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A new approach for efficiently exploring the configuration space and computing the free energy
of large atomic and molecular systems is proposed, motivated by an analogy with reinforcement
learning. There are two major components in this new approach. Like metadynamics, it allows for an
efficient exploration of the configuration space by adding an adaptively computed biasing potential
to the original dynamics. Like deep reinforcement learning, this biasing potential is trained on the fly
using deep neural networks, with data collected judiciously from the exploration and an uncertainty
indicator from the neural network model playing the role of the reward function. Parameterization
using neural networks makes it feasible to handle cases with a large set of collective variables. This
has the potential advantage that selecting precisely the right set of collective variables has now become
less critical for capturing the structural transformations of the system. The method is illustrated by
studying the full-atom explicit solvent models of alanine dipeptide and tripeptide, as well as the
system of a polyalanine-10 molecule with 20 collective variables. Published by AIP Publishing.
https://doi.org/10.1063/1.5019675

I. INTRODUCTION

Exploring the configuration space of large atomic and
molecular systems is a problem of fundamental importance for
many applications, including protein folding, materials design,
and understanding chemical reactions. There are several dif-
ficulties associated with these applications. The first is that
the dimensionality of the configuration space is typically very
high. The second is that there are often high energy barri-
ers associated with the exploration. Both difficulties can be
reduced by the introduction of collective variables (CVs) and
the mapping of the problem to the CV space. The problem
then becomes finding the free energy surface (FES) associated
with the set of CVs, a problem that has attracted a great deal
of interest in the last few decades.1–14 One of the most effec-
tive techniques is metadynamics,9 which computes a biasing
potential by depositing Gaussian bases along the trajectory
in the CV space. It is shown that the biasing potential con-
verges to the inverted free energy at the end of the calculation.10

Also closely related to our work are the recent papers that pro-
pose to use machine learning methods to help parameterizing
FES.15–18 In particular, the deep neural network (DNN) model
has shown promise in effectively representing the FES defined
on high dimensional CV space.17,18

a)Electronic mail: wang han@iapcm.ac.cn
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In this work, we take metadynamics and machine learn-
ing methods one step further by making an analogy between
reinforcement learning19 and the task of configuration space
exploration and FES calculation. The classical reinforcement
learning scheme involves a state space, an action space, and
a reward function. The objective is to find the best policy
function, which is a mapping from the state space to the
action space, that optimizes the cumulative reward function.
Our problem can be thought of as being a multi-scale rein-
forcement learning problem. We have a micro-state space,
the configuration space of the detailed atomic system, and a
macro-state space, the space of the CVs. The action space will
be represented by the biasing potential in the biased molecular
dynamics (MD) on the micro-state space. The optimal policy
function is the inverted FES, defined on the macro-state space.
The FES is parameterized by a carefully designed DNN model.
Among other things, this allows us to handle cases with a large
set of CVs. In the absence of an explicit reward function, we
introduce an uncertainty indicator that can be used to quan-
tify the accuracy of the FES representation. It is defined as
the standard deviation of the predictions from an ensemble of
DNN models, which are trained using the same dataset but dif-
ferent initialization of the model parameters. The bias is only
adopted in regions where the uncertainty indicator is low, i.e.,
regions that are sufficiently explored, and thus the exploration
in the insufficiently explored region is encouraged. We call
this scheme the “reinforced dynamics,” to signal its analogy
with reinforcement learning.
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Roughly speaking, reinforced dynamics works as follows:
The biasing potential, or the action, is initialized at 0 and is
expected to converge to the inverted FES as the dynamics pro-
ceeds. Each step of the macro-iteration involves the following
components. First, a biased MD is performed, in which the
system is biased only in the regions where the uncertainty
indicator is low. The biased simulation is likely to visit the CV
regions never visited before or where the FES representation
quality is poor. Next, a certain number of the newly visited CV
values in regions where the uncertainty indicator is high are
added to the training dataset. A restrained MD is performed
to obtain the mean force, or the negative gradient of the FES,
at each of the newly added CV values. Finally, the accumu-
lated CV values and the mean forces are used as labels to train
several network models, which give the current estimate of
the biasing potential and the uncertainty indicator. This pro-
cess is repeated iteratively until convergence is achieved, when
the newly visited CV values all fall in the regions where the
uncertainty indicator is low.

The quality of the free energy surface is determined by the
quality of the CVs. Ideally we would like the FES to capture
the structural and dynamic information of the system, such
as the important metastable states and transitions between the
metastable states. For many years, since our ability to accu-
rately approximate the FES has been limited to systems with a
small number of CVs, we have always faced the dilemma that
choosing the right CVs is both critical and practically impos-
sible. We believe that the ability of the reinforced dynamics to
handle a large set of CVs will make the issue of choosing the
right CVs much less critical.

In this paper, we give a systematic presentation of the
theoretical and practical aspects of reinforced dynamics. We
first focus on methodology and introduce the theory and
flowchart of the reinforced dynamics scheme. Then we use
the classical example of alanine dipeptide and tripeptide with
two and four CVs, respectively, as illustrations due to their
intuitive appeal. The solvent effect is explicitly considered
in both examples. The FESs constructed by the reinforced
dynamics are compared with those constructed by long brute-
force simulations (5.1 µs for alanine dipeptide and 47.7 µs
for tripeptide) to demonstrate the accuracy and efficiency
of the method. Finally, an application to the structural opti-
mization of the polyalanine-10 system with 20 CVs is pre-
sented to demonstrate the practical promise of reinforced
dynamics.

