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ABSTRACT: Many-body perturbation theory is a powerful
method to simulate electronic excitations in molecules and
materials starting from the output of density functional theory
calculations. By implementing the theory efficiently so as to run at
scale on the latest leadership high-performance computing systems
it is possible to extend the scope of GW calculations. We present a
GPU acceleration study of the full-frequency GW method as
implemented in the WEST code. Excellent performance is
achieved through the use of (i) optimized GPU libraries, e.g.,
cuFFT and cuBLAS, (ii) a hierarchical parallelization strategy that
minimizes CPU−CPU, CPU−GPU, and GPU−GPU data transfer
operations, (iii) nonblocking MPI communications that overlap
with GPU computations, and (iv) mixed precision in selected
portions of the code. A series of performance benchmarks has been carried out on leadership high-performance computing systems,
showing a substantial speedup of the GPU-accelerated version of WEST with respect to its CPU version. Good strong and weak
scaling is demonstrated using up to 25 920 GPUs. Finally, we showcase the capability of the GPU version of WEST for large-scale,
full-frequency GW calculations of realistic systems, e.g., a nanostructure, an interface, and a defect, comprising up to 10 368 valence
electrons.

1. INTRODUCTION
First-principles simulations of materials have become main-
stream computational instruments to understand energy
conversion processes in several areas of materials science and
chemistry, including, for instance, applications to photovoltaics
and photocatalysis. Simulations using the Kohn−Sham density
functional theory (KS-DFT)1,2 are widely adopted to
computationally predict the structures and properties of
molecules and materials in their ground state. However, KS-
DFT methods fail to provide an accurate description of
electrons in excited states. The GW method, formulated within
the context of many-body perturbation theory,3,4 has been
established as the main method to improve the electronic
structure obtained with DFT and describe excited states. The
GW self-energy was initially proposed by Hedin5 as a
numerically manageable approximation to the complex many-
body nature of electron−electron interactions. The earliest
applications of the GW method to the electronic structure of
semiconductors and insulators obtained with DFT date back to
the 1980s.6−10 Conventional GW implementations, currently
available in several electronic structure codes, have a
computational cost that scales as N( )4 with respect to the
system size N, limiting the tractable size of GW calculations.
Method development and code optimization have been active
areas of research in order to push the scope of applicability of
such GW implementations to large systems. Formulations with

cubic scaling algorithms11−17 or stochastic methods18−22 have
been proposed, albeit at the cost of introducing expensive
numerical integration operations or stochastic errors, respec-
tively.
The rise of heterogeneous computing has substantially

increased the throughput available in leadership high-perform-
ance computing (HPC) systems to hundreds of PFLOP/s
(peta floating-point operations per second), and we are
currently witnessing the transition to the exascale. On the
current release (November 2021) of the TOP500 list,23 seven
of the top 10 supercomputers have graphics processing units
(GPUs), including Summit, the world’s second fastest
computer powered by 27 648 NVIDIA V100 GPUs. GPU
devices consist of hundreds to thousands of cores that operate
at a relatively low frequency and can perform parallel
computational tasks in a more energy efficient way than by
central processing units (CPUs). This sets tremendous
opportunities for first-principles simulations, including the
ability to carry out GW calculations at unprecedented scales.
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However, most software packages in the electronic structure
community were initially written to target traditional CPUs
with parallelization primarily managed by the message passing
interface (MPI). The migration to accelerated, heterogeneous
computing typically requires a redesign of the code to fully
harness the parallelism of modern GPUs. GPU acceleration has
been reported by a number of electronic structure theory and
quantum chemistry software packages.24−31 For the GW
method in particular, the Gaussian-orbital-based VOTCA-
XTP code32 and the plane-wave-based Yambo33 code can
perform GPU-accelerated GW calculations of molecules and
materials. The plane-wave-based BerkeleyGW code was
recently ported to run on GPUs to carry out a large-scale
GW calculation for a silicon model consisting of 10 968
valence electrons using a generalized plasmon-pole model to
approximate retardation effects.34

In this paper, we present the GPU porting of the WEST
code,35,36 a plane-wave pseudopotential implementation of the
full-frequency G0W0 method. In addition to featuring a massive
parallelization, demonstrated using over ∼500 000 CPU cores
in ref 35, WEST uses techniques to help prevent computa-
tional and memory bottlenecks for large systems; for instance,
it represents the density−density response functions in a
compact basis set, eliminating the need to store and
manipulate large matrices. The slowly converging sum over
empty KS states, commonly encountered in most GW codes, is
avoided completely in WEST. WEST carries out a full
integration over the frequency domain, removing the need of
approximating retardation effects with plasmon-pole models.
The accuracy of the full-frequency implementation in WEST
was recently assessed, verifying the implementation by
comparing the results obtained with WEST with the results
of all-electron codes.37 The WEST code has been used to
study excited states for a variety of systems, including
molecules, nanoparticles, two-dimensional (2D) materials,
solids, defects in solids, liquids, amorphous, and solid/liquid
interfaces.37−49 Recent developments within WEST include
the computation of electron−phonon self-energies50,51 and
absorption spectra52,53 and the formulation of a quantum
embedding approach.54−56 The GPU porting of WEST aims to
further advance the simulation of electronic excitations in large,
complex materials on a variety of GPU-powered, pre-exascale
and exascale HPC systems. The strategy reported here is
general and can be applied to other GW codes.
The rest of the paper is organized as follows. In section 2, we

briefly review the G0W0 theory and the current state of the art.
In section 3, we summarize the implementation in the WEST
code. We then introduce the GPU porting of WEST in section
4, elaborating on several optimization strategies that help
maximize the efficiency of the code, especially when running
on a large number of GPUs. The performance of the newly
developed GPU version of WEST is discussed in section 5 with
a series of benchmarks, demonstrating excellent performance
and scalability on leadership HPC systems. In section 6, we
report three examples of large full-frequency G0W0 calcu-
lations. Our conclusions are given in section 7.

2. G0W0 METHOD
2.1. Theory. In KS-DFT,1,2 the ground state of a system of

interacting electrons in the external field of the ions may be
obtained by solving the KS set of single-particle equations

h i i iKS = (1)

where ψiσ and εiσ correspond to the wave function and energy
of the ith KS state in the σ spin channel, respectively. The KS
Hamiltonian, hKSσ , includes the single-particle kinetic energy
operator, ts, and the Hartree, external (ionic), and exchange-
correlation potential operators vH, vext, and vxcσ , respectively.
Throughout the paper we focus on large systems that do not
require k-point sampling; therefore, we omit k-point indices for
simplicity.
Quasiparticle (QP) states may be obtained by solving the

following Dyson-like equation

h i i iQP
QP QP QP= (2)

where the QP Hamiltonian, hQPσ , is obtained from the KS
Hamiltonian by replacing the exchange and correlation
potential with the electron self-energy Σ. The latter is a
frequency-dependent and nonlocal operator that may be
expressed in a compact form as

iGW= (3)

where G, W, and Γ are the Green’s function, the screened
Coulomb interaction, and the vertex operator, respectively. Σ
may be computed by solving Hedin’s equations self-
consistently.5 Within the G0W0 approximation,

8−10 Γ is treated
as the identity and the self-energy is evaluated not self-
consistently as

r r r r r ri G W( , ; )
d
2

( , ; ) ( , ; )0 0= +
+

(4)

The KS states and energies may be used to evaluate all terms in
the right-hand side (RHS) of eq 4, i.e., the non-self-consistent
Green’s function, G0

σ(ω) = (ω − hKSσ )−1, and the screened
Coulomb potential, W0 = v + v1/2χ̅v1/2, where χ̅ is the
symmetrized density−density response function of the system.
To obtain the latter, the irreducible density−density response
function, χ0 = iG0G0, is first evaluated; second, χ̅ is obtained
within the random phase approximation (RPA) using a Dyson
recursive equation, χ̅ = χ̅0 + χ̅0χ̅, where χ̅0 = v1/2χ0v1/2.
Once the self-energy is obtained, QP energies are found

using perturbation theory starting from the solution of eq 1

h h

v( )

i i i i

i i i i

QP
QP KS

QP
xc

= + | |

= + | | (5)

