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Abstract. Rapid sequencing of individual human genome is prerequisite to genomic medicine, 
where diseases will be prevented by preemptive cures. Quantum-mechanical tunneling through 
single-stranded DNA in a solid-state nanopore has been proposed for rapid DNA sequencing, 
but unfortunately the tunneling current alone cannot distinguish the four nucleotides due to 
large fluctuations in molecular conformation and solvent. Here, we propose a machine-learning 
approach applied to the tunneling current-voltage (I-V) characteristic for efficient discrimina-
tion between the four nucleotides. We first combine principal component analysis (PCA) and 
fuzzy c-means (FCM) clustering to learn the “fingerprints” of the electronic density-of-states 
(DOS) of the four nucleotides, which can be derived from the I-V data. We then apply the 
hidden Markov model and the Viterbi algorithm to sequence a time series of DOS data (i.e., 
to solve the sequencing problem). Numerical experiments show that the PCA-FCM approach 
can classify unlabeled DOS data with 91% accuracy. Furthermore, the classification is found 
to be robust against moderate levels of noise, i.e., 70% accuracy is retained with a signal-to-
noise ratio of −26 dB. The PCA-FCM-Viterbi approach provides a 4-fold increase in accu-
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racy for the sequencing problem compared with PCA alone. In conjunction with recent de-
velopments in nanotechnology, this machine-learning method may pave the way to the much-
awaited rapid, low-cost genome sequencer. 

Keywords: DNA sequencing, quantum tunneling, current-voltage characteristic, principal 
component analysis, fuzzy c-means clustering, hidden Markov model, Viterbi algorithm. 

1  Introduction 

DNA sequencing determines the order of four nucleotide bases—adenine (A), guanine (G), cyto-
sine (C), and thymine (T)—that constitute a DNA molecule. State-of-the-art methods for DNA 
sequencing, while much improved from the technology used to first sequence the human genome 
[1, 2], are still costly and time consuming. Today individuals can get their full genome sequenced 
for about 50,000 USD [3]. Lower-cost, rapid sequencing of individual DNA would enable ge-
nomic medicine, where diseases are prevented by preemptive cures. Consequently, the quest for 
the so-called “ultra-low cost sequencer” (ULCS) is motivating much research into alternative ways 
of genome sequencing. 

One of the active avenues toward ULCS is nanopore sequencing, which infers the base se-
quence by probing the changes in certain physical signals as the DNA strand threads through a ~2 
nm nanopore [4]. Deamer and Akeson survey prospects for different approaches to nanopore se-
quencing in Ref. 5. While traditional sequencing methods usually require massive replication of 
the DNA, a nanopore sequencer in principle requires only a single strand. Possibility of nanopore 
DNA sequencing has been studied by electrically driving a DNA molecule in an electrolyte solu-
tion through a biological nanopore and then measuring the changes in ionic current through the 
nanopore induced by blockaded ions [6,7]. For example, Ashkenasy et al. have investigated sin-
gle-nucleotide identification capabilities of α-hemolysin nanopore sequencers in Ref. 8. Other groups 
have tried alternative approaches such as using exonuclease enzymes to cleave individual nucleo-
tides, which are fed to a detection system in order [9]. However, the poor signal-to-noise ratio and 
the stringent environmental conditions of these schemes have motivated other groups to explore 
solid-state alternatives involving silicon-based materials [10, 11]. Advantages of using solid-state 
nanopores include a wider range of operable environmental conditions and the ability to embed sen-
sors directly onto the pore [12]. 

In spite of the potential of solid-state nanopores for DNA sequencing, distinguishing between 
the four bases (A, G, C, and T) based on the ionic current through the nanopores remains difficult. 
This has led several groups to instead measure the transverse electronic tunneling current between 
electrodes attached to the nanopore. Jauregui et al. have performed first-principles calculations to 
indicate the feasibility of transverse current-based sequencing [13], whereas Gracheva et al. have 
suggested the use of MOS capacitor membranes for constructing similar DNA sequencers [14]. 
Lagerqvist et al. have extended this idea further by proposing to analyze the distribution of trans-
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verse current values for each nucleotide as the DNA molecule translocates through the nanopore 
[15]. This can be accomplished by slowing the speed of DNA translocation, allowing the device to 
take multiple measurements of the same nucleotide. Though the distributions reveal more about 
the structure of the passing nucleotide, the distributions of the four nucleotides still show high 
degrees of overlap and thus the sequencing process is prone to large errors. 