II. THEORY
A. Free energy and mean forces

We assume that the system we are studying has N
atoms, with their positions denoted by r = (r1, . . ., rN ). The
potential energy of the system is denoted by U(r). With-
out loss of generality, we consider the system in a canon-
ical ensemble. Given M predefined CVs, denoted by s(r)
= (s1(r), . . ., sM (r)), the free energy defined on the CV space
is

A(s) = −
1
β

ln p(s), p(s) =
1
Z

∫
e−βU(r)δ(s(r) − s) dr, (1)

with Z = ∫ e�βU (r)dr being the normalization factor. The brute-
force way of computing the free energy (1) is to sample the CV
space exhaustively and to approximate the probability distri-
bution p(s) by making a histogram of the CVs. This approach
may easily become prohibitively expensive. In such a case,
an alternative way of constructing the FES is to fit the mean
forces acting on the CVs, i.e.,

F(s) = −∇sA(s). (2)

Several ways of computing F(s) have been proposed.11,13,20

We will adopt the approach of restrained dynamics proposed
in Ref. 11. In this formulation, a new term is added to the poten-
tial of the system to represent the effect of the spring forces
between the configuration variables and the CVs. It can be
shown that the mean force is given by Fα(s) = limkα→∞ Fk

α(s)
for α = 1, 2, . . ., M, where the αth component of Fk is defined
to be

Fk
α(s) =

1
Zk(s)

∫
kα(sα(r) − sα) e−βUk (r,s) dr. (3)

Here Zk(s) = ∫ e−βUk (r,s) dr is the normalization factor, {kα |α
= 1, . . ., M} are the spring constants for the harmonic
restraining potentials, and Uk(r, s) is defined by

Uk(r, s) = U(r) +
M∑
α=1

1
2

kα(sα(r) − sα)2. (4)

In practice, the spring constants are chosen to be large
enough to guarantee the convergence to the mean forces. The
time duration for the restrained dynamics should be longer
than the largest relaxation time scale of the fast modes of
the system, in order for the ensemble average in Eq. (3)
to be approximated adequately by the time average. In the
rest of the paper, we do not explicitly distinguish F and
Fk .

B. Free energy representation

The free energy A(s) will be represented by a deep neural
network (DNN) model, in which the input CVs are first prepro-
cessed, then passed through multiple fully connected hidden
layers, and, in the end, mapped to the free energy. The struc-
ture of the DNN model is schematically illustrated in Fig. 1.
Mathematically, a DNN representation with Nh hidden layers
is given by

A(s) = Lout ◦LNh ◦ · · · ◦L1 ◦P(s), (5)

where “◦” denotes the function composition. The differen-
tiable operator P represents the system-dependent preprocess-
ing procedure for the CVs, which will be illustrated by the
examples in Sec. III. For the pth hidden layer, which has Mp

neurons dp ∈ RMp , Lp is the operation that maps dp�1 to dp,
using

dp = Lp(dp−1) = ϕ(Wpdp−1 + bp). (6)

Here Wp ∈ RMp×Mp−1 and bp ∈ RMp are coefficients of a linear
mapping, often called weights. ϕ is the so-called activation
function, which is in general nonlinear. In this project, we use
the component-wise hyperbolic tangent function for ϕ. The
output layer Lout is defined by
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FIG. 1. A schematic plot of the DNN representation of the free energy A(s).
As an example, the dimension of the CV space in the figure is M = 2. The
preprocessing operator P maps the CV values to an input layer that has
M0 = 4 nodes. The DNN has 2 hidden layers, namely, d1 and d2, the size
of which is M1 = 4 and M2 = 3, respectively. The last hidden layer d2 is
mapped to the free energy A(s) by the output operator Lout .

A(s) = Lout(dNh ) = Wout · dNh−1 + bout, (7)

where Wout ∈ RMp−1 and bout ∈ R are the weights of
the linear mapping. Finally, W = {W1, . . . , WNh , Wout} and
b = {b1, . . . , bNh , bout} constitute all the DNN model parame-
ters to be determined. We note that the gradient, representing
the mean force

F(s) = −∇sA(s), (8)

is well defined since each layer of the construction (5) is differ-
entiable, and hence the DNN representation of the free energy
A(s) is also differentiable.

It should be noted that the design of the DNN model
can be adapted to different kinds of problems. We use the
fully connected DNN model here for simplicity of discus-
sion. For example, for some condensed systems, an alternative
network model resembling the one used in the Deep Poten-
tial method should be preferred.21,22 We leave this to future
work.

C. Training and uncertainty indicator

The DNN representation of the free energy is obtained by
solving the following minimization problem:

min
{W ,b}

LD({W , b}). (9)

The loss function LD is defined by

LD({W , b}) =
1
|D|

∑
s∈D

‖F(s) − F(s)‖2, (10)

where D denotes the set of training data and |D| denotes
the size of the dataset D. Here F(s) comes from the DNN
model and F(s) is the collected mean force for the data s.
Precise ways of collecting the data will be discussed later. It
should be noted that at the beginning of the training process,
we have no data. Data are collected as the training process
proceeds.

To guarantee accuracy for this model, we require that the
CV values in D is an adequate sample of the CV space. This
is made difficult due to the barriers on the energy landscape.
The MD will tend to be stuck at metastable states without
being able to escape. To help overcome this problem, we intro-
duce a biased dynamics. Details of that will be discussed in
Subsection II D.

A key notion for reinforced dynamics is the uncertainty
indicator. This quantity is important in the data collection step
as well as in the biased dynamics step. Our intuition is that the
DNN model should produce a reasonably accurate prediction
of the free energy in regions that are adequately covered by
D, but is much less so in regions that are covered poorly by
D (or have not been visited by the MD). To quantify this, we
introduce a small ensemble of DNN models, where the only
difference between these models is the random weights used
to initialize them. We can then define the uncertainty indi-
cator as E(s), the standard deviation of the force predictions,
viz.,

E2(s) =
〈
‖F(s) − F̄(s)‖2

〉
, F̄(s) =

〈
F(s)

〉
, (11)

where the ensemble average 〈· · · 〉 is taken over this ensemble
of models. One expects that this ensemble of models give rise
to predictions of the mean forces F that are close to each other
in regions well covered by D. In the regions that are covered
poorly by D, the predictions will scatter much more. This is
confirmed by our numerical results.