The frequency integration in eq 4 can be evaluated numerically
using the contour deformation technique,57−59 i.e., by carrying
out the integration in the complex plane along a contour that
excludes the poles of W0

I R( ) ( ) ( )i i i X i i i| | = | | + + (6)

The exchange self-energy, ΣX, is obtained by replacing W0 in eq
4 with the frequency-independent bare Coulomb potential v.
Iiσ contains an integration along the imaginary axis, where G0
and W0 are both smooth functions

r r r

r r r r r

I G

i W i

( )
d
2

d d ( )

( , ; ) ( , ; ) ( )

i i

p i

0= *

+

+

(7)

The Riσ term contains the residues associated with the poles of
the Green’s function that may fall inside the chosen contour
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r r r r

r r r r

R f W( ) d d ( ) ( )

( , ; ) ( ) ( )

i
j

j
i

i j p

j j i

= *

*
(8)

We labeled Wp the part of the screened Coulomb potential that
depends on the frequency, i.e., Wp = W0 − v, and we defined f jσiσ
= θ(εjσ − εF)θ(εjσ

QP − εjσ) − θ(εF − εjσ)θ(εjσ − εjσ
QP), where

θ(x) is the Heaviside step function and εF is the Fermi energy;
a formal derivation may be found in ref 35.
Quasiparticle energies obtained by solving eq 5 are used to

compute charged excitations and yield an electronic structure
that can be compared to direct and inverse photoelectron
spectroscopies (UPS, XPS, ARPES).4,60,61

2.2. State of the Art. First-principles calculations using the
G0W0 method are typically carried out after DFT and are
computationally more demanding than the latter: the
computational complexity of the GW method scales as

N( )4 with respect to the system size N, whereas DFT scales
as N( )3 . In addition, several computational bottlenecks
hinder the applicability of the G0W0 method to large systems
containing thousands of valence electrons (Nocc). In the
following, we focus the discussion on implementations of
G0W0 with three-dimensional (3D) periodic boundary
conditions using the plane-wave basis set where Nρ and Nψ
are the number of plane-waves associated with the chosen
kinetic energy cutoff for the density and the wave function,
respectively. In the case where ionic potentials are described
using norm-conserving pseudopotentials, we have Nρ ≃ 8Nψ. A
first computational bottleneck occurs when one wants to
evaluate G0 using its Lehmann representation or χ0 using the
Adler−Wiser formula,62,63 i.e., in terms of the eigenvectors and
eigenvalues of hKSσ . In this case, a summation over occupied
states and empty states must be taken explicitly. The
bottleneck is caused by the difficulty to fully diagonalize the
KS Hamiltonian in its empty manyfold because Nψ ≫ Nocc. A
second computational bottleneck occurs when one wants to
evaluate Wp at multiple frequencies, and the density−density
response function is represented at each frequency by a large
matrix with Nρ elements per axis. The systems discussed in this
manuscript have millions of plane-waves, requiring the storage
and manipulation of large matrices.
To make the simulations tractable, conventional implemen-

tations of the G0W0 method introduce additional parameters,
e.g., Nempty ≪ Nψ and Nχ ≪ Nρ, to limit the number of empty
states and the size of density−density response functions,
respectively. However, these parameters, not present in the
DFT calculation, show a slow convergence with respect to the
size of the system. In addition, several implementations of the
G0W0 method solve eq 5 with linearization using the on-the-
mass shell approximation (i.e., Σ is evaluated at the KS energy)
or approximate the frequency-dependent dielectric screening
using generalized plasmon-pole models.9,10,64−67 Such models
are derived for homogeneous systems and commonly applied
to heterogeneous systems without formal justification.68

Reproducibility studies have shown that these approximations
can be the source of discrepancies between different
implementations.37,69−71

Method development aimed at improving the efficiency of
full-frequency G0W0 calculations is the focus of current
research. A few techniques have been developed in order to
reduce the cost of the sum over empty states, including the

extrapolar approximation,72,73 the static remainder approach,74

the effective energy technique,75,76 the multipole approach,77

and methods35,78−87 based on density functional perturbation
theory (DFPT).88,89 The stochastic formulation of G0W0,

18−20

which employs the time evolution of the occupied states, leads
to an implementation that does not involve empty states, and
its results are comparable to those obtained with the
deterministic full frequency G0W0 method.
Implementations of the G0W0 method using plane-waves

basis sets are available in the following codes: ABINIT,24

BerkeleyGW,90 GPAW,91 OpenAtom,92 Quantum ESPRES-
SO,30 SternheimerGW,93 VASP,94 WEST35 (this work), and
Yambo.33 Other implementations use Gaussian basis sets, such
as Fiesta,95 MOLGW,96 TURBOMOLE,97 and VOTCA-
XTP,32 Slater-type orbitals, such as ADF,14 numerical atomic
orbitals, such as FHI-aims,98 mixed Gaussian and plane-waves,
such as CP2K,26 linearized augmented-plane-waves with local
orbitals, such as Elk,99 Exciting,100 and FHI-gap,101 and real-
space grids, such as NanoGW102 and StochasticGW.18

In the next section, we summarize the implementation of the
full-frequency G0W0 method in the WEST code as presented
in ref 35, and we discuss the implications of design choices for
calculations of large-scale system. In section 4, we present the
porting of WEST to GPUs.

3. G0W0 IMPLEMENTATION IN THE WEST CODE
The open-source software package WEST (Without Empty
STates)35,36 implements the full-frequency G0W0 method for
large systems using 3D periodic boundary conditions. The
underlying DFT electronic structure is obtained using the
plane-wave pseudopotential method. Key features of the
WEST code include (i) the use of algorithms to circumvent
explicit summations over empty states, (ii) the use of a low-
rank decomposition of response functions to avoid storage and
inversion operations on large matrices, and (iii) the use of the
Lanczos technique to facilitate the calculation of the density−
density response at multiple frequencies.
The complete workflow for computing QP energies with the

WEST software is shown in Figure 1, where the pwscf code
(pw.x) in the Quantum ESPRESSO software suite30,103,104 is
used to carry out the ground-state DFT calculation, the
wstat code (wstat.x) in WEST constructs the projective
dielectric eigenpotentials (PDEP) basis set that is used to
obtain a low-rank representation of the density−density
response function, and the wfreq code (wfreq.x) in WEST
computes the QP energies. In the following, we describe each
part of the workflow.
The ground-state electronic structure is obtained with DFT

using semilocal or hybrid functionals. Although in this work we
focus on spin-unpolarized and spin-polarized large systems of
which the Brillouin zone can be sampled using the Γ point, the
WEST software supports simulations with k-points sampling
and with noncollinear spin.40 Currently, only norm-conserving
pseudopotentials are supported.
Starting from the output of DFT, the PDEP algorithm is

used to find the leading eigenvectors of the symmetrized
irreducible density−density response function χ̅0 at zero
frequency.79,80 The eigenvectors of χ̅0(ω = 0), referred to as
the PDEP basis set, are then used to construct a low-rank
decomposition of the symmetrized reducible density−density
response function χ̅ at finite frequencies. Finally, by using the
PDEP basis set one may express Wp in a separable form
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r r r rW ( , ; ) ( )
1

( ) ( ) ( )p
nm

N

nm n m

PDEP

= +
(9)

where Λnm are the matrix elements of the operator on the
PDEP basis set, Ξ takes into account the frequency-dependent
long-range dielectric response, Ω is the volume of the
simulation cell, and φ̃n are symmetrized eigenpotentials, i.e.,
φ̃m = v1/2φm. A formal derivation may be found in ref 35.
The PDEP algorithm uses the Davidson method105 to find

the leading eigenvectors of χ̅0. This is done by first
constructing an orthonormal set of NPDEP trial vectors {φj: j
= 1, ..., NPDEP}. We then repeatedly apply χ̅0 to the vectors of
the set and expand the set by including the residues, until the
set contains NPDEP leading eigenvectors of the operator. At
each iteration of the Davidson algorithm, the result of the
application of χ̅0 on each vector of the set is obtained by
computing the symmetrized density−density response of the
system, Δñj, subject to the symmetrized perturbation v̂j

pert = φ̃j.
The symmetrization operation, i.e., the multiplication by v1/2,
ensures that the response can be diagonalized and also
simplifies the expression of χ̅ in terms of χ̅0. To obtain χ̅0, the
response is computed using the independent particle
approximation, i.e., by neglecting variations to the Hartree,
exchange, and correlation potentials. In practice, the linear

variation of the electron density may be computed using either
linear response or a finite-field method.106,107