The main contribution of this paper is an algorithm, which applies machine-learning techniques 
to quantum-mechanical tunneling current, in order to sequence single-stranded DNA. Our ap-
proach mitigates the problem of indistinguishability of the DNA bases as well as that of noise. 
Here, we distinguish the nucleotides using their electronic-structure information in the form of the 
electronic density of states (DOS), which can be acquired by a nanopore device by capturing elec-
tronic tunneling current values flowing across the nanopore diameter over a range of voltages. The 
DOS can then be computed from the derivative of the resulting current-voltage (I-V) curve. In fact, 
several groups have measured the DOS of DNA using scanning tunneling microscopy [16-18], 
and one group has conducted theoretical investigations of nanopore-based DOS measurements of 
DNA molecules [19]. Though the DOS provides the “fingerprints” of the four nucleotides, the I-V 
characteristics still suffer from large noises due to fluctuations in molecular conformation and solvent 
(i.e., water molecules and ions). In this paper, we introduce a machine-learning approach to address 
this problem. We first use principal component analysis (PCA) [20] to algorithmically learn the 
distinguishing features between the DOS between the four bases, and use these features to predict 
the identities of an unknown DOS. PCA allows the projection of DOS onto a small-dimensional 
feature space, in which the four DNA bases form highly disjoint clusters. Then, a given DOS is 
classified relatively easily [21] by employing the fuzzy c-means (FCM) clustering approach [22]. 
Finally, we take advantage of the similarity of the DNA sequencing problem to speech recognition 
and employ the hidden Markov model [23] and the Viterbi algorithm [24] to determine the most 
likely base sequence from noisy observation. Our numerical experiments demonstrate that the accu-
racy of nanopore sequencing is significantly improved by the PCA-FCM-Viterbi approach. 

This paper is organized as follows: Section 2 presents the PCA-FCM-Viterbi algorithm. Per-
formance of the algorithm is evaluated in section 3, and conclusions are drawn in section 4. 

2  Method 

In this section, we first formulate the DNA sequencing problem in the context of tunneling cur-
rent-based nanopore sequencing. We then present our PCA-FCM-Viterbi approach to the sequenc-
ing problem. 

2.1  Statement of the Problem 

Let (s1,...,sn) ∈ {A,T,G,C}n be a sequence of n bases in single-stranded DNA (ssDNA), where s1 is 
the base that is about to enter the nanopore sequencer at time t = 0 (see Fig. 1). The ssDNA strand  
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Fig. 1. Schematic of traversal tunneling current-based sequencing of a single-stranded DNA translocating 
through a solid-state nanopore, where V is the applied voltage, and the arrow next to the ssDNA indi-
cates the direction of translocation. At each time step t, the device measures the induced transverse 
current I (the horizontal open arrow) across the electrodes (labeled + and −) as a function of V, which 
is varied. We then compute dIt/dV, which is proportional to the electronic density of states of the 
group of atoms near the electrodes at time t (denoted Dt(E) in the figure). Finally, the continuous 
DOS function Dt(E) is discretized into a B-dimensional vector D(t), and (D(t) | 0 ≤ t ≤ T) forms our 
time series. The figure shows the positions of an ssDNA molecule at two different times, t = 0 and i, 
and the double-shaded arrows demonstrate the transformation of data—from physical measurement 
of the I-V relation to the continuous DOS function Dt(E) to the discretized DOS histogram D(t), the 
last of which forms an input to our machine-learning algorithm. The algorithm will analyze the time 
series (D(t) | 0 ≤ t ≤ T) to infer the original sequence of bases. 

 
will translocate through the nanopore between the electrodes, and at each time t (we measure the 
time in unit of a time discretization unit, ∆t), the device measures the transverse current (labeled I 
in the figure) over a range of voltage V, thereby generating an I-V plot at each time t, denoted as 
the function It(V). We then compute dIt/dV, which is proportional to the electronic density of states 
(DOS) of the group of atoms near the electrodes at time t [16-18]. Let Dt(E) be the DOS as a func-
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tion of the electron energy E at time t. For all time steps 0 ≤ t ≤ T during the measurement, we 
discretize Dt(E) by creating a vector 1( ) ( , , )Bt v v=D ! , with 

( 1)
( )

a i

i ta i
v D E dE

σ

σ

+

+ −
= ! . Namely, the 

continuous function Dt(E) is transformed into a discrete histogram in the energy range min[ ,E  

max ]E  with B bins of width min max( ) /E E Bσ = −  (see Fig. 1). Our measurement data is thus a 
time-series of B-dimensional vectors, (D(t) | 0 ≤ t ≤ T). We would like to point out that generally, 
n << T, to provide a sufficiently large number of measurements per nucleotides. 

