
SW_GROMACS: Accelerate GROMACS on Sunway TaihuLight
Tingjian Zhang1,4, Yuxuan Li2,4, Ping Gao1,4, Qi Shao1,4, Mingshan Shao1,4
Meng Zhang1,4, Jinxiao Zhang1, Xiaohui Duan1,4, Zhao Liu2,4, Lin Gan2,4

Haohuan Fu3,4, Wei Xue2,4, Weiguo Liu1,4, Guangwen Yang2,4

1. School of Software, Shandong University, China
2. Department of Computer Science and Technology, Tsinghua University, China

3. Ministry of Education Key Lab for Earth System Modeling, and Department of Earth System Science,
Tsinghua University, China

4. National Supercomputer Center in Wuxi, China

ABSTRACT
GROMACS is one of the most popular Molecular Dynamic (MD)
applications and is widely used in the field of chemical and bi-
molecular system study. Similar to other MD applications, it needs
long run-time for large-scale simulations. Therefore, many high
performance platforms have been employed to accelerate it, such
as Knights Landing (KNL), Cell Processor, Graphics Processing
Unit (GPU) and so on. As the third fastest supercomputer in the
world, Sunway TaihuLight contains 40960 SW26010 processors and
SW26010 is a typical many-core processor. To make full use of the
superior computation ability of TaihuLight, we port GROMACS
to SW26010 with following new strategies: (1) a new deferred up-
date strategy; (2) a new update mark strategy; (3) a full pipeline
acceleration. Furthermore, we redesign GROMACS to enable all
possible vectorization. Experiments show that our implementation
achieves better performance than both Intel KNL and Nvidia P100
GPU when using appropriate number of SW26010 processors for a
fair comparison.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms;
Vector / streaming algorithms; Self-organization; Massively par-
allel algorithms; • Applied computing → Chemistry.
ACM Reference Format:
Tingjian Zhang, Yuxuan Li, Ping Gao, Qi Shao, Mingshan Shao, Meng Zhang,
Jinxiao Zhang, Xiaohui Duan, Zhao Liu, Lin Gan, Haohuan Fu, Wei Xue,
Weiguo Liu and Guangwen Yang. 2019. SW_GROMACS: Accelerate GRO-
MACS on Sunway TaihuLight. In The International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ’19), No-
vember 17–22, 2019, Denver, CO, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3295500.3356190

1 INTRODUCTION
Molecular dynamics (MD) simulation [14] is a very popular appli-
cation on supercomputers [2]. Various MD applications have been
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356190

used in different fields such as materials science, chemistry and
biology. Computer simulation methods are widely adopted in those
applications to simulate the movements of molecules and particles
according to the Newtonian equations of motion. There are many
frequently-used MD software applications, such as LAMMPS[21],
AMBER [23] and so on. Most of them have been well implemented
in many different platforms, such as CPU [22], GPU [28], KNL[15].

As one of the most popular MD application, GROMACS is mainly
designed for the simulation of proteins, liquid, and nucleic acids
where there exist lots of complicated bonded interactions between
the molecules. But because of its extremely fast calculation of the
non-bonded interactions, more and more research groups use it to
simulate non-biological systems. Like some other MD applications,
it is a free open-source software application, which is supported by
many different groups.

Till now, it has been a pressing need for a long time to accelerate
GROMACS on TaihuLight. Now, we implement SW_GROMACS on
TaihuLight by rebuilding the code of GROMACS.

TaihuLight [11] is a supercomputer with a peak performance of
125.3 PFLOPS. It is composed of 40960 SW26010 chips, which are
placed in 40 cabinets and connected by a 2-level fat-tree topology
network[27].

Each SW26010 includes four core groups (CGs), which are con-
nected via the network on chip (NoC). Each CG is composed of
one Management Processing Element (MPE) and 64 Computing
Processing Elements (CPEs) arranged in an 8 * 8 grid. The MPE is
designed for handling management and communication functions.
It contains 8 G DDR3 memory with a 32 KB L1 instruction cache,
a 32 KB L1 data cache and a 256 KB L2 cache for both data and
instruction. In contrast, the CPE is a Reduced Instruction Set Com-
puter (RISC) core with only 64 KB fast local device memory (LDM).
The 64 CPEs is arrayed as an 8 * 8 mesh structure. CPEs in the same
row or column could transmit data with the communication bus
rapidly. All CPEs could access the MPE memory by DMA, which
could get the data in a contiguous region of the memory efficiently.
Otherwise, CPEs have to access parameters in MPE memory by
global load/store instructions (gld/gst) with high latency.