In this work, we focus on the case where the charge density
response is evaluated within linear response using DFPT.88,89

In essence, for each perturbation v̂j
pert = φ̃j, we compute the

linear variation, Δψiσ
j , of each occupied state of the

unperturbed system, ψiσ, using the Sternheimer equation
108

h P P v( )i i
j

j iKS c c
pert= (10)

Here, Pc
σ is the projector onto the conduction (i.e.,

unoccupied) KS states. The completeness relation, i.e., Pcσ =
1−Pvσ, where Pvσ is the projector onto the valence states, ensures
that eq 10 can be solved without explicit summations over
empty states.89 A preconditioned conjugate gradient method is
used to solve eq 10. In practice, we note that eq 10 lends itself
to a nearly embarrassingly parallel implementation because it
can be solved independently for each perturbation, spin
channel, and orbital. Finally, the linear variation of the density
caused by the jth perturbation is obtained as

r r r r rn ( ) ( ) ( ) ( ) ( )j
i

N

i i
j

i
j

i
1

occ

= [ * + ]
=

*

(11)

In this way, the calculation of the response function scales as
Nocc

2 × NPDEP × NPW, which is more favorable than
conventional implementations based on the Adler−Wiser
formula62,63 that scales as Nocc × Nempty × NPW

2 , where Nocc
(Nempty) is the number of occupied (empty) states. Here, we
use NPW as the number of plane-waves needed to represent the
wave function (previously defined as Nψ). The PDEP basis set
allows us to achieve a low-rank decomposition of density−
density response matrices, reducing the size of the matrices
from Nχ

2 to NPDEP
2 (with NPDEP ≪ Nχ). In practice, NPDEP is the

only parameter of the method, and ad hoc energy cutoffs to
truncate, for instance, the response function or the number of
empty states are completely sidestepped. A recent verification
study37 showed that NPDEP is just a few times the number of
electrons and NPDEP ≪ NPW.
WEST solves the nonlinear eq 5 using a root finding

algorithm, e.g., the secant method, and implements the full-
frequency integration in eq 6. G0 and W0 are evaluated at
multiple frequencies using Lanczos chains.82,85 For instance,
using eq 9 in eq 7 we obtain that

I I I( ) ( ) ( )i i i
LR SR= + (12)

where the long-range (LR) contribution and short-range (SR)
contributions are

I d i
i

( )
2

( )
i
LR

i
=

+

(13)

I i

h i

( )
1 d

2
( )

( )

i
nm

N

nm

i n j m

SR

KS
1

PDEP

=

| |

+

(14)

The shifted-inverted problem in the RHS of eq 14 is computed
introducing the Lanczos vectors

q h q q l
1

( ) 1mi
l

mi
l mi

l
mi
l

mi
l

mi
l1

1 KS
1| = [ | | ]+

+

(15)

where

Figure 1. Key steps to compute QP energies within the G0W0
approximation using the WEST code. The pwscf code (pw.x) in
Quantum ESPRESSO is employed to compute the KS wave functions
and energies at the DFT level. These quantities are input to the
wstat code (wstat.x) in WEST, which generates the PDEP basis set
by iteratively diagonalizing the static dielectric matrix at zero
frequency. The wfreq code (wfreq.x) in WEST then uses the
PDEP basis set to compute G0 and W0 at finite frequencies with the
Lanczos algorithm. Frequency integration of the self-energy in eq 4 is
carried out with the contour deformation technique. Finally, the QP
energies are solved using eq 5.
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q q0,mi mi i m
0 1| = | = | (16)

q h qmi
l

mi
l

mi
l

KS= | | (17)

h q q( )mi
l

mi
l

mi
l

mi
l

mi
l1

KS
1= | |+

(18)

By defining dmiσ
l and Umiσ

ll′ as the eigenvalues and the
eigenvectors of the tridiagonal matrix that has αmiσ

l along the
diagonal and βmiσ

l along the sub- and superdiagonal, we hence
arrive at the following equation

I i q q

U
d i

U

( )
1 d

2
( )

1

i
nm

N

nm
ll

N

ni mi
l

mi
ll

mi
l mi

l

SR 1

1

PDEP Lanczos

= |
+

(19)

In eq 19 we see that the dependence of ISR on the frequency ω
is known analytically, i.e., the U and d coefficients and the
integral in brakets do not depend on the frequency. This
enables us to easily evaluate frequency-dependent quantities,
which facilitates the solution of eq 5 without linearization, i.e.,
beyond the on-the-mass-shell approximation, and without
using plasmon-pole models, i.e., with full frequency. Moreover,
the Lanczos vectors are obtained using a recursive algorithm
that orthogonalizes newly generated vectors against previous
ones. Each chain of vectors can be computed individually for
each perturbation, spin channel, and orbital, resulting in a
nearly embarrassingly parallel implementation.

4. GPU ACCELERATION OF THE WEST CODE
In this work, we present the porting to GPUs of the WEST
code, focusing on the complete full-frequency G0W0 workflow
shown in Figure 1, including the construction of the PDEP
basis set (with the standalone wstat application), the
computation of G0 and W0 using the Lanczos algorithm, the
integration of the self-energy using contour deformation, and
the final solution of the QP energy levels (with the standalone
wfreq application). For future reference, the CPU-only and
GPU-accelerated versions of the WEST code are hereafter
referred to as WEST-CPU and WEST-GPU, respectively.
To meet the challenge posed by heterogeneous computing,

we increased the number of parallelization levels implemented
within the code, so that we can harness the embarrassingly

parallel parts of the algorithms implemented in WEST as well
as the data parallelism offered by GPU devices. For instance,
the PDEP algorithm may be solved using Nproc MPI processes
and GPUs by implementing a multilevel parallelization
strategy, as summarized in Figure 2. The first level of
parallelization, already introduced in ref 35, divides Nproc
processes into Nimage subgroups, called images. Perturbations
are distributed across images using a block-cyclic data
distribution scheme. Each image contains a copy of the DFT
data structures, such as the KS single-particle wave functions,
and is responsible for computing the density response only for
the perturbations owned by the image. The second and third
parallelization levels, newly introduced in this work, further
split the processes within an image into Npool and Nbgrp
subgroups, called pools and band groups, respectively. Each
pool and band group stores and manipulates only a subset of
the wave functions by distributing the spin polarization (for
spin-polarized systems only) and band indices, respectively.
The remaining Nproc/(NimageNpoolNbgrp) processes within a
band group distribute the plane-wave coefficients of wave
functions and densities, forming the fourth level of
parallelization. Finally, each MPI process is capable of
offloading instructions to one GPU, which offers single
instruction, multiple thread (SIMT) parallelization by
leveraging the processing cores within the GPU device.
This flexible parallelization scheme helps optimize MPI

communications as well as fit hardware constraints (e.g.,
number of GPUs within one node). Global MPI communi-
cations involving all MPI processes are avoided, except for the
broadcast of the input parameters (a few scalars) from one
MPI process to the others.
For offloading data-parallel regions to the GPU, we

specifically focused this initial study to target NVIDIA devices.
Wherever applicable, mathematical operations are performed
on the GPU by calling optimized CUDA libraries, such as
cuFFT for fast Fourier transforms and cuBLAS for matrix−
matrix multiplications and other basic linear algebra
operations. If a compute loop cannot be organized to use an
existing library function, the loop is offloaded using CUDA
Fortran kernel directives, which automatically generate CUDA
kernels from regions of annotated CPU code.109 In order to
avoid the performance degradation caused by frequent data
transfer operations between the CPUs and the GPUs, WEST-
GPU copies the necessary data from the CPU to the GPU at