The problem is then stated as follows: Given a time sequence of DOS histograms, (D(t) | 0 ≤ t ≤ 
T), determine the original sequence of bases (s1,...,sn). In this paper, we break this problem into 
three sub-problems: 

1. Learning the identifying features of the nucleotide density of states. First, we algorithmi-
cally extract the salient features of the DOS histograms from a training dataset. For this task, 
we use principal component analysis (PCA), which is a method of statistical data analysis 
that non-parametrically performs dimension reduction on complex datasets [22]. Applying 
PCA to the training set will yield a set of principal component (PC) vectors that serve as a 
basis for representing the original dataset. The PCs, however, are ordered in such a fashion 
that the first few basis vectors “explain” the variance in the data. That is, the projection of 
the original dataset on the first few basis vectors has the maximum amount of variance. 

2. Classifying an unlabeled density of states. With the PC vectors, we now attempt to compute 
the correct label for a given DOS histogram. We use the membership formula from the 
fuzzy c-means algorithm to give probabilities that the DOS histogram is a measurement of a 
nucleotide of type A, T, C, or G. 

3. Sequencing a time series of density of states. A nanopore sequencing device provides a time 
series, (D(t) | 0 ≤ t ≤ T), of DOS, but each D(t) does not necessarily specify a single nucleo-
tide. In fact, for many t, D(t) is a mixture of DOS’s of consecutive nucleotides. Therefore, 
simply running the classification algorithm on each D(t) will not work—the identity of D(t) 
might depend on the identities of D(u < t) and D(v > t). We propose to model the sequence 
(D(t) | 0 ≤ t ≤ T) as the output of a hidden Markov model, and use the Viterbi algorithm to 
determine the most likely sequence of nucleotides underlying D(t). 

2.2  Learning the Salient Features of Density of States 

We use principal component analysis (PCA) to extract principal components (PCs) from a training 
set of 4m histograms (m histograms per DNA base). We refer the reader to [21], which provides 
an excellent tutorial for the PCA algorithm. The 4m histograms are organized into a 4m × B matrix 
H, where the matrix element Hij corresponds to the jth bin of the ith histogram (B is the dimension 
of the DOS vector defined in section 2.1). PCA is then performed in the following manner: From 
H construct a new matrix 1/2( ) / (4 )m= −X H M , where the column j of M is ( , , )j jµ µ!  with jµ  
the mean of column j of H. Thus, each column of X has zero mean. Perform singular value de-
composition on the matrix X = UΣVT, with the singular values of X in descending order along the 
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diagonal of Σ, where V is a N × N unitary matrix such that the columns of V form an orthonormal 
basis for X. Let p1, p2, ..., pB be the columns of V. According to the theory of PCA, p1 is the axis 
along which the variance of X is maximized, p2 is an axis orthogonal to p1 along which the vari-
ance of X is maximized in the subspace orthogonal to p1, and so on. We call p1, p2, ..., pB the PCs 
of X. 

Let d be one of the 4m histograms. We project d onto p1 and p2, and then over all d, we collect 
the coordinate pairs (dTp1, dTp2) to form the projection space of the dataset, where dT denotes the 
transpose of vector d. The projections of the m histograms of type A, T, C, or G form a cluster of 
points with centers cA, cT, cC and cG, respectively. 

2.3  Classifying Density of States 

To classify an unknown DOS vector d, we project it on p1 and p2 and compare the coordinate pair 
(dTp1, dTp2) with the clusters found with the training set. To do so, we construct a set of member-
ship functions, derived from the fuzzy c-means (FCM) clustering algorithm [22]: 

1

{A

T

,G}
T

,T,C

( ) x
X

N N

p

−

∈

" #−
$ %=
$ %−& '
(

d p c
d

d p c
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where X is one of {A,T,C,G} , cx is the center of the cluster corresponding to nucleotide X, and p 
is the m×2 matrix whose columns are p1 and p2. pX takes a 1×m input histogram d, and returns a 
real number in [0,1] that represents the degree of membership that histogram d has in cluster X. 
We can interpret this as the probability that histogram d comes from a nucleotide of type X. 

2.4  Sequencing a Time Series of Density of States 

As mentioned earlier, sequencing a time series of DOS’s requires not only identifying a DOS 
vector D(t) alone, but possibly D(t) in conjunction with nearby D(u < t) or D(v > t). We make the 
following simplifying assumptions: 

1. The detection range of the electrodes is not much larger than 2-3 nucleotides (6 to 9 Å); 
then it is possible to have the device measure the local DOS of a single nucleotide. That 
is, if at time t an A nucleotide on the DNA strand were directly centered between the 
electrodes, then D(t) would be nearly identical to the DOS of an isolated A nucleotide. 