Finally, it is worth noting that the minimization problem
(9) is solved by the stochastic gradient descent (SGD) method
combined with the back-propagation algorithm.23 This has
become the de facto standard algorithm for training DNN
models. In all the test examples, we first adopt a random
initialization procedure for the weights, where each compo-
nent in Wp in Eq. (6) is initialized from a normal distribution
with mean 0 and standard deviation 1/

√
|dp−1 | + |dp |, and each

component in bp is initialized from a normal distribution with
mean 0 and standard deviation 1. Then at each training step,
the weights are updated based on the evaluation of the loss
function on a small batch, or subset B of the training data D,
i.e.,

L =
1
|B|

∑
s∈B

F(s) − F(s)2. (12)

D. Adaptive biasing

A way of encouraging the MD to overcome the barriers
in the energy landscape and escape metastable regions is to
add a bias to the potential. The force on the ith atom then
becomes

f̃ i(r) = −∇ri U(r) − ∇ri Ubias(s(r)). (13)

Since the FES is the best approximation of the potential energy
in the space of CVs, it is natural to use the current approxi-
mation of the FES, with a negative sign added, as the biasing
potential, as is done in metadynamics.9,10 We will adopt the
same strategy, but we propose to switch on the biasing poten-
tial only in regions where we have low uncertainty on the DNN
representation of the FES,

f̃ i(r) = −∇ri U(r) + σ(E(s(r)))∇riA(s(r)), (14)
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where the biasing potential A(s(r)) is the mean of the prede-
fined ensemble of DNN models andσ(·) is a smooth switching
function defined by

σ(e) =




1, e < e0,

1
2

+
1
2

cos
(
π

e − e0

e1 − e0

)
, e0 ≤ e < e1,

0, e ≥ e1.

(15)

Here e0 and e1 are two uncertainty levels for the accuracy of
the DNN model. In regions where the uncertainty indicator
E(s) is smaller than the level e0, the accuracy of the DNN
representation of A(s) is adequate, and hence the system will
be biased by A(s). In the regions where E(s) is larger than level
e1, the accuracy of the DNN representation is inadequate, and
the system will follow the original dynamics governed by the
potential energy U(r). In between e0 and e1, the DNN model
is partially used to bias the system via a rescaled force term
−σ(E(s(r)))∇riA(s(r)).

E. Data collection

After the biased MD, a number of newly visited CV val-
ues that are in the regions with high uncertainty are added
to the training dataset D. The regions with high uncertainty
are defined to be the CV values that give rise to large uncer-
tainty indicator, viz., E(s) > eaccept. A reasonable choice of
the threshold is eaccept = e0. For each value of the CV in D,
we use the restrained dynamics to calculate the mean forces
F via Eq. (3). These values, together with those computed in
previous iterations, are used as the labels for training the next
updated model.

F. The reinforced dynamics scheme

Figure 2 is a flowchart of the reinforced dynamics scheme.
Given an initial guess of the FES represented by the DNN, a
biased MD, i.e., Eq. (14), is performed to sample the CV space
from an arbitrarily chosen starting point. If no a priori infor-
mation on the FES is available, then a standard MD is carried

FIG. 2. The flowchart of the reinforced dynamics scheme.

out. The visited CV values are recorded at a certain time inter-
val and tested by the uncertainty indicator to see whether they
belong to a region with high uncertainty in the CV space. If all
the newly sampled CV values from the biased MD trajectory
belong to the region with low uncertainty, it can be that (1) the
biased MD is not long enough, so parts of the CV space are
not explored; (2) the interval for recording CV values along
the biased MD is not small enough, so some visited CV values
belonging to the region with high uncertainty are missed; or (3)
the DNN representation for FES is fully converged, and then
the iteration should be stopped and one can output the DNN
representation for the FES, namely, the mean of the predefined
ensemble of models. Case (1) can be excluded by systemati-
cally increasing the length of the biased simulation. Case (2)
can be excluded by decreasing the recording interval.

If CV values belonging to the region with high uncertainty
are discovered, they will be added to the training dataset D.
The CV values that are already in the training dataset should be
retained and serve as training data for later iterations. The mean
forces at the added CV values are computed by the restrained
dynamics, Eq. (3). A new ensemble of DNN models for the
FES are then trained, using different random initial guesses for
{W , b}. The standard deviation of the predictions from these
models is again used to estimate the uncertainty indicator E(s).
The iteration starts again using the biased MD simulation with
the new DNN models.

Finally, it is worth noting that the restrained MD simula-
tions for mean forces, which take over most of the computation
time in the reinforced dynamics scheme, are embarrassingly
parallelizable. The training of the ensemble of DNN models is
also easily parallelizable. Several independent walkers can be
set up simultaneously for a parallelized biased simulation, and
this provides a more efficient exploration of the FES. These
techniques can help accelerating the data collection process
and benefit large-scale simulations for complex systems.