Figure 2. Multilevel parallelization of the WEST code exemplified for the case of 16 total MPI processes. The processes are divided into two
images. Each image is divided into two pools, each of which is further divided into two band groups. Within each band group there are two MPI
processes, each of which is capable of offloading computations to a GPU device using the single instruction, multiple threads (SIMT) protocol.
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the very beginning of a calculation. The data is copied back to
the CPU only when absolutely necessary, e.g., for input/output
(I/O) operations.
Work is underway to extend the current implementation to

other GPU devices as more software and hardware become
available. We anticipate that the multilevel parallelization
strategy introduced so far will grant flexibility of distributing
the computational workload also on GPU devices other than
NVIDIA ones. However, a discussion of the performance
portability and how it may be achieved by translating CUDA
Fortran into OpenMP directives110 goes beyond the scope of
this manuscript.
In the next subsections, we elaborate on specific

optimization strategies introduced in WEST-GPU on top of
the multilevel parallelization. In section 4.1, we point out key
factors that maximize the performance of GPU-accelerated fast
Fourier transforms (FFTs). In section 4.2, we benchmark
various eigensolver libraries, identifying the most efficient
solver for diagonalizing large matrices on multiple GPUs. In
section 4.3, we demonstrate that the overhead of MPI
communications can be diminished by overlapping communi-
cations with computations.
4.1. Fast Fourier Transforms. The performance of FFTs

is of crucial importance to the overall efficiency of any plane-
wave-based electronic structure code. FFTs are extensively
used in WEST to express quantities such as wave functions,
densities, and perturbations in either the reciprocal or the
direct space. Most importantly, the application of the KS
Hamiltonian to a trial wave function, a key step for the
calculation of G0 and W0 without explicit summations over
empty states, is implemented using the dual-space technique,
i.e., the kinetic operator and the local potential are applied in
the reciprocal or direct space, respectively. The dual-space
technique takes advantage of the convolution theorem and the
fact that FFTs scale as N N( log( )). It follows that at least
two FFTs (one forward and one backward) are required at
every application of the KS Hamiltonian, and their perform-
ance greatly impacts the overall time-to-solution of both
wstat and wfreq (see Figure 1). FFTs are also invoked in
other parts of the code, for example, to obtain the electron
density.

WEST uses the FFTXlib library to implement parallel 3D
FFTs. This library retains only the Fourier components that
correspond to a chosen kinetic energy cutoff and is part of the
Quantum ESPRESSO distribution.30 FFTXlib may perform a
3D FFT using one MPI process or using several MPI processes
by decomposing the 3D grid into slabs or pencils. The slab
decomposition partitions the 3D grid into slabs, completing a
3D FFT by a set of 2D FFTs, an all-to-all communication, and
a set of one-dimensional (1D) FFTs. The pencil decom-
position partitions the 3D grid into pencils, completing a 3D
FFT as a set of 1D FFTs, an all-to-all communication, another
set of 1D FFTs, another all-to-all communication, and a final
set of 1D FFTs.111 When multiple MPI processes are used, the
Fourier components are distributed among the processes
avoiding data duplication. 3D, 2D, or 1D FFTs on a single
MPI process are performed using vendor-optimized libraries.
FFTXlib supports a variety of backends, currently including
FFTW3, Intel MKL, and IBM ESSL for CPUs and cuFFT for
NVIDIA GPUs.
We benchmarked the performance of the FFTXlib library on

the Summit supercomputer located at Oak Ridge National
Laboratory. Each node of Summit has two IBM POWER9
CPUs (21 cores each) and six NVIDIA V100 GPUs (see also
the specification of Summit listed in section 5). We used
FFTXlib (version 6.8) with IBM ESSL (version 6.3.0) for the
CPU backend and cuFFT (version 10.2.1.245) for the GPU
backend. In Figure 3, we report the time needed to perform
one double-precision (FP64) or single-precision (FP32)
complex-to-complex (C2C) FFT for a 1283 or 2563 cubic
grid using up to four nodes of Summit. Each data point in
Figure 3 represents the average value of 100 tests. When the
FFT is GPU accelerated, we used one MPI process per GPU.
In WEST-GPU, data is preallocated on the GPU so that GPU-
enabled FFT operations act on data that resides on the GPU.
The majority of the data is therefore initialized on the GPU at
the beginning of the calculation with a CPU-to-GPU copy,
then the data undergoes multiple FFT operations, and finally
the data is copied back to the CPU. Hence, because data
transfer operations are decoupled from FFTs, Figure 3 does
not include the time needed to initially copy the data to the
GPU and the time to copy the final result back to the CPU.

Figure 3. Time required to carry out a complex-to-complex FFT operation on a 1283 grid (a) or on a 2563 grid (b) using the FFTXlib library on
Summit (each node has six GPUs, see also the specification listed in section 5). Blue circles and red squares identify the execution on GPUs using
the cuFFT backend with double precision (FP64) or single precision (FP32), respectively. Timing results do not include the time needed to
initially copy the data to the GPU and the time to copy the final result back to the CPU. Orange crosses identify the execution on CPUs using the
ESSL backend with FP64. Filled symbols identify the use of CUDA-aware MPI and GPUDirect. Open symbols identify the use of conventional,
non-CUDA-aware MPI. The slab decomposition scheme was employed for parallel FFTs.
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We can see that one GPU (corresponding to 1/6 of a Summit
node in Figure 3) outperforms one CPU (21 cores, 1/2 of a
node) by more than an order of magnitude. However, while
the time-to-solution on CPUs decreases linearly by increasing
the number of nodes, one GPU is still faster than any other
number of GPUs. Using three GPUs, for instance, slows down
the calculation by nearly an order of magnitude compared to
using only one GPU. Further increasing the number of GPUs
leads to a moderate speedup, especially for the 2563 grid.
However, even 24 GPUs (four nodes) cannot outperform one
GPU; this is consistent with previously published benchmarks
on the same machine111 and clearly reveals the high cost of
communications (relative to the computation) involved in
parallel distributed FFTs. As expected, using FP32 instead of
FP64, FFT operations achieve a ∼2× speedup on one GPU
(red lines in Figure 3). The speedup gradually decreases as the
GPU count increases, which may be attributed to the
increasingly high MPI overhead relative to the small amount
of computation being performed. From Figure 3, we conclude
that FFTs should be carried out on as few GPUs as possible,
ideally only one GPU, for maximum efficiency.
We note that the slab decomposition is used throughout this

manuscript. The implementation of 3D FFTs with pencil
decomposition is ∼30% slower than the slab decomposition
for the system sizes considered in Figure 3. In cases where one
is interested in using more MPI processes than the number of
slabs, the pencil decomposition will potentially become
advantageous as it enables more parallelism than the slab
decomposition does. This case is, however, unlikely to be
relevant as Figure 3 suggests that the least number of GPUs
shall be used to perform FFTs due to the overhead of all-to-all
communications compared to the cost of computation.
It is worth mentioning that for denser cubic grids, the

overhead associated with all-to-all communications may
become negligible compared to the amount of computation
that needs to be performed on the GPU. A nearly ideal strong
scaling of GPU-accelerated FFTs using the heFFTe library has
been reported for a grid size of 10243.111 However, the large-
scale applications reported within this manuscript are
performed using grids with up to 216 points per axis. Tests
using the heFFTe library for smaller grids, such as 1283 and
2563, reveal performance characteristics that are similar to
those of FFTXlib.
The multilevel parallelization introduced in Figure 2 is key

to run WEST with as many GPUs as possible while performing
FFTs using the least amount of GPUs. Specifically, the FFTs in
WEST-GPU are carried out using Nproc/(NimageNpoolNbgrp)
MPI processes instead of all of the Nproc processes. In practice,
Nimage, Npool, and Nbgrp are chosen to restrict FFTs to the
smallest number of GPUs, so that the total GPU memory is
sufficiently large to accommodate the simulation data.