2. The translocation speed of the DNA strand is uniform. 
3. The translocation speed of the DNA strand is high enough such that after 2-3 time steps, 

the contribution of the nucleotide measured at time t to the DOS measurement at time t + 
2 (or t + 3) is negligible. 
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These assumptions enforce the “locality” of measurement: The input to our algorithm is a time 
series (D(t) | 0 ≤ t ≤ T) such that the identity of D(ti) depends at most on (D(ti + k) | −2 ≤ k ≤ 2). In 
addition, our assumptions imply that if D(ti) is a pure DOS of a nucleotide that is directly being 
probed, then at most two consecutive DOS’s (i.e. D(ti + 1) and D(ti + 2)) will be mixtures of 
DOS’s of consecutive bases, before the next DOS (D(ti + 3)) will again be a pure measurement of 
a nucleotide. 

We compare two approaches to the time-series sequencing problem. First, we attempt a naive 
approach to sequence D(t) by simply computing pX(D(t)) for each X in {A, T, C, G}, at each t, and 
identify the measurement D(t) with the X such that pX (D(t)) ≥ ρ  where ρ is a probability thresh-
old greater than, e.g., 0.5. If there is no such X, then we take this to mean that D(t) corresponds to 
a mixed DOS of more than one nucleotides, and we simply discard this measurement. We take the 
sequence of decoded symbols that are left as the estimated sequence of bases. The following sub-
sections describe the second approach based on the hidden Markov model and the Viterbi algorithm. 

2.4.1  Hidden Markov Model 

In the second approach, we model the process of measurement generation with the hidden Markov 
model (HMM) formalism, in which we use the Viterbi algorithm to calculate the most likely se-
quence of nucleotides that generated the given sequence of observations. HMMs models sequen-
tial, stochastic processes where at each time t the process is in a particular state s, and each state 
generates an observation symbol. However, because the output of the process is usually corrupted 
by noise, the states are treated as hidden. As an example, HMMs are frequently used in the domain 
of speech recognition. The underlying hidden states are the actual word symbols that the speaker 
is uttering, but the only accessible information in the output observation, which is a noisy, con-
tinuous speech signal. 

Furthermore, probabilities are specified for state transitions (e.g., state A has a 1/3 probability 
of transitioning to state B, and a 2/3 probability of transitioning to itself) and observation emis-
sions (e.g., state A has a 1/2 probability of emitting observation X and a 1/2 probability of emit-
ting observation Y). A critical assumption of processes modeled with HMMs is that each state 
only depends on the state before it, and not on any earlier states. This assumption—called the 
Markov property—is necessary for the operation of the Viterbi algorithm. 

Formally, a HMM is defined as a 5-tuple, (S, O, T, Q, I): S is a finite set of (hidden) states that 
the process could be in; O is the set of observables that the process can emit (of which there could 
be infinitely many—the observables may come from a continuous space); T: S×S → [0,1] is a map, 
which gives the probability T(s1, s2) that the process in state s1 will transition to state s2; Q: S×O → 
[0,1] is a map that gives the probability Q(s, o) that the process in state s will emit observation o; 
and I: S → [0,1] is a map I(s) that gives the probability that the process will start in a state s. 

In our setting, we treat the DNA strand as a process that is changing from state to state as it is 
translocating through the nanopore. The set of states S correspond to the current section of the 
DNA molecule that the nanopore sequencer is measuring, which might be A, T, C, or G (if the 
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nanopore sequencer is measuring a DNA base), or the non-base E (if the nanopore sequencer is 
measuring the section of the molecule that is in between two nucleotides). The set of observations 
consists of the space of DOS histograms—essentially a B-dimensional vector space over the real 
numbers, where B is the number of bins in our histograms. Furthermore, the locality assumptions 
above justify the tenability of the Markov property in our context. 

The probability maps T, Q, and I can be set in a number of ways. The first way is to define 
them manually according to one’s understanding of the underlying process. The second way is to 
train the HMM on pre-labeled training data (presumably from experimentation) via an expecta-
tion-maximization (EM) algorithm (such as the Baum-Welch algorithm) [25, 26]. EM algorithms 
are used to estimate the parameters T, Q, and I. In our setting, however, we can tailor the HMM to 
reflect our knowledge of the observation generation process. 

2.4.2  Viterbi Algorithm 

Given an observation sequence and the particular HMM defined above, we utilize the Viterbi algo-
rithm to discover the most likely sequence of bases to have produced the observation sequence. Be-
low, we briefly summarize the Viterbi algorithm [23].  