III. NUMERICAL EXAMPLES: ALANINE DIPEPTIDE
AND TRIPEPTIDE
A. Simulation setup

We investigate the FES of the alanine dipeptide (ACE-
ALA-NME) and alanine tripeptide (ACE-ALA-ALA-NME)
modeled by the Amber99SB force field.24 The molecules are
dissolved in 342 and 341 TIP3P25 water molecules, respec-
tively, in a periodic simulation cell. All the MD simulations are
performed using the package GROMACS 5.1.4.26 The cut-off
radius of the van der Waals interaction is 0.9 nm. The disper-
sion correction due to the finite cut-off radius is applied to both
energy and pressure calculations. The Coulomb interaction is
treated with the smooth particle mesh Ewald method27 with a
real space cutoff 0.9 nm and a reciprocal space grid spacing of
0.12 nm. The system is integrated with the leap-frog scheme at
time step 2 fs. The temperature of the system is set to 300 K by
a velocity-rescale thermostat28 with a relaxation time of 0.2 ps.
The solute and solvent are coupled to two independent ther-
mostats to avoid the hot-solvent/cold-solute problem.29 The
Parrinello-Rahman barostat30 (GROMACS implementation)
with a relaxation time scale of 1.5 ps and a compressibility
of 4.5 × 10�5 bar�1 is coupled to the system to control the
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pressure to 1 Bar. For both the alanine dipeptide and tripep-
tide, any covalent bond that connects a hydrogen atom is
constrained by the LINCS algorithm.31 The H–O bond and
H–O–H angle of water molecules are constrained by the
SETTLE algorithm.32

For the alanine dipeptide, two torsion angles ϕ (C, N,
Cα, C) and ψ (N, Cα, C, N) are chosen as CVs for this
system, i.e., s = (ϕ, ψ). While for the alanine tripeptide,
the same torsion angles associated with the first and sec-
ond Cαs, denoted by ϕ0, ψ0, and ϕ1, ψ1, respectively, are
used as CVs for the system, i.e., s = (ϕ0, ψ0, ϕ1, ψ1). The
GROMACS source code is modified and linked to PLUMED
2.4b33 to carry out the biased and restrained simulations. The
PLUMED package is modified to compute the DNN biasing
force, viz., Eq. (14). The DNN models used in both exam-
ples contain three hidden layers of size (M1, M2, M3) = (48,
24, 12). The preprocessing operator for the alanine dipep-
tide is taken as P(ϕ,ψ) = (cos(ϕ), sin(ϕ), cos(ψ), sin(ψ)),
so the periodic condition of the FES is guaranteed. Simi-
larly, the preprocessing operator for the alanine tripeptide is
P̃(ϕ0,ψ0, ϕ1,ψ1) = (P(ϕ0,ψ0),P(ϕ1,ψ1)). Model training is
carried out under the deep learning framework TensorFlow,34

using the Adam stochastic gradient descent algorithm35 with a
batch size of |B| = 20. The learning rate is 0.001 in the beginning
and decays exponentially according to rl(t) = rl(0)× dt/ds

r ,
where t is the training step, dr = 0.96 is the decay rate, and
ds = 50 × |D|/|B| is the decay step. The total number of train-
ing steps is 12 500 × |D|/|B|. Currently, the DNN structure and
hyperparameters in the training algorithm are decided empir-
ically. Before performing the full reinforced dynamics, we
typically accumulate some data from some small scale sim-
ulations, test the performance of different DNN models and
training schemes, and then fix the optimal strategy in terms of
accuracy and efficiency. In practice, we find that a DNN model
with a decreasing number of nodes going from the innermost
to the outermost hidden layers performs better in our test cases.

In each reinforced dynamics step, four DNN models with
independent random initialization are trained in the same way
to compute the uncertainty indicator. The biased MD simula-
tions of alanine dipeptide and tripeptide last for 100 ps and
140 ps, respectively. The CV values along the MD trajecto-
ries are computed and recorded in every 0.2 ps. We assume
no a priori information regarding the FES, so a brute-force
simulation is performed for the 0th iteration step (we count
the iterations from 0). In each iteration, at most 50 recorded
CV values in the region with high uncertainty are added to
the training dataset D. Restrained MD simulations with spring
constant 500 (kJ/mol)/rad2 are performed to estimate the mean
forces by Eq. (3). Each restrained MD simulation is 100 ps and
140 ps long for the alanine dipeptide and tripeptide, respec-
tively. The CV values are recorded in every 0.01 ps along the
restrained MD trajectory to estimate the mean forces. Both of
the alanine dipeptide and tripeptide examples are carried out
on a desktop computer with an Intel i7-3770 central processing
unit (CPU) and 32 GB memory.

B. Free energy surface construction

The FES of the alanine dipeptide on the ϕ � ψ plane
(known as the Ramachandran plot) is reported in Fig. 3. We

FIG. 3. The free energy of alanine dipeptide on the ϕ-ψ plane. The plots are
obtained by (a) making log-scaled histogram of the CV values from brute-force
MD simulations; [(b) and (c)] using the reinforced dynamics with uncertainty
levels e0 = 3.0, e1 = 3.5 (kJ/mol)/rad. (b) plots the FES, and (c) plots the error
compared with the brute-force MD. (d) and (e) using the reinforced dynamics
with uncertainty levels e0 = 1.5, e1 = 2.0 (kJ/mol)/rad. (d) plots the FES, and
(e) plots the error compared with the brute-force MD. The contour lines in
(a), (b), and (d) are plotted from 0 kJ/mol to 30 kJ/mol with an interval of 5
kJ/mol. The red regions in (a), (c), and (d) are the CV values that are never
been visited by the MD trajectories.

perform 6 independent brute-force MD simulations, with each
∼860 ns long; thus, in total, 5.1 µs MD trajectories are used to
estimate the FES and compare with the reinforced dynamics
result. The system has 5 metastable states αR, C5, PII, αL, and
Cax

7 , as noted in Fig. 3(a). The C5 and PII regions correspond
to the dihedral angles observed in the β-strands conforma-
tions. The αR and αL regions correspond to the dihedral angles
of right- and left-handed α-helix conformations, respectively.
The transition between PII and αL has to go over an energy
barrier of ∼25 kJ/mol or equivalently ∼10kBT. The mean first
passage time from the state PII to αL is shown to be 43 ns for
the same model.36