In the case where FFT operations involve more than one
GPU, Figure 3 shows that a performance gain can be obtained
by taking advantage of CUDA-aware MPI and GPUDirect.
Without CUDA-aware MPI, data residing on the GPU must be
explicitly copied to the host CPU in order to participate in an
MPI communication. If the data is needed by the GPU after
the MPI communication, the data must be explicitly copied
back. With CUDA-aware MPI, data on the GPU can be
directly passed to MPI functions. However, depending on the
hardware and software settings, the data may still be
communicated through the CPU. The GPUDirect technology
enhances data movement between NVIDIA GPUs. Specifically,
for GPUs directly connected with each other through
NVLink,112 the data transfer takes advantage of the high
bandwidth of NVLink without going through the CPU;
similarly, for internode communications, GPU data can be
directly put onto the node interconnect. In Figure 3, the
dashed lines correspond to FFTs employing CUDA-aware
MPI and GPUDirect. For the grid sizes considered in Figure 3,
switching on CUDA-aware MPI and GPUDirect results in a
performance improvement ranging from 20% to 50%.
4.2. Solution of Large Eigenvalue Problems. As

introduced in section 3, WEST relies on the Davidson
algorithm105 to iteratively diagonalize the irreducible den-
sity−density response function. In each iteration, a Hermitian
matrix needs to be explicitly diagonalized. The dimension of
the matrix is proportional to NPDEP, and by default, matrices up
to (4NPDEP)2 are diagonalized. WEST-CPU is capable of
treating systems containing a few thousand electrons, leading
to eigenvalue problems as large as 10 0002. Solving such
eigenvalue problems by serial or multithreaded solvers from
the LAPACK library accounts for a negligible fraction of the
total computational cost of WEST-CPU. For WEST-GPU,
given that the most compute-intensive operations have been
moved to GPUs, the eigenvalue problem stands out as
roadblock that limits the performance of the code for large
systems with 10 000s of electrons. For instance, the largest GW
calculation reported in section 6 has NPDEP = 10 368,
requesting the diagonalization of matrices up to (4 ×
10 368)2 = 41 4722. Solving such large eigenvalue problems
on CPUs takes a significant amount of time (see Table 1).
To circumvent this bottleneck, we compared the perform-

ance on CPUs and GPUs of four eigensolvers on Summit,
namely, the multithreaded LAPACK implementation in the
IBM ESSL library (version 6.3.0), the MPI-parallel and
memory-distributed eigensolver in the ScaLAPACK library
(version 2.1.0), the GPU-accelerated eigensolver in the
cuSOLVER library (version 10.6.0.245), and the MPI-parallel,
memory-distributed, GPU-accelerated eigensolver in the ELPA
library (version 2020.11.001).113 ESSL and ScaLAPACK used
one node (one MPI process, 42 OpenMP threads) and eight

Table 1. Time to Solve Real Symmetric Eigenproblems on Summit Using Eigensolvers in the ESSL (multithreaded),
ScaLAPACK (MPI-parallel), cuSOLVER (GPU-accelerated), and ELPA (GPU-accelerated, MPI-parallel) Librariesa

time [s]

matrix size ESSL (42 CPU cores) ScaLAPACK (336 CPU cores) cuSOLVER (1 GPU) ELPA (48 GPUs)

10 0002 129.1 48.1 3.2 3.3
20 0002 1050.4 350.6 22.6 8.5
30 0002 3483.4 1012.2 OOM 18.4
40 0002 7811.5 2181.0 OOM 30.8

aMatrix size n2 corresponds to a square matrix with n rows and n columns. “OOM” (out of memory) indicates failed cuSOLVER executions due to
insufficient device memory.
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nodes (42 MPI processes per node), respectively. cuSOLVER
and ELPA used one NVIDIA V100 GPU and eight nodes (six
MPI processes per node, totaling 48 CPU cores and 48
GPUs), respectively. Table 1 shows the performance of each
eigensolver for matrix sizes ranging from 10 0002 to 40 0002.
Using only one GPU, cuSOLVER exhibits a significant
speedup over both ESSL and ScaLAPACK for matrix sizes
up to 20 0002. For larger matrix sizes, however, the available
GPU memory (16 GB for the V100 GPU on Summit) can no
longer accommodate the matrix and the workspace required by
cuSOLVER. In such scenarios, the memory-distributed, GPU-
accelerated ELPA eigensolver provides the fastest time to
solution at a relatively low memory cost per GPU. On the basis
of these benchmarks, WEST-GPU uses cuSOLVER to
diagonalize matrices smaller than 80002 and switches to
GPU-accelerated ELPA for larger matrices.
Other multi-GPU eigensolvers, not considered in this work,

include, for instance, SLATE114 and cuSOLVER-MG.115 At
present, SLATE is limited to compute the eigenvalues only.
The commonly used 2D block-cyclic matrix distribution is not
yet supported in cuSOLVER-MG, which only supports 1D
block-cyclic distribution. We plan to continue assessing the
performance and compatibility of these libraries as they evolve.
4.3. Overlapping Computation and Communication.

Communication overheads are reduced using nonblocking
MPI functions to overlap computation and communication.
Nonblocking MPI functions immediately return control to the
host even if the communication has not been completed; in
this way, the host is allowed to perform other operations while
the communication continues in the background. When using
GPUs, MPI communications can be overlapped with GPU
computations and CPU−GPU communications.
Nonblocking MPI calls are extensively utilized in WEST-

GPU. One example is the calculation of the braket integral in
the RHS of eq 19. This term may be evaluated for the ith
orbital in the σ spin polarization as the matrix−matrix
multiplication C = A × B depicted in Figure 4, where Ank is
the kth coefficient of the Fourier expansion of the product
ψiσ(r)φ̃n(r) and Bkml is the kth coefficient of the Fourier
expansion of qmiσ

l (r). According to Figure 2, the indices n and
m are distributed using the image parallelization, whereas the
Fourier coefficients are distributed using the MPI processes
within one band group. This distribution can lead to tall-and-
skinny matrices on each process, i.e., one of the dimensions is
significantly greater than the other. The multiplication of tall-
and-skinny matrices is memory bound. It performs poorly on
both CPUs and GPUs, which is a well-known outstanding
problem. The flexible multilevel parallelization scheme
reported in Figure 2 allows us to tune the shape of the local

matrices, which is implemented by carefully choosing the
number of images and band groups. As a result, tall-and-skinny
local matrices can be avoided, pushing the matrix multi-
plication into the compute-bound regime and therefore
achieving better performance.
The distributed matrix multiplication is completed as

follows. First, each MPI process computes the product of its
local portion of A and B, contributing to a portion of C.
Second, the ith MPI process sends its local portion of A to
process (i − 1) and receives another portion of A from process
(i + 1). This communication pattern is known as a circular
shift. There is no need to communicate B or C. These steps are
repeated until all elements of C are obtained.
The pseudocode in Figure 5a is a straightforward GPU

implementation of the above procedure, which includes three
sequential steps, copying A to the GPU, computing the local
matrix multiplication on the GPU, and communicating A via
MPI. The right part of Figure 5a shows the timeline
corresponding to the pseudocode. Using nonblocking MPI
functions, MPI communications can be overlapped with other
operations. As shown in Figure 5b, while the GPU is
computing a portion of C = A × B, MPI communications
take place asynchronously in the background to prepare the
next portion of A. As such, the cost of the CPU−GPU data
transfer and the GPU matrix multiplication can be hidden
behind the more expensive MPI communication, as the
timeline in Figure 5 indicates. In practice, this optimization
leads to a speedup of 15−30%.
The matrix−matrix multiplication operation in Figure 5 can

be further accelerated by performing MPI communications in
single precision instead of double precision. The pseudocode
of our implementation is reported in Figure 5c, where A is
truncated from FP64 to FP32, communicated in FP32, then
cast back to FP64, and multiplied with B. The precision
conversions and matrix multiplications take place on the GPU,
and the MPI communications are launched asynchronously to
overlap with the CPU−GPU data transfers, data conversions,
and matrix multiplications, as indicated by the timeline in the
right part of Figure 5c. The QP energies obtained using FP64
are in good agreement with the results obtained using mixed
precision (FP32/FP64).