The Viterbi algorithm uses dynamic programming to efficiently compute the most likely se-
quence of states to have generated the sequence of observations up to time t. Let the given obser-
vation sequence be (D(t) | 1 ! t ! T). We want to find the sequence of states 1 2( , , , )Tq q q"  (where 
qi can be any of {A,T,C,G,E}) such that the conditional probability 

1 2Pr[ | (1) (2) ( ), ]Tq q q T λD D D! !  (2)

is maximized, where λ represents the parameters of the HMM described above. To do so, we first 
define the quantity 

1 2 1
1 2, , ,

( ) max Pr[ , , , | (1) (2) ( ), ]
t

t tq q q
i q q q i Tδ λ

−

= = D D D
!

! !  (3)

i.e., δ t (i)  represents the highest probability of any sequence of states which ends in state {A,i ∈  
T,C,G,E}  to have given the sequence of observations up to time t. Then by induction, we find 
that 

1( ) (max ( ) ( , )) ( , ( 1))t ti
i i T i j Q j tδ δ+ = +D  (4)

where T and E are defined as above. We also use an auxiliary variable ψt ( j)  that keeps track of 
the state that maximized δ t (i) . We can now specify the complete dynamic program: 

1.  Initialization 

δ1(i) = I (i)Q(i,D(t)), i ∈ {A,T,C,G,E}
ψ1(i) = null
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2.  Recursion 

1

1
{A,T,C,G,E}

( ) (max ( ) ( , )) ( , ( )) 2
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3.  Termination 

{A,T,C,G,E}

* max ( )

arg ma* x ( )
Ti

TT
i

P i

q i

δ

δ
∈

=

=  

4.  State sequence backtracking: 

1 1( ), 1, 2, ,1.* *tt tq q t T Tψ ++= = − − !  

Then, the final state sequence is given by 1( * *, , )Tq q"  with probability P*. From this, we dis-
card the qt*’s that equal E to obtain the most likely nucleotide sequence 1( *, , *)ns s" . 

3  Results and Discussion 

To quantitatively evaluate the effectiveness of the proposed sequencing approach, we use simula-
tion data of DNA, for which the ground truth is known. 

3.1  Simulation Method 

We use molecular dynamics (MD) simulations [27] to study the dynamics of DNA molecules in 
water with counter ions. For selected atomic configurations from the MD simulation trajectory, the 
electronic density of states are calculated quantum mechanically based on the density functional 
theory (DFT) [27-29]. 

Our dataset is generated from simulations of poly(X) molecules composed of two X bases, 
where X is one of {A,T,C,G}  (see Fig. 2). All MD simulations are done with the AMBER soft-
ware [30]. Each simulation begins with energy minimization followed by gradual heating to a 
temperature of 300 K at atmospheric pressure. Subsequently, each simulation runs for 2×106 steps 
with a time discretization unit of 1 femtosecond, from which 2×103 atomic configurations (or 
frames) of 1 picosecond apart are extracted as our working dataset. For each of the 4 systems, 10 
equally spaced frames are extracted from the last 100 picoseconds, for a total of 40 frames. For 
each system, we treat these 10 frames as 10 different configurations of the same molecule, in order 
to imitate the variability in the poly(X) molecular structure and the noise of an actual DNA 
nanopore sequencer. 
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Fig. 2. Dimer ssDNA strand consisting of two adenosine molecules, surrounded by water molecules. 

Next, we perform DFT calculations [31] to obtain the density of states for each of the 40 con-
figurations. The electronic states are calculated using the projector augmented wave (PAW) method 
[32], and the generalized gradient approximation (GGA) [33] is used for the exchange-correlation 
energy. The plane-wave cut-off energies are 30 and 250 Ry for the electronic pseudowave func-
tions and the pseudocharge density, respectively. The energy functional is minimized using an itera-
tive scheme [34]. The Gamma point is used for the Brillouin-zone sampling. Projector functions 
are generated for the 2s and 2p states of C, N and O, the 3s and 3p states of P, the 1s states of H, and 
the 2p, 3s, and 3d states of Na. The other electrons in the lower-energy electronic states of each 
atom are treated with the frozen-core approximation [35]. 

Fig. 3 shows the total DOS’s of the systems involving DNA and water. The total DOS largely 
reflects the electronic structure of surrounding water molecules, and accordingly those corre-
sponding to different DNA bases are not easily distinguishable from each other. The total DOS 
consists of three peaks at about −3, −9 and −22 eV, which mostly come from the lone-pair 2p state 
of O, the O-H bonding state, and the s state of O, respectively. The shoulder at ~ −6 eV originates 
from some sp hybridization around O. In calculating the electronic structure of DNA, the contribu-
tion of water molecules to the DOS is then removed by projecting the DOS on to the subspace 
spanned by the pseudoatomic orbitals belonging to the DNA [13]. As shown in Fig. 4, we success-
fully extract the DOS associated with each DNA molecule, which represents recognizable features 
of the electronic state of DNA. 