In Fig. 3, the FES of alanine dipeptide sampled by the
brute-force MD (a) is compared with the one constructed
by reinforced dynamics (b) with uncertainty levels e0 = 3.0
(kJ/mol)/rad and e1 = 3.5 (kJ/mol)/rad. At the 9th iteration
for (b), the biased simulation does not produce any CV value
that belongs to the region with high uncertainty; thus, the
computation stops. In total (from the 0th to the 8th itera-
tion), 198 CV values are added to the training dataset D to
train the FES. It is observed that the reinforced dynamics is
able to reproduce, with satisfactory accuracy, the FES at the
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important metastable states and transition paths of the sys-
tem. The difference between (a) and (b) is plotted in (c). The
error of FES at states C5, PII, and Cax

7 is below 0.5 kJ/mol,
while the error at αL and αR is around 1.5 kJ/mol. The total
biased MD simulation time is 10 × 0.1 ns = 1.0 ns. The total
restrained MD simulation time is 198 × 0.1 ns = 19.8 ns. Thus
the total MD simulation time is 20.8 ns, which is only ∼0.1%
of the brute-force simulation length and half of the mean first
passage time from PII to αL of the brute-force MD simula-
tion. The total wall time of all the trainings is 2.6 × 103 s,
while the total wall time of all the restrained MD simulations is
8.9 × 103 s.

It is noted that the accuracy of the FES can be systemat-
ically improved by using more strict uncertainty levels. The
result of using e0 = 1.5 (kJ/mol)/rad and e1 = 2.0 (kJ/mol)/rad
is reported in Figs. 3(d) and 3(e). In this case, the biased MD
simulation does not generate CV values belonging to the region
with high uncertainty at the 21st iteration. In total (from the
0th to the 20th iteration), 303 CV values are added to the
training dataset D to construct the FES. The error of FES
at all metastable states and transition regions is uniformly
below 0.5 kJ/mol. The total biased MD simulation time is
22 × 0.1 ns = 2.2 ns. The total restrained MD simulation
time is 303 × 0.1 ns = 30.3 ns. Thus the total MD simula-
tion time is 32.5 ns, which is 50% longer than the reinforced
dynamics with higher uncertainty levels [e0 = 3.0 (kJ/mol)/rad
and e1 = 3.5 (kJ/mol)/rad], but still shorter than the mean
first passage time from PII to αL of the brute-force simulation
(43 ns).

The information of the four-dimensional FES of the ala-
nine tripeptide constructed by brute-force MD sampling and
the reinforced dynamics is presented in Fig. 4, by project-
ing on the (ϕ0, ψ0), (ϕ1, ψ1), and (ϕ1, ψ0) planes. For
example, the projection onto the (ϕ0, ϕ0) variables is defined
by

A(ϕ0,ψ0) = −
1
β

ln
∫ ∫

dϕ1dψ1e−βA(ϕ0,ψ0,ϕ1,ψ1) + C, (16)

where C is a constant that is chosen to normalize the minimum
value of A(ϕ0, ψ0) to zero. Projected free energies A(ϕ1, ψ1)
and A(ϕ1, ψ0) are defined analogously. The uncertainty levels
of the reinforced dynamics are set to e0 = 3.0 (kJ/mol)/rad and
e1 = 3.5 (kJ/mol)/rad. The biased MD simulation of the 72nd
iteration does not find any CV value belonging to the region
with high uncertainty, so the process stops. From the 0th to
the 71st iteration, 1363 CV values are added to the training
dataset D. The total biased MD simulation time is 73 × 0.14
= 10.22 ns, while the total restrained MD simulation time is
1363 × 0.14 = 190.82 ns. The total wall time of the restrained
MD simulations is 6.2 × 104 s, while the total wall time for
training the networks is 1.1× 105 s. For comparison, we carried
out 18 independent brute-force MD simulations, each of which
is 2.65 µs long, so the total length of brute-force MD trajecto-
ries is 47.7 µs. Figure 4 shows that the reinforced dynamics is
able to reproduce the FES with satisfactory accuracy on all the
projected planes. It is noted that the projected FESs on both the
(ϕ0, ψ0) and (ϕ1, ψ1) variables are different from the FES of
alanine dipeptide, which indicates the correlation of backbone
atoms.

FIG. 4. The free energy of alanine tripeptide projected on the ϕ0-ψ0 [(a) and
(b)], ϕ1-ψ1 [(c) and (d)], and ϕ1-ψ0 [(e) and (f)] planes. The left column,
(a), (c), and (e), is histogram plots of the CV values from brute-force MD
simulations; the right column, (b), (d), and (f), presents the results of reinforced
dynamics up to the 71st step, which is trained by 1363 CV values in the
dataset D.

C. Illustration of the adaptive feature

To highlight the adaptive feature of the reinforced dynam-
ics, we take the alanine dipeptide as an example and illustrate
in Fig. 5 the CV values visited in each biased MD simula-
tion and those iteratively added to the training dataset D. The

FIG. 5. The CV values visited by the biased MD simulations (thin green dots)
and those added to the training dataset D (thick black dots) in each reinforced
dynamics step. The uncertainty levels of the reinforced dynamics are set to
e0 = 3.0 and e1 = 3.5 (kJ/mol)/rad. The color scale is the same as plot (b) of
Fig. 3.
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FIG. 6. The FES of the alanine dipeptide computed in the CV space (ϕ, ψ, θ, ζ ). (a) Projection on the φ-ψ plane; contour lines are plotted from
0 kJ/mol to 30 kJ/mol at an interval of 5 kJ/mol. (b) Error of the φ-ψ projection compared to the brute-force simulation. (c) Projection on the θ-ζ plane;
contour lines are plotted from 0 kJ/mol to 100 kJ/mol at an interval of 20 kJ/mol. The uncertainty levels of the reinforced dynamics are set to e0 = 3.0 and
e1 = 3.5 (kJ/mol)/rad.

uncertainty levels are e0 = 3.0, e1 = 3.5 (kJ/mol)/rad, and the
reinforced dynamics stops at the 9th iteration. In the 0th itera-
tion, no a priori information of the FES is available, so the MD
simulation is not biased. The starting state of the simulation
is PII, and the system spontaneously transforms to states C5

and αR in the 0.1 ns simulation;43 thus; the visited CV values
cover PII, C5, and αR, and 50 of them are randomly chosen as
training data. The first DNN representation of FES is trained
by these CV values and is used to bias the system at the 1st
iteration. Since the first DNN representation is of good qual-
ity at states PII, C5, and αR, the system diffuses out of PII,
C5, and αR and is trapped by a new metastable state αL. Only
the visited CV values that sample the metastable state αL are
added to the training dataset. The DNN representation trained
by the updated dataset is of good quality at states PII, C5, αR,
and αL.