5. PERFORMANCE OF WEST-GPU
We report an assessment of the performance of WEST-GPU
over WEST-CPU and of its strong and weak scaling using
leadership HPC systems. Our benchmarks are carried out on
the Summit supercomputer at Oak Ridge National Laboratory,
the Perlmutter supercomputer116 at the National Energy
Research Scientific Computing Center, and the Theta

Figure 4. Schematic visualization of the data distribution in the multiplication (C = A × B) of the two distributed matrices discussed in the text.
NPW and NPDEP denote the numbers of plane-waves and PDEPs, respectively. NLanczos denotes the length of the Lanczos chain. NLanczos = 30 typically
yields converged results. Data is color coded so that the data owned by different MPI processes have different colors.
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supercomputer at Argonne National Laboratory. While the
nodes of the first two supercomputers have GPUs, the nodes of
the latter have only CPUs. The specifications of these
computers are listed in Table 2.
We conduct benchmarks of the two standalone parts of the

WEST code, namely wstat and wfreq, which compute the
static dielectric matrix and the full-frequency G0W0 self-energy,
respectively (see section 3). Quantum ESPRESSO 6.8 is used

for all ground-state DFT calculations. We use the SG15117

optimized norm-conserving Vanderbilt (ONCV) pseudopo-
tentials118 and the PBE exchange-correlation functional.119 As
the test systems considered here are either isolated structures
or large cells of periodic structures, the Brillouin zone is
sampled only at the Γ point. In wstat, the size of the PDEP
basis set is set equal to the number of electrons in the system.
In wfreq, we compute the full-frequency G0W0 self-energy
for a variable number of states.
Benchmarks conducted on Summit and Perlmutter use

CUDA-aware MPI and GPUDirect. As discussed in section
4.1, these technologies facilitate the data exchange between
GPUs. Timing results reported in this section correspond to
the total wall clock time, including the time spent on I/O
operations and CPU−GPU communications.
5.1. Performance of WEST-GPU Relative to WEST-

CPU. We compare the performance of WEST-GPU relative to
the performance of WEST-CPU considering three benchmark
systems: a negatively charged nitrogen-vacancy center in
diamond with 215 atoms (NV_DIA),54 a Cd34Se34 nano-
particle (CdSe_NP), and a COOH-Si/H2O solid/liquid
interface consisting of a total of 492 atoms (S/L)35,120 (see
Figure 6). Details about each system are summarized in Table

3. Because the peak performance of one node of Summit or of
Perlmutter is considerably higher than the peak performance of
one node of Theta (see Table 2), we benchmark WEST-GPU
using 16 Summit or 16 Perlmutter nodes against the
performance of WEST-CPU using 256 Theta nodes to have
similar total peak performances (∼696 TFLOP/s on 16
Summit nodes, ∼624 TFLOP/s on 16 Perlmutter nodes, ∼691
TFLOP/s on 256 Theta nodes).
Figure 7a and 7b shows the performance of the GPU-

accelerated wstat and wfreq parts of WEST, respectively.
Using only double precision (FP64 in Figure 7), WEST-GPU
on 16 Summit nodes outperforms WEST-CPU on 256 Theta

Figure 5. Pseudocodes representing three alternative strategies to
multiply the two distributed matrices discussed in the text. (a) No
overlap between computation and communication. (b) MPI
communication, CPU−GPU communication, and GPU computation
are overlapped. (c) MPI communication, CPU−GPU communica-
tion, and GPU computation are overlapped, with MPI communica-
tion carried out in single precision (FP32). Suffixes “_h” and “_d”
indicate arrays allocated on the host (CPU) and the device (GPU),
respectively. Suffix “_sp” indicates a single-precision copy of a double-
precision array. CPU−GPU communications, MPI communications,
and GPU computation are reported in red, yellow, and blue,
respectively.

Table 2. Specifications (per node) of the Summit,
Perlmutter, and Theta Supercomputersa

Summit Perlmutter Theta

CPU 2 × IBM POWER9
(2 × 21 cores)

1 × AMD EPYC
Milan (64 cores)

1 × Intel Knights
Landing
(64 cores)

GPU 6 × NVIDIA V100 4 × NVIDIA A100 none
TFLOP/s 43.5 39.0 2.7
compiler nvFortran 21.7 nvFortran 21.7 ifort 19.1.0.166

IBM Spectrum
MPI 10.4

Cray MPICH 8.1.9 Cray MPICH 7.7.14

libraries NVIDIA HPC
SDK 21.7

NVIDIA HPC
SDK 21.7

Intel MKL 2020
initial release

CUDA 11.0.3 CUDA 11.0.3

aTheoretical peak performance (TFLOP/s) is reported for double
precision. The Fortran compiler and performance-critical libraries
used in the benchmark calculations are also listed.

Figure 6. Benchmark systems: (a) negatively charged nitrogen-
vacancy center in diamond (NV_DIA), (b) cadmium selenide
nanoparticle (CdSe_NP), and (c) COOH-Si/H2O solid/liquid
interface (S/L). For the ball-and-stick atomic structures, the C, N,
Cd, Se, Si, O, and H atoms are colored in dark gray, blue, yellow, light
gray, beige, red, and white, respectively. Details of the systems are
reported in Table 3.
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nodes by a factor of 2.0−2.2×. This imputes an effective 32−
35× speedup for one Summit node over one Theta node,
which is higher than the value of 16× estimated by taking the
ratio between the two theoretical peak performances. This may
be attributed to two factors: (i) the higher node count on
Theta than on Summit, which generates more internode
communication, and (ii) the use of GPUs on Summit to carry
out FFTs, which are notoriously memory-bound operations
and therefore benefit from the higher memory bandwidth of
the GPU (900 GB/s in V100 GPUs, whereas each KNL node
on Theta has 16 GB fast memory with a bandwidth of 400
GB/s). By running WEST-GPU on 16 Perlmutter nodes we
observe an additional 30−40% speedup over 16 Summit nodes.
This is caused by the fact that FFTs are carried out using one
MPI process (one GPU) on Perlmutter, while on Summit we
are forced to use three MPI processes (three GPUs) due to the
memory limitation (40 GB in A100 GPUs, 16 GB in V100
GPUs). FFTs in the latter case incur the overheads described
in section 4.1. Moreover, the A100 GPU has a higher memory
bandwidth (1555 GB/s) than the V100 GPU and features
FP64 tensor cores that can be automatically utilized by the
CUDA libraries wherever possible. On the contrary, the V100
GPU features tensor cores only for half precision, which are
not utilized by the current version of WEST. Similar
conclusions are drawn analyzing the FP64 performance of
wfreq, where we computed 40 QP energies (around the
Fermi level, 20 below and 20 above) for each system.
Figure 7 also reports the performance of the mixed-precision

(FP32/FP64) version of WEST-GPU. In the case of mixed

precision, the code operates in FP64 except for the regions of
the code with distributed matrix multiplication or FFTs, which
are carried out using FP32, as discussed in section 4. The
FP32/FP64 code outperforms the FP64 counterpart on both
Summit and Perlmutter by up to 45%, due to a nearly two-fold
speedup in the corresponding FFT and MPI operations. It is
important to note that the QP energies obtained using the
FP32/FP64 code are in good agreement with the results
obtained with FP64. The mean absolute error of the 40 QP
energies computed with the FP32/FP64 code lies well below
10−4 eV for the three systems studied here, justifying the
utilization of mixed precision in production calculations. For
all calculations reported in sections 5.2 and 6, the FP32/FP64
version of WEST was employed.
Table 4 reports the performance of WEST-GPU in terms of

FLOP/s, computed as the ratio of the total number of FLOPs
to the total time of the simulation. FLOPs are counted by
inserting counters into the source code. This approach comes
with a lower overhead than using external profiling tools.
Nevertheless, we measure the FLOPs and the time in two
separate runs in order to obtain accurate timing results. The
performance of WEST-GPU is compared against the
theoretical peak performance of Summit and Perlmutter. For
both wstat and wfreq, a higher fraction of the theoretical
peak was reached on Perlmutter, ranging from 36.0% to 72.9%,
than on Summit, ranging from 23.6% to 49.7%. GPUs are
better utilized for larger systems, as the workload associated
with larger systems is more likely to saturate the GPUs. We
note that the ratio to peak performance shown in Table 4 is
used to approximately estimate how efficiently the GPUs are
being utilized. In WEST-GPU, the FFTs benefit from the use
of FP32 and the matrix−matrix multiplications and possibly
other linear algebra operations benefit from the FP64 tensor
cores on Perlmutter. These factors are not reflected in Table 4.
5.2. Strong and Weak Scaling of WEST-GPU.We report

the strong and weak scaling of WEST-GPU as benchmarked
on the Summit supercomputer with a series of silicon supercell
models with up to 1728 atoms, as described in Table 5. The
strong scaling of WEST-GPU is presented in Figure 8a for 2 Si
supercells containing 1000 or 1728 atoms. The weak scaling is

Table 3. Simulation Parameters for the Systems Depicted in
Figure 6a

system Natom Nelectron Nspin Ecut [Ry] NPW

NV_DIA 215 862 2 60 64 973
CdSe_NP 68 884 1 50 382 323
S/L 492 1560 1 60 295 387

aNatom, Nelectron, Nspin, and NPW denote the numbers of atoms,
electrons, spin channels, and plane-waves, respectively. Ecut denotes
the cutoff energy used in the calculations.