As for the computation ability, both the MPE and CPEs could use
the 256-bit vector instructions, with a 1.45 GHZ running frequency.
Every chip could provide a peak performance of 3.06 TFlops.

In fact, it is hard to make full use of SW26010. There are many
constraints for porting GROMACS to SW26010, for example, the
weak MPE, the small LDM in CPE, the low bandwidth of DMA
on TaihuLight and so on. To overcome those challenges, we come

https://doi.org/10.1145/3295500.3356190
https://doi.org/10.1145/3295500.3356190

SC ’19, November 17–22, 2019, Denver, CO, USA Tingjian Zhang, Yuxuan Li, etc.

MD workflow Kernel Case1 Case2
Initialize Domain decomp. NULL 0.7%

Calculate interaction

Neighbor search 2.5% 2.3%
Force 95.5% 74.8%

Wait + comm. F NULL 1.1%
NB X/F buffer ops 0.1% 0.2%

Update configuration
Update 0.3% 0.2%

Constraints 0.6% 1.7%
Comm. energies NULL 18.7%

Output Write traj 0.5% 0.1%
Rest 0.5% NULL

Table 1: Time ratio of different kernels in the two case. The
case 1 is 48,000 particles water case with 1 CG. And Case 2
is the 3,000,000 particles water case is simulated by 512 CGs.
And the detail of the benchmark will be introduce in the
evaluation section

up with some strategies in our SW_GROMACS to reduce those
restrictions of SW26010. Those works will be introduced in this
paper:

(1). Designing a new data structure for the calculation of short-
range interaction in the GROMACS. proposing deferred update
strategy .

(2). In the original method, to avoid the write conflict every
CPE is assigned a array to accumulate the interaction of all atoms.
However, the method require the initial of the arrays and reduction,
which cost lots of time. SO we come up with the update mark
method to reduce meaningless transmission in the calculation step
and the reduction step and desert the the initialization step.

(3). To make full use of the calculation of SW26010. We carefully
optimize the vectorization of the short-range interaction calculation.
We change the data layout and use the simd operation to accelerate
the calculation as fast as possible.

(4). After the optimization of the calculation of the short-range
interaction. The other parts of the GROMACS occupy toomuch time.
So that, the Optimization of other important steps of the workflow
is of great importance to achieve better entirety performance.

In this paper, we will introduce the basic information of GRO-
MACS and some previous work in Section 2. And in Section 3, some
of our optimization works in our SW_GROMACS will be introduced.
The performance of SW_GROMACS will be discussed in Section
4. In the end, we talk about some conclusions and future work in
Section 5.

2 BACKGROUND
In this section, the basic algorithm of GROMACS and some related
work are given as follows.

2.1 Algorithms
The algorithm used in GROMACS is similar to other MD applica-
tions. As shown in Figure 1, the workflow of GROMACS consists of
initial conditions input, forces computation, configuration update,
and result output. In most cases, the calculation of interactions is
the most time-consuming portion (as we can see in the Table 1).
So we mainly talk about the calculation of particles interactions in

Initialize

Calculate
interaction

Output

Update
configuration

MD
work flow

Interaction

Bound

LongRange ShortRange

NonBound

Interaction

Figure 1: The left side of the figure is a standard workflow of
MD applications. The application will repeat calculate inter-
action step, update configuration step, output step as they
need. And the right side is the specific classifications of the
interaction force.

this section. And the detail of the algorithm could be seen at [2] [6]
[25] [18].

As shown in Figure 1, there are different kinds of interactions be-
tween particles, which can be divided into the bounded interaction
and the non-bounded interaction. The non-bounded interaction
contains not only short-range interaction but also long-range inter-
action.

In the calculation of short-range interactions, GROMACS em-
ploys a pair list that contains those particle pairs for which non-
bounded interactions must be calculated. The pair list contains
all the particle pairs that the distance between them is within
Rcut−l ist . The non-bounded interaction should be calculated only
if the distance between them ri j is less than the given cut-off radius
Rcut−of f (Rcut−of f < Rcut−l ist). Because the position of the par-
ticles is constantly changing, we should regenerate the neighbor
list every nstlist steps to ensure that all possible pairs are in the
list, where the nstlist is typically 10.

After that, the short-range interaction can be calculated accord-
ing to the pair list. The calculation is mainly based on the Lennard-
Jones (L-J) interaction [13]. In the L-J interaction, the potential VL J
between two particles can be defined in Equation (1). The ri j means
the distance of atoms. The parametersC12

i j andC6
i j depend on pairs

of atom types.

