% 72.7% 72.7% 72.6% 70.0% no
Our 75.3% 75.3% 75.3% 75.4% 73.2% weak

5 CONCLUSION
In conclusion, we explore the large batch size approach to enable
scalable DNN training on large scale computers. We examine the
benefits and the challenges of this approach, and incorporate the
LARS algorithm as the solution. We evaluate the implementation
with the ImageNet-1k dataset and two neural network models of
AlexNet and ResNet-50 at scale for the efficiency, test accuracy,
training speed, and solution generality. Our solution is able to keep
up with the baseline test accuracy for both test cases within the
same number of epochs. We are able to reduce the ImageNet-1k
training time from hours to minutes: With 1,024 SKX nodes, the
AlexNet case finished in 11 minutes. While with 2,048 KNL nodes,
the ResNet-50 case finished in 20 minutes. Our solution is general to
be effective for both the AlexNet and ResNet-50 cases. We showcase
large scale computers’ capability in accelerating DNN training with
massive computing resource with standard ImageNet-1k based
benchmark. We believe this is a pilot use case to motivate future
DNN based research on large scale computers across domains in
both industry and academia.
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