To generate DOS histograms, the Kohn-Sham energy eigenvalues of the atomic configurations 
are partitioned into B = 30 bins that equally divide the range [Emin ,Emax ] = [ −30 eV, 0 eV ]. We 
treat the DOS histograms as B dimensional vectors, where the ith element of the vector corresponds 
to the ith bin of the histogram. We generated a total of 40 histograms, 10 per each DNA base, out 
of which we use 4m = 24 histograms as our training set, with m = 6 per each DNA base. 

To emulate the DOS time series of a translocating ssDNA strand, we use a simple interpolation 
scheme: Suppose that our true sequence of bases is 1 2( , , , )ns s s! , where each of the {A,T,C,is ∈  
G}.For each base si in the sequence, the sequencer produces between 1 and 3 observations (DOS 
histograms), but only one of them corresponds to a direct measurement of the base si. We call these 
direct measurements “true” DOS histograms, and the others correspond to some mixed measure-
ment of bases. The DOS histogram for the mixed measurements is computed as linear interpolations  
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Fig. 3. Total electronic density of states of the systems with dimer ssDNA strand and water 

 

Fig. 4. Electronic density of states of dimer ssDNA strand 

between the two true histograms corresponding to si and si+1, respectively. Let di = 1( , , )Ba a!  and 
di+1 = 1( , , )Bb b!  be these histograms, where aj and bj are the values of the jth bin of the ith and 
(i+1)th histogram, respectively. Define τ(j, p) = (1−p)aj + pbj. If the model chooses to generate 3 
observations for si, for instance, then the first interpolated histogram (after the true histogram) 
would be ( (1,1/ 3), , ( ,1/ 3)),Bτ τ!  and the second interpolated histogram would be ( (1, 2 / 3), ,τ !  

( , 2 / 3)).Bτ  Similarly, if the model choose to generate 2 observations for si, then the interpolated 
histogram would be ( (1,1/ 2), , ( ,1/ 2))Bτ τ! , which is intuitively the average of the histograms di 
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and di+1. To simulate the presence of noise, a small amount of Gaussian noise is added to each bin. 
Here, the noise added to di is drawn from the normal distribution, N(0,σ), with zero mean and 
standard deviation σ = (Var(ai)/L)1/2, where di = 1( , , ),Ba a"  Var(ai) is the variance of ai, and L is 
some large parameter such as 50. We call the resulting series of observations for the base se-
quence D(t), for 1 ! t ! T, where T " n.  

3.2  Identifying Single Histograms 

We process our sample dataset (described as H in section 2) through the PCA algorithm. Fig. 5 
shows the variance of the projection of H onto the principal components pi, i = 1, 2, ..., B. We 
observe that the first two principal components (indicated by the arrows in Fig. 5) capture the 
most amount of variance; from the perspective of the rest of the principal components (i > 2), H 
displays little variation. Intuitively, this indicates that the rest of the PCs describe the noise present 
in the system. The first two principal components thus “explain” the vast majority of the variance 
in the data, and accordingly the dimension of the dataset can be reduced to 2 while preserving its 
underlying structure. 

Fig. 6 shows the projection space of H, i.e., the projection of DOS vector d onto the first two 
principal components. Projection on the first principal component appears to be sufficient to dis-
criminate T and G into distinct clusters, while the second PC is needed to distinguish between A 
and C. We find that the maximization of variance of H along the first two PCs corresponds closely 
to the separation of the histograms according to their nucleotide type. Note that the PCA algorithm 
is essentially blind to the identities of the histograms, i.e., it “discovered” the separation algo-
rithmically.  

 

Fig. 5. The variance of the dataset H with respect to the principal components (PCs), i.e. Var(Hpi) is plotted 
against i, for i = 1, 2, ..., B. The variances of the first two PCs are indicated by the arrows; much of 
the variation in the data occurs along the axes p1 and p2, while the rest of the PCs describe very little 
of it. 
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Fig. 6. The projection of H onto the first two principal components, called the projection space. The nucleo-
tide dataset has been partitioned into disjoint clusters by type (indicated by the circles), indicating that 
the two principal components have captured the salient features of the density of states histograms. 