Following this observation, in the 2nd iteration, although
the visited CV values cover a wide region including the
metastable states PII, C5, αR, and αL, only those in the tran-
sition regions between PII and αL and between αR and PII/C5

are added to the training set. The CV values added in the 3rd
iteration are those that sample the metastable state Cax

7 and the
transition region between Cax

7 and αL. The CV values added
in the 4th iteration are those that sample the transition region
between Cax

7 and αR.
From the 5th to the 8th iteration, the DNN representa-

tion of the FES is of relatively good quality. The CV values
added to the training dataset are those that sample the bor-
der of high energy peaks at ϕ ≈ 2 rad and ϕ ≈ �0.5 rad. At
the 9th iteration, no CV value belonging to regions with high
uncertainty is found because the pushing-back events happen
so quickly that the CV values are not recorded by the biased
MD trajectory with the 0.2 ps recording interval. However, if
we reduce the CV recording interval from 0.2 ps to 0.04 ps,
19 CV values can still be identified to be in the regions with
high uncertainty and used to start the next biasing-and-training
iteration. Since the construction of high energy FES peaks is
of less interest, for the sake of computational cost, we do not
use the smaller recording interval in our result. This means
that we ignore the FES regions with sharp gradient so that the
biased system can only stay for a time scale that is much shorter
than the recording interval. Better stopping criteria that guar-
antee the representation quality of the important structures of
FES and exclude the irrelevant energy peaks are left for future
studies.

D. Remark on the choice of CVs

One important issue is to find the right set of CVs in
order to capture the structural and dynamics information that
we are interested in. However, this is a difficult problem and
is not the topic of this work. Here, we will study how the
enhanced sampling and free-energy estimation are affected
when (unnecessary) additional CVs are included. We will see
that the estimated free energy for the larger set of CVs is con-
sistent with the one for the smaller set of CVs in the sense that
after projecting the former onto the smaller set of CVs, one
recovers the latter.

To this end, we compute the FES of alanine dipeptide in
a four-dimensional CV space (ϕ, ψ, θ, ζ) with two additional
torsion angles θ (O, C, N, Cα) and ζ (Cα, C, N, H). The uncer-
tainty levels that we use are e0 = 3.0 and e1 = 3.5 (kJ/mol)/rad.
The result is shown in Fig. 6. The 4-dimensional FES pro-
jected on the θ � ζ plane is shown in plot (c) of the figure.
The native state locates at θ = ζ = 0, while three metastable
states are discovered at (θ = 0, |ζ | = π), (|θ| = π, ζ = 0), and
(|θ| = π, |ζ | = π). They are denoted by S00, S01, S10, and S11,
respectively. The barrier between the native state S00 and the
metastable state S01/S10 is around 70 kJ/mol. The free energy
of metastable states S01, S10, and S11 are 21 kJ/mol, 24 kJ/mol,
and 46 kJ/mol, respectively; thus, their contribution to the free
energy projection on the φ � ψ plane is negligible. A direct
comparison of the free energy projection on the φ � ψ plane
with the brute-force MD result is shown in plot (b) of Fig. 6.
The error is less than 2 kJ/mol. The result is consistent with
the φ � ψ free energy computed using reinforced dynamics
(shown in Fig. 3).

IV. APPLICATION TO POLYALANINE-10

In reinforced dynamics, both the neural network repre-
sentation of the FES and the restrained simulation for mean
forces are relatively insensitive to the dimensionality of the
CV space. Thus it has the potential to be able to handle sys-
tems with a large set of CVs. As an illustrative example, we
investigate the metastable conformations of a polyalanine-
10 (ACE-(ALA)10-NME) molecule. In this example, rather
than constructing an accurate free energy in the whole space
of CVs, our goal is to efficiently search for the most stable
structures in the conformational space of the system. We will
demonstrate that reinforced dynamics allows us to explore
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very efficiently the most relevant metastable conformations of
this molecule, including the α-helix and β-strand conforma-
tions, and to provide estimates for the relative stability between
different metastable states.

One technical remark is that for computational efficiency,
we adopt a multi-walker scheme of reinforced dynamics for
this relatively high-dimensional case. In each iteration of this
scheme, different walkers undergo biased dynamics indepen-
dently under the same biased potential. Next, a set of CV values
with high uncertainty are selected and restrained simulations
are performed to calculate the associated mean forces. Finally,
the selected CV values and associated mean forces provided
by all the walkers are merged and added to the dataset. An
ensemble of new neural network models are then trained with
this larger dataset. The multi-walker scheme improves the effi-
ciency of the data collection step, and it helps to accelerate the
exploration procedure.