Figure 7. Performance of wstat (a) or wfreq (b) using 16 nodes of Summit, 16 nodes of Perlmutter, or 256 nodes of Theta. Performance
(reported within the bars) is obtained by taking the ratio of the time measured for WEST-GPU to the time measured for WEST-CPU. wstat and
wfreq codes are described in section 3. Timing results correspond to the total wall clock time, including the time spent on I/O operations and
CPU−GPU communications. Forty quasiparticle energies (around the Fermi level, 20 below and 20 above) of the atomic structures in Figure 6
were calculated. Calculations on Theta used the double-precision (FP64) WEST-CPU code. Calculations on Summit and Perlmutter used the
FP64 and mixed-precision (FP32/FP64) WEST-GPU code (see text).
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presented in Figure 8b for 4 Si supercells containing 216, 512,
1000, and 1728 atoms. Eighty QP energies (around the Fermi
level, 40 below and 40 above) were calculated for each system.
Strong and weak scaling close to the ideal one (dashed lines) is
observed for both wstat and wfreq. The 1728-atom
system exhibits a strong scaling closer to the ideal one than
that of the 1000-atom system. This stems from the higher
computation-to-communication ratio of the larger system, and
it demonstrates the applicability of WEST-GPU to large-scale
simulations.

In Table 6 we report an estimate of the performance of
WEST-GPU by measuring the total number of floating-point
operations recorded for running wstat and wfreq and
dividing it by the total time, including the time to carry out I/
O operations. For the 1000-atom silicon supercell, wstat
reaches 47.3% and 16.6% of the theoretical peak performance
on 250 and 4000 Summit nodes, respectively. Internode MPI
communications are responsible for the drop in the perform-
ance at a large number of nodes. When we increase the size of
the system to comprise 1728 silicon atoms, wstat reaches
42.5% of the peak on 864 nodes and sustains 31.2% of the peak
even on 4320 nodes (25 920 V100 GPUs), amounting to a
mixed-precision performance of 58.80 PFLOP/s. The perform-
ance of wfreq is slightly inferior to that of wstat due to the
larger amount of internode MPI communications in wfreq.
Nevertheless, for the 1728-atom silicon supercell, wfreq
achieves a mixed-precision performance of 35.88 PFLOP/s on
4320 nodes, corresponding to 19.1% of the peak. In all cases,
we observe that the full applications (including I/O
operations) scale to the entire Summit machine. We note
again that the ratio to peak performance is discussed for a
qualitative understanding of how the GPUs are utilized by
WEST-GPU. It does not take into consideration that WEST-

Table 4. Performance (TFLOP/s) of WEST-GPU on 16 Nodes of Summit and Perlmutter for the Systems Described in Table
3a

Summit Perlmutter

code system NFLOP [TFLOPs] time [s] perf. [TFLOP/s] % peak time [s] perf. [TFLOP/s] % peak

wstat NV_DIA 9.21 × 104 332.0 277.5 39.9 260.1 354.3 56.8
CdSe_NP 3.96 × 105 1147.0 345.6 49.7 919.2 431.2 69.1
S/L 9.42 × 105 2937.1 320.6 47.4 2070.9 454.8 72.9

wfreq NV_DIA 4.41 × 104 267.8 164.8 23.6 196.4 224.7 36.0
CdSe_NP 1.18 × 105 354.7 333.5 47.9 262.7 450.1 70.1
S/L 3.63 × 105 1269.1 286.0 41.1 851.8 426.1 68.2

aThe wstat and wfreq codes are described in section 3. Timing results correspond to the total wall clock time, including the time spent on I/O
operations and CPU−GPU communications. Performance (perf.) is measured as the ratio of the total number of FLOPs (NFLOP) to the total time
of the simulation. “% Peak” denotes the ratio of the measured performance to the theoretical peak performance; the latter is calculated as Nnode ×
43.5 TFLOP/s and Nnode × 39.0 TFLOP/s for the Summit and Perlmutter computers, respectively.

Table 5. Simulation Parameters of the Silicon Supercells
Used As Benchmarksa

supercell Natom Nelectron Nspin Ecut [Ry] NPW

3 × 3 × 3 216 864 1 16 31 463
4 × 4 × 4 512 2048 1 16 74 773
5 × 5 × 5 1000 4000 1 16 145 837
6 × 6 × 6 1728 6912 1 16 251 991

aSupercells are obtained by considering replicas of the eight-atom
conventional unit cell. Natom, Nelectron, Nspin, and NPW denote the
numbers of atoms, electrons, spin channels, and plane-waves,
respectively. Ecut denotes the cutoff energy used in the calculations.

Figure 8. Strong (a) and weak (b) scaling of WEST-GPU. The wstat and wfreq codes are described in section 3. (a) Blue circles (yellow
diamonds) represent the strong scaling of wstat (wfreq) for the 1000-atom silicon supercell reported in Table 5; red squares (violet triangles)
represent the strong scaling of wstat (wfreq) for a 1728-atom silicon supercell reported in Table 5. (b) Blue circles (yellow diamonds)
represent the weak scaling of wstat (wfreq). Black dashed lines indicate the slope of ideal scaling. Eighty quasiparticle energies (around the
Fermi level, 40 below and 40 above) were calculated for each system. Timing results correspond to the total wall clock time, including the time
spent on I/O operations and CPU−GPU communications.
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GPU carries out FFTs and MPI communications in single
precision.
For the system with 1000 silicon atoms, the FLOP count

(NFLOP) required to compute the quasiparticle energy for NQP
bands using wfreq is NFLOP = (2553 + 8.17 × NQP) PFLOPs.
The prefactor (2553 PFLOPs) identifies the FLOPs required
to compute the dielectric screening at all frequencies and
without empty states using the PDEP basis set, while the
multiplicative factor (8.17 PFLOPs) is attributed to the cost of
computing the full-frequency G0W0 self-energy for one band.
The FLOP count indicates that it becomes cost effective to
compute the self-energy for many states; this is convenient, for
instance, for the simulation of photoelectron spectra over an
extended region of energies.39

Finally, we note that the FLOP count in Table 6 indicates
that a few EFLOPs are necessary in order to compute the full-
frequency G0W0 electronic structure of both benchmark
systems. At the measured sustained 30−60 PFLOP/s
throughput, the calculations can be carried out within tens of
minutes. We also note that the current results are obtained
with an implementation that, in addition to avoiding
approximating the screened Coulomb interaction with
generalized plasmon-pole models, sidesteps altogether the
need to compute many empty states using DFT and the need
to introduce a stringent energy cutoff in reciprocal space to
represent dielectric matrices.