With any statistical modeling or learning procedure, there is the danger of overfitting, where 
the features learned do not necessarily describe the underlying patterns and structure of the data, 
but rather erroneously describe the noise [36]. Thus, the statistic model may learn the training data 
very well, but have poor predictive performance with new data. We test the results of PCA for its 
predictive performance in two phases: 1) we present a set of unlabeled histogram samples, and 
observe the membership probabilities computed for each sample; and then 2) analyze the stability 
of the clusters in the presence of noise. 

We test the results of PCA on the training set by computing pA, pT, pC and pG on 12 unlabelled 
samples (3 for each A, T, C and G). Table 1 shows the results. We identify each histogram d with 
X such that pX(d) > 0.5. Here, 11 out of 12 histograms are correctly identified (91% accuracy), 
indicating that the features learned by PCA can also classify samples beyond the initial training set. 

Table 1. The membership probabilities for each of the unknown, sample nucleotide data, against those of 
randomly generated input vectors. The probabilities greater than 0.5 are bolded. 

Base # Samples 
Tested 

# Correctly 
Identified Avg. pA Avg. pT Avg. pC Avg. pG 

A 3 2 0.720 0.029 0.052 0.199 

T 3 3 0.039 0.897 0.051 0.012 

C 3 3 .038 0.034 .911 0.017 

G 3 3 0.055 .011 0.014 0.920 

 
Next, we test the robustness of the clustering in the presence of noise. For this purpose, we take 

36 DOS histograms (9 for each nucleotide type) and to each histogram bin add noise sampled 
from a normal distribution N(0,σ) with varying standard deviation σ. Let K be the average over 
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the maximum amplitude in all DOS vectors in our dataset. A histogram with noise drawn from 
N(0,σ) has a probability of being correctly identified (i.e., if the original histogram is of type X, 
then pX(d) > 0.5). Fig. 7 plots this probability against the parameter σ/K. The figure shows that an 
input histogram with noise level σ/K up to ~15% will still be more likely than not to be classified 
correctly. This stability analysis suggests that the features detected by PCA capture the underlying 
differences between the nucleotides well. 

 

Fig. 7. Measurement of the robustness of the clusters with respect to increasing amounts of noise in the input 
histograms. The vertical axis is the probability that the DOS vector d of a nucleotide with additive 
Gaussian noise drawn from N(0,σ) is correctly identified (i.e., if the original histogram is of type X, 
then pX(d) > 0.5), and the horizontal axis is the noise-level parameter σ/K , where K is the maximum 
amplitude over all DOS vectors in our dataset. The arrow in the graph indicates that a histogram with 
noise level σ/K up to 15% is more likely than not to be correctly identified. 

3.3  Sequencing a Histogram Time Series 

In section 2, we described two approaches to sequencing a given histogram time series D(t). The 
first method, Approach 1, is to naively project each D(t) on the first two PCs found by PCA and 
then identify D(t) with nucleotide X such that pX(D(t)) >  τ, where τ is some threshold (e.g. 0.7). 
In the event none of the pX are greater than τ, then the histogram D(t) is not identified with any 
nucleotide, and discarded.  

Using the interpolation method described in section 3.1, we simulate 5 DOS time series corre-
sponding to 5 randomly generated base sequences. We sequence each time series using the first 
method. We compare the predicted sequence against the true sequence by measuring the Leven-
shtein distance between the two strings. The Levenshtein distance between two strings (also known 
as the “edit distance”) measures the minimum number of single character insertions, deletions, substi-
tutions, and transpositions needed to transform one string to another. Table 2 shows the results. 
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Table 2. Sequencing 5 density-of-states histogram time series generated from a hidden nucleotide sequence, 
using the naive method. A is the true nucleotide sequence, whereas B is the nucleotide sequence 
estimated from the histograms. The error for each sequence is calculated as (Levenshtein distance) 
divided by (True Sequence Length). 

Sequence Number True sequence 
length (A) 

Predicted sequence 
length (B) 

Levenshtein distance 
between A and B Error

 

1 123 208 93 76% 

2 195 348 161 83% 

3 178 311 143 80% 

4 146 249 118 81% 

5 120 208 99 83% 

 
With the same set of 5 generated sequences, we next use the Viterbi algorithm (Approach 2) to 

predict the most likely sequence of bases to generate the histograms. First, we specify the remaining 
parameters of the hidden Markov model described in section 2.4.1. We set T, Q, and I (the transi-
tion, observation emission, and initial probabilities, respectively) as follows: For 1 2, {A,T,X X ∈  

1 2 1C,G}, ( , ) 1/ 3, ( , ) 1/ 2, ( , ) 2 / 3T X X T E E T X E= = =  and 1( , ) 1/ 2.T E X =  One can verify that these 
state transition probabilities are consistent with the model of observation generation described in 
section 3.1. For the observation emission probabilities, we take advantage of the probability functions 
px that we defined above, with a slight modification: We have to introduce the probability that the 
HMM, in state E, will emit a given DOS observation vector o. We will define it as follows: 

pE (o) = (1− pA (o))(1− pT (o))(1− pC (o))(1− pG (o))  (7)