A. Simulation setup

The system of polyalanine-10 (ACE-(ALA)10-NME) is
modeled by the Amber96 force field.37 The molecule is in the
gas phase and is set in a 3.5 nm × 3.5 nm × 3.5 nm simulation
region. To start with, we prepare misfolded initial configura-
tions of the molecule in three stages. In the first stage, starting
from an alpha-helix configuration, two ends of the molecule are
pulled along the z direction in an extended simulation region
(3.5 nm× 3.5 nm× 30 nm) at rate 0.1 nm/ps for 100 ps. During
this process, no thermostat is used for the system. At the end
of this stage, the backbone of the molecule is fully extended,
and the temperature of the system increases to 1155 K. In the
second stage, the pulling force is removed and the molecule is
equilibrated at 300 K for 200 ps, using the velocity-rescaling
thermostat28 with 0.2 ps of relaxation time and an integration
time step of 1 fs. In the third stage, an unbiased productive sim-
ulation of 200 ps is carried out at 300 K with a time step of 2 fs.
100 candidate configurations along the trajectory of this sim-
ulation are saved in every other 2 ps. Finally, 14 independent
walkers are initialized with randomly chosen configurations
from these candidates.

The torsion angles φ andψ associated with all Cαs are used
as CVs for the system; thus, the dimension of the CV space is
20. The DNN model used in this example consists of 5 hidden
layers of size (M1, M2, M3, M4, M5) = (360, 180, 90, 45, 20).
We found the following procedure to be more efficient for the
network training. In the first 6 iterations, the weights in differ-
ent DNN models are randomly initialized and are trained using
the Adam stochastic gradient descent algorithm35 with a batch
size of |B| = 64. The learning rate rl is 0.003 in the beginning
and decays exponentially according to rl(t) = rl(0)× dt/ds

r ,
where t is the training step, dr = 0.96 is the decay rate,
and ds = 10× |D|/|B| is the decay step. The total number of
training steps is 3000× |D|/|B|. After iteration 6, instead of
randomly initializing the weights, we restart the training pro-
cess using weights inherited from the previous iteration. We
use the same batch size and decay rate of the first 6 iterations
but use a different learning rate of 0.0003 and a decay step of
ds = 5× |D|/|B|. This reduces the total number of training steps
in each iteration to 1200× |D|/|B|. The biased MD simulations
are 100 ps long. The uncertainty levels are set to e0 = 6.0 and e1

= 6.5 (kJ/mol)/rad. The CV values are computed and recorded
in every 0.2 ps along the biased trajectories. For each walker,
at most 12 CV values in the region with high uncertainty are
added to the training dataset D. For each added CV value,
a 100 ps restrained MD simulation is carried out, wherein
the CV values are recorded in every 0.01 ps to estimate the
mean forces using Eq. (3). The simulations are carried out on
one cluster node with two Intel Xeon E5-2680 v4 CPUs and
64 GB memory.

B. Structure optimization

To find different metastable states and their relative sta-
bility, we combine the exploration stage, provided by the
adaptively biasing procedure in reinforced dynamics, with an
optimization stage, which can be viewed as a postprocess-
ing of the explored configurations. In the exploration stage,
due to the complexity of the 20-dimensional FES, we do not
wait for the reinforced dynamics to stop by itself. Instead,
we stop the process at the 210th iteration. The outputs of the
biased MD simulations in each iteration, in total, 14 × 211
= 2954 configurations, are thus selected for the next stage.
We remark that basins associated with important metastable
conformations may not be visited during the 210 iterations.
This seems to be a common issue of algorithms for conforma-
tion space exploration, no matter by enhanced sampling or by
brute-force simulation. However, reinforced dynamics drasti-
cally accelerates the efficiency of exploration and, due to the
biasing procedure, new low-energy states are more likely to be
explored in earlier iterations. Although we stop the process at
a certain number of iterations, further tests based on the accu-
mulated dataset and restarted from the simulation can always
be performed to check the results. In the optimization stage,
the 2954 configurations are first relaxed by brute-force MD for
200 ps. Then the CV values corresponding to the relaxed con-
figurations are taken as initial guesses for the unconstrained
minimization on the DNN represented FES, which is solved
by the Broyden-Fletcher-Goldfarb-Shanno (known as BFGS)
method,38 and the solutions are local minima of the FES. The
configurations are further relaxed with a restrained MD simu-
lation centered at the corresponding local minima for 100 ps
at a time step of 1 fs.

The local minimum with the lowest free energy corre-
sponds to the native conformation, which is the α-helix con-
formation (see C004 in Fig. 7). The FES is thus shifted by
the α-helix free energy so that the global minimum takes the
value of 0. Among the 2954 configurations, 1047 configura-
tions that have the free energy lower than 31.67 kJ/mol are
collected. These configurations are clustered into 30 clusters
according to the root mean square deviation (RMSD) of Cαs
by using the agglomerative clustering method with an average-
linkage criterion39 and are coded as C000, C001, . . ., C029.
The largest averaged pairwise RMSD within one cluster is
0.86 Å (C003), which indicates a high conformational sim-
ilarity within the clusters. The configuration with the lowest
free energy in one cluster is assigned to be the representative
of that cluster, and its free energy is referred to as “the free
energy” of the conformation.

The native conformation (C004) and five metastable con-
formations with the lowest free energies are presented in Fig. 7.
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FIG. 7. Schematic plot of the native state and five most stable conformations
of polyalanine-10 discovered by the reinforced dynamics. The gray shadows
indicate the backbones of the conformations. Above each conformation, the
cluster index (see text for details) and its free energy (in unit of kJ/mol) pre-
dicted by the reinforced dynamics are provided. The standard deviations of
the free energy predictions are presented in the parentheses also in unit of
kJ/mol.

Their relative stability with respect to the native state and the
standard deviations of the free energy predictions are also pre-
sented in the figure. The metastable conformation C000 cor-
responds to the β-strand conformation, while the metastable
conformations C008, C009, C012, and C027 are misfolded
conformations. The predicted free energies of the metastable
conformations are very close; thus, considering the uncer-
tainties in these free energies, we cannot tell whether one
metastable state is more stable than another from the current
reinforced dynamics simulation.