6. LARGE-SCALE FULL-FREQUENCY G0W0
CALCULATIONS

Finally, we demonstrate the capability of WEST-GPU for
computing the full-frequency G0W0 electronic structure of
large-scale systems. The structures shown in Figure 9 are
representative examples of large heterogeneous systems of
interest for energy sustainability and quantum information
science research. The structure in Figure 9a is a Janus
nanoparticle (CdS/PbS) consisting of 301 atoms and 2816
electrons. In this system, investigated for its applicability to
photovoltaics,121 we compute with G0W0 the band offsets
between the cadmium sulfide (CdS) and the lead sulfide (PbS)
hemispheres of the heterostructured nanoparticle. The

structure in Figure 9b is an interface model of silicon and
silicon nitride (Si/Si3N4), which was used to model high
dielectric constant materials for electronics.122 Also for this
system, which has 2376 atoms and 10 368 electrons, we
compute the band offsets between the two materials using
G0W0. The structure in Figure 9c is a neutral hh divacancy in a
10 × 10 × 2 supercell of 4H silicon carbide (VV_SiC).49 This
is a representative system for solid-state quantum information
technologies where G0W0 is used to identify the energy of deep
defect states. The system has 1598 atoms and 6392 electrons
and, unlike the previous two systems, requires an explicit
treatment of spin polarization. The details of the structures in
Figure 9 are summarized in Table 7.
For all considered systems we computed the local density of

states (LDOS), defined as

z E x
L

y
L

x y z ELDOS( , )
d d

( , , ) ( )
i x y

i i
2= | |

(20)

where ψiσ and εiσ are the wave functions and their G0W0 or
PBE energies, Lx and Ly are the lengths of the x and y axes of
the simulation box, respectively, whereas z corresponds to the
z axis of the simulation box, and δ is the Dirac delta function
(modeled by a Gaussian function with a width of 0.05 eV).
The middle panel of Figure 9 reports the LDOS computed
using PBE wave functions and energy levels. The bottom panel
of Figure 9 reports the LDOS computed using PBE wave
functions and full-frequency G0W0 energy levels. To compute
the LDOS, the QP energies of 480, 2000, and 1200 single-
particle states were computed for the CdS/PbS, Si/Si3N4, and
VV_SiC structures, respectively. As expected, the LDOS at the
G0W0@PBE level exhibits a larger energy gap compared to the
PBE result for all structures. For the Janus-like nanoparticle
and the Si/Si3N4 interface, the LDOS allows us to track the
density of states as a function of the coordinate z that is
perpendicular to the interface. For the system in Figure 9c, the
energy gap of 4H-SiC obtained at the G0W0@PBE level, 3.17
eV, is in close agreement with the experimental value of 3.2
eV.123 At the G0W0 (PBE) level of theory, the energy
difference between the e and the a1 defect states in the

Table 6. Performance (PFLOP/s) of WEST-GPU on Summit for the 1000 and 1728 Silicon Atoms Supercell Models
Described in Table 5a

code Natom NFLOP [PFLOPs] Nnode time [s] perf. [PFLOP/s] % peak

wstat 1000 6.20 × 103 250 1204.6 5.15 47.3
4000 214.1 28.95 16.6

1728 5.09 × 104 864 3182.7 16.01 42.5
1728 1648.4 30.89 41.1
2592 1226.5 41.52 36.8
3456 1030.8 49.40 32.9
4320 866.0 58.80 31.2

wfreq 1000 2.95 × 103 250 695.7 4.24 39.0
4000 203.5 14.50 8.3

1728 2.67 × 104 864 2259.0 11.82 31.4
1728 1239.1 21.55 28.7
2592 1062.0 25.14 22.3
3456 864.7 30.88 20.5
4320 744.1 35.88 19.1

aThe wstat and wfreq codes are described in section 3. Timing results correspond to the total wall clock time, including the time spent on I/O
operations and CPU−GPU communications. The performance (perf.) is measured as the ratio of the total number of FLOPs (NFLOP) to the total
time of the simulation. Nnode denotes the number of Summit nodes used in the calculations (each node has six GPUs, see Table 2). % peak denotes
the ratio of the measured performance to the theoretical peak performance; the latter is calculated as Nnode × 43.5 TFLOP/s.
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minority spin channel is e − a1 = 1.73(1.12) eV. We obtain an
exciton binding energy and an ionic relaxation energy of 0.45
and 0.10 eV, respectively, from a DFT calculation124 of the hh
divacancy in an 8 × 8 × 2 supercell of 4H-SiC using the
dielectric dependent hybrid functional (DDH).125 Subtracting
these energies from e − a1 computed at the G0W0 level of

theory, we obtain 1.18 eV, which is close to the measured zero-
phonon line (ZPL) of 1.095 eV.126

The calculations reported in this section were carried out on
the Summit supercomputer using ∼10 000 NVIDIA V100
GPUs (6 GPUs per node). The measured number of FLOPs,
time to solution, and performance in terms of FLOP/s are
shown in Table 8. The wstat (wfreq) code achieves up to
35.8% (23.2%) of the theoretical peak performance. Due to the
size of the memory available in V100 GPUs, we had to
distribute FFT operations within each band group on 12
GPUs. This configuration does not yield optimal performance
for FFTs (one GPU per band group), as discussed in section
4.1. We anticipate seeing improved performance on GPUs that
have more device memory than the V100 GPUs.

Figure 9. Large-scale full-frequency G0W0 calculations considered in this work: (a) Janus-like heterostructure formed by a chlorine-terminated
nanoparticle made of cadmium sulfide and lead sulfide (CdS/PbS), (b) interface of silicon and silicon nitride (Si/Si3N4), and (c) neutral hh
divacancy in 4H silicon carbide (VV_SiC). Top panels report a side view of the simulation cells. For the ball-and-stick atomic structures, the Cl,
Cd, S, Pb, Si, N, and C atoms are colored in green, black, orange, light gray, beige, blue, and dark gray, respectively. Bottom and middle panels
report the local density of states (LDOS, see text) obtained using G0W0@PBE or KS-DFT energies in eq 20, respectively. LDOS is plotted using a
color scale ranging from white to black; white areas indicate energy gaps. For VV_SiC, the defect states in the up (down) spin channel are shown in
red (blue). Details of the systems are reported in Table 7.

Table 7. Simulation Parameters for the Systems Depicted in
Figure 9a

system Natom Nelectron Nspin Ecut [Ry] NPW

CdS/PbS 301 2816 1 30 948 557
Si/Si3N4 2376 10 368 1 30 638 633
VV_SiC 1598 6392 2 30 314 653

aNatom, Nelectron, Nspin, and NPW denote the numbers of atoms,
electrons, spin channels, and plane-waves, respectively. Ecut denotes
the cutoff energy used in the calculations.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00241
J. Chem. Theory Comput. 2022, 18, 4690−4707

4702

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00241?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00241?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00241?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00241?fig=fig9&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


7. CONCLUSIONS
We reported the use of GPUs to carry out large-scale full-
frequency G0W0 calculations using WEST, a code for many-
body perturbation theory calculations based on the plane-wave
and pseudopotential method. Compared to other conventional
implementations of G0W0, the algorithms implemented in
WEST do not require the calculation of many empty states nor
the definition of a stringent energy cutoff for response
functions. In this work, we introduced a multilevel
parallelization strategy in WEST that is devised to distribute
the computational workload and reduce the overhead cost
associated with MPI communications. We discussed a number
of optimizations that improve the performance of the code on
GPU-equipped supercomputers, including the use of mature
high-performance libraries, and strategies to minimize data
transfer operations between CPUs and GPUs. In addition, the
utilization of mixed precision led to a considerable perform-
ance improvement over the solely double-precision version
without sacrificing accuracy.
The GPU-accelerated version of WEST realizes substantial

speedup over its CPU-only counterpart and displays excellent
strong and weak scaling, as benchmarked on the Summit
supercomputer using up to 25 920 NVIDIA V100 GPUs. The
code reaches a mixed-precision (FP32/FP64) performance of
58.8 PFLOP/s. The same code runs seamlessly on the
Perlmutter supercomputer equipped with NVIDIA A100
GPUs, which are one generation newer than the V100 GPUs
on Summit. The newly developed GPU code has the capability
of advancing the simulation of electronic excitations in large
heterogeneous materials, as demonstrated by carrying out full-
frequency G0W0 calculations of a nanostructure, an interface,
and a defect in a wide band gap material using supercells with
up to 10 368 electrons. These calculations are carried out
overcoming commonly adopted approximations, e.g., the use
of generalized plasmon-pole models, and are, to the best of our
knowledge, the largest deterministic full-frequency G0W0
calculations performed to date.
We are exploring the possibility to extend mixed-precision

regions to other memory-intensive or compute-intensive
portions of the code, e.g., the storage of the nonlocal part of
the pseudopotential and the evaluation of the exact exchange
needed in hybrid density functionals.127 Work is in progress to
optimize the performance on GPUs of the electron−
phonon,50,51 the Bethe−Salpeter equation (BSE) in finite
field,52,53 and the quantum embedding54−56 kernels.
Data related to this publication are organized using the

Qresp software128 and are available online at https://
paperstack.uchicago.edu.
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