However, the emission probabilities must be normalized, so for X ∈ {A,T,C,G,E} : 

Q(X,o) = pX (o)
pN (o)N ∈{A,T,C,G,E}(

 (8)

Hence for a fixed o, X( Q(X,o) = 1. Finally, the initial probability is I (X) = 1/ 5. 
Table 3 shows the results from Approach 2. The error rate has been reduced four-fold (average 

21%) compared with that of Approach 1. 

Table 3. Sequencing the same 5 time-series as in Table 2, but using the Viterbi algorithm. 

Sequence Number True sequence 
length (A) 

Predicted sequence 
length (B) 

Levenshtein distance 
between A and B Error

 

1 123 117 28 23% 

2 195 189 42 22% 

3 178 176 33 19% 

4 146 148 30 21% 

5 120 119 28 23% 
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The above results indicate that modeling the DNA sequences as Markov chains allowed for 
much more accurate sequencing via the Viterbi algorithm, as compared to the naive approach. 
With Approach 1, the predicted sequences have a huge excess of nucleotide symbols that are a 
byproduct of the interpolated histograms. The Viterbi algorithm is able to recognize that many of 
the histograms corresponded to interstitial regions. 

Though 21% error is quite far from acceptable error rates (reliable human genome sequencing 
requires an error rate of at most of 1/100,000 base pairs [37]), our results at least demonstrate the 
benefit of using HMM in DNA sequencing. The results of using the naive approach indicate that 
simply using PCA alone to identify DNA bases is unworkable, and added knowledge about the 
nanopore sequencing process must be utilized. Here, with an extremely simple HMM, the Viterbi 
algorithm was able to significantly improve the accuracy of sequencing. With a more sophisticated 
HMM, the Viterbi algorithm should be able to sequence DOS time series with much greater accu-
racy. For example, Boufounos et al. have suggested such an alternative topology for the HMM, 
involving not only the 4 base types but 16 additional states representing the transitions between 
nucleotide types (e.g. AA, AT, AC, etc.) [38]. With training data for these nucleotide transition 
areas, the Viterbi algorithm should be able to recognize the non-nucleotide DOS more easily. 
Another possibility would be to use trimer training data. This will allow for a more nuanced HMM 
for DNA sequencing, where the states are not simply one of {A,T,C,G,E}, but would encompass 
all possible codons: AAA, AAT, AAC, etc. Such expanded HMM would capture more of the 
subtleties involved in the input signal. 

4  Conclusions 

In summary, we have presented theoretical results for methods of classifying both single DNA 
nucleotide molecules and a sequence of DNA bases from the electronic density of states of the 
nucleotides. Our results indicate that the density of states profiles of the DNA nucleotides may 
have enough information to distinguish between the base identities, and that the combination of 
principal component analysis and the Viterbi algorithm can extract this information to solve the 
nucleotide identification problem. 

With principal component analysis, we were able to reduce the dimensionality of the histogram 
space into a two-dimensional “projection space,” which partitioned the training set of histograms 
into distinct clusters. We demonstrated that the partitioning of the projection space predicts the 
identity of an unlabeled histogram very well, and that the clusters are stable with respect to mod-
erate levels of Gaussian noise (density of states histograms are correctly identified the majority of 
the time even where the added noise is 15% of the maximum histogram amplitude). 

We then compared two approaches to sequencing a time series of histograms (as would be gen-
erated by a nanopore sequencer device). The first was a naive approach of identifying each histo-
gram in the time series individually via the clusters found with principal component analysis. The 
second approach was to model the time series of histograms as the product of a hidden Markov 

DNA Sequencing via Quantum Mechanics and Machine Learning

GLOBAL INFORMATION PUBLISHER 367



 

model process and use the Viterbi algorithm to find the most likely sequence of bases that gener-
ated the histograms. 

Our numerical experiments demonstrated that the Viterbi algorithm performs vastly superior to 
the naive approach. Simply identifying each histogram D(t) with base X such that pX(D(t)) >  τ for 
some threshold τ was producing an average 80% error rate on a test dataset, whereas the Viterbi 
algorithm, on the same set of data, was able to achieve an average 21% error rate (with the errors 
measured with the Levenshtein metric). 

We believe that our proposed methods are viable in experiments, and the results and ideas pre-
sented here may serve as a step closer towards the realization of the Ultra Low Cost Sequencer. 
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