We also computed the transition paths from the native state
to the five metastable state using the string method.40,41 The
strings are discretized by 224 nodes. At each node, a restrained
MD of length 1600 ps is performed, and the CV values are
recorded every 0.01 ps to compute the mean force by Eq. (3).
The free energies are then computed by using thermodynamic
integration along the string (see the green lines in Fig. 8). As
a comparison, the free energies predicted by the reinforced
dynamics along the same paths are plotted as the red lines and
the standard deviations in the free energy model predictions
are presented by the red shadows. The free energy predicted by
the reinforced dynamics is in satisfactory agreement with the
thermodynamic integration for the transitions C004→ C000,
C004 → C009, and C004 → C012. The computation of the
transition paths C004 → C009 and C004 → C012 is easier
because the α-helical segments in the conformations C009 and
C012 make them closer to the native state. It is also observed
that the free energy barriers in transitions C004→ C009 and

FIG. 8. The free energy along the transition paths from the native to
metastable conformations. The transition paths are computed by the string
method. The free energies computed by the thermodynamic integration (green
lines) and predicted by the reinforced dynamics (red lines) are demonstrated.
The standard deviations of the free energy predictions are presented by red
shadows.

C004 → C012 are lower than others. Along the paths C004
→ C008 and C004→ C027, the reinforced dynamics is quite
accurate near the native and the metastable states. However, in
the middle section of the paths, there are clear differences from
the result of the thermodynamic integration. Many factors may
contribute to this: Between the native and a metastable state,
there may exist multiple transition paths; the path computed
by the string method may not be the most probable path; some
conformations along the path may not be well sampled by the
reinforced dynamics.

V. CONCLUSION AND PERSPECTIVE

In summary, reinforced dynamics is a promising tool
for exploring the configuration space and calculating the free
energy of atomistic systems. Even though we only presented
examples of bio-molecules, it should be clear that the same
strategy should also be applicable to many different tasks
like studying the phase diagrams of condensed systems. In
particular, due to the ability of the deep neural networks in
representing high dimensional functions,18,21,22,42 we expect
the reinforced dynamics to be particularly powerful when the
dimensionality of the CV space is high. In addition, one should
be able to couple it with optimization algorithms in order to
perform structural optimization.



124113-10 Zhang, Wang, and E J. Chem. Phys. 148, 124113 (2018)

ACKNOWLEDGMENTS

We are grateful to Jiequn Han and Eric Vanden-Eijnden
for their helpful comments. We also thank Luca Maragliano
for sharing with us the data of alanine dipeptide from the
single-sweep method. The work of L. Zhang and W. E. is
supported in part by ONR Grant No. N00014-13-1-0338,
DOE Grant Nos. DE-SC0008626 and DE-SC0009248, and
NSFC Grant Nos. U1430237 and 91530322. The work of
H. Wang is supported by the National Science Foundation
of China under Grant Nos. 11501039 and 91530322, the
National Key Research and Development Program of China
under Grant Nos. 2016YFB0201200 and 2016YFB0201203,
and the Science Challenge Project No. JCKY2016212A502.
Part of the computational resources is provided by the
Special Program for Applied Research on Super Computa-
tion of the NSFC-Guangdong Joint Fund under Grant No.
U1501501.

1S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman,
“The weighted histogram analysis method for free-energy calculations on
biomolecules. I. The method,” J. Comput. Chem. 13(8), 1011–1021 (1992).

2S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman,
“Multidimensional free-energy calculations using the weighted histogram
analysis method,” J. Comput. Chem. 16(11), 1339–1350 (1995).

3A. F. Voter, “Hyperdynamics: Accelerated molecular dynamics of infre-
quent events,” Phys. Rev. Lett. 78(20), 3908 (1997).

4Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method
for protein folding,” Chem. Phys. Lett. 314(1), 141–151 (1999).

5J. VandeVondele and U. Rothlisberger, “Efficient multidimensional free
energy calculations for ab initio molecular dynamics using classical bias
potentials,” J. Chem. Phys. 113(12), 4863–4868 (2000).

6D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and
new perspectives,” Phys. Chem. Chem. Phys. 7(23), 3910–3916 (2005).

7C. D. Christ and W. F. van Gunsteren, “Multiple free energies from a single
simulation: Extending enveloping distribution sampling to nonoverlapping
phase-space distributions,” J. Chem. Phys. 128, 174112 (2008).

8Y. Q. Gao, “Self-adaptive enhanced sampling in the energy and trajectory
spaces: Accelerated thermodynamics and kinetic calculations,” J. Chem.
Phys. 128, 134111 (2008).

9A. Laio and M. Parrinello, “Escaping free-energy minima,” Proc. Natl.
Acad. Sci. U. S. A. 99(20), 12562–12566 (2002).

10A. Barducci, G. Bussi, and M. Parrinello, “Well-tempered metadynamics:
A smoothly converging and tunable free-energy method,” Phys. Rev. Lett.
100(2), 020603 (2008).

11L. Maragliano and E. Vanden-Eijnden, “A temperature accelerated method
for sampling free energy and determining reaction pathways in rare events
simulations,” Chem. Phys. Lett. 426(1), 168–175 (2006).

12L. Maragliano and E. Vanden-Eijnden, “Single-sweep methods for free
energy calculations,” J. Chem. Phys. 128(18), 184110 (2008).

13J. B. Abrams and M. E. Tuckerman, “Efficient and direct generation of multi-
dimensional free energy surfaces via adiabatic dynamics without coordinate
transformations,” J. Phys. Chem. B 112(49), 15742–15757 (2008).

14T.-Q. Yu and M. E. Tuckerman, “Temperature-accelerated method for
exploring polymorphism in molecular crystals based on free energy,” Phys.
Rev. Lett. 107(1), 015701 (2011).
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