VL J (ri j) =
C12
i j

r12i j
−
C6
i j

r6i j
(1)

So the force Fi j between the two particles could be calculated
by Equation (2).

Fi (dri j) = (12
C12
i j

r13i j
− 6

C6
i j

r7i j
) −

dri j
ri j

(2)

As the calculation process shown in Algorithm 1, we will cal-
culate the interactions of those particle pairs where the distance

Accelerate GROMACS on TaihuLight SC ’19, November 17–22, 2019, Denver, CO, USA

between particles in the pair is within Rcut−of f . Then the interac-
tions have been calculated will be added to the interaction data of
two particles (as shown in Line 9 and Line 13 of Algorithm 1). In the
implementation of GROMACS, particles in the Particles_List and
the Neiдhbor_List are not contiguous in the memory, so the data
of different atoms could not be got at one time. The fine-grained
frequently memory access will make the memory access worse.
Algorithm 1 Calculate the Short-Range Force
Require:

F ETCH : get the data of particles from main memory;
U PDAT E : update the interaction (force) of particles in main memory;
CAL_F : calculate the interaction (force) between two particles;
Par ticle_List : particles we need to traverse;
Neiдhbor_List : Neighbor lists of different particles, it is a half
neigbor list;
F : the array store the interaction (force) of every particle;

1: for Apar t icle ∈ Par ticles_List do
2: F ETCH (DATA(Apar t icle))
3: F ETCH (Neiдhbor (Apar t icle))
4: FA = 0
5: for Bpar t icle ∈ Neiдhbor (Apar t icle) do
6: if DISTANCE(Apar t icle , Bpar t icle) < Rcut−of f then
7: F ETCH (DATA(Bpar t icle))
8: FA,B = CAL_FORCE(DATA(Apar t icle), DATA(Bpar t icle))

9: U PDAT E_FORCE(F (Bpar t icle), FA,B)
10: FA = FA + FA,B
11: end if
12: end for
13: U PDAT E_FORCE(F (Apar t icle), FA)
14: end for

As for MD, the calculation of short-range interactions can suf-
fer from inaccuracy because of the existence of the long-range
interaction. To improve the accuracy of computation, GROMACS
incorporates some lattice sum methods such as Ewald Sum method
[12], Particle Mesh Ewald(PME) method [10] and Particle-Particle
Particle-Mesh(PPPM) method [5]. Among these methods, PME is
used because of its low computational complexity. To parallelize
PME, the Fast Fourier Transformation(FFT)[26] is supposed to be
used in many processes, causing heavy-duty communication.

As for the bounded interactions, the calculation is based on a
fixed list of particles. And they are not only the pair interaction but
also the bound interaction include 3 and 4-body interaction. There
are bond stretch (2-body), bound angle (3-body) and dihedral angle
(4-body) interactions.

2.2 Previous work on optimizing GROMACS
MD has been a popular research field since its inception. These
years, many useful optimization methods [24] for different plat-
forms have been proposed for different MD applications. These
platforms range from the laptops to the supercomputers [2] [9].
The processors include CPU, GPU [3] [4], KNL [19], MIC [20],
SW26010 [8] [7] and so on. In this subsection, we will introduce the
related work about MD applications.

With the appearance and development of various processors,
porting MD applications to different processors with fine-grained

optimization has attracted wide attention. Many different strate-
gies have been proposed in the past two decades to accelerate the
calculation of the short-range interaction, which is the most time-
consuming kernel in most MD applications. We will introduce some
related strategies in this subsection.

In 2013, a flexible algorithm [22] has been used to accelerate
the calculation of pair interactions on SIMD architectures. In this
algorithm, GROMACS could group a fixed number of particles, e.g.
2, 4, or 8, into spatial clusters. By this way, GROMACS calculates
all interactions between particles in a pair of such clusters, which
will improve data reuse compared to the traditional scheme and
result in a more efficient SIMD parallelization.

Another most common challenge is to solve the write-write
conflict in the process of updating interactions between particles.
For instance, if different cores update the interactions of different
particles in the shared memory, the write-write conflicts will occur.

To tackle the problem, different methods have been proposed. In
2007, to port GROMACS to cell [17], each core keeps an interaction
array for every particle. The core will add the interactions to its
own interaction arrays, which will avoid write-write conflicts. In
the end, the original interactions of every particle could be updated
by the interaction arrays kept by those cores. It is a very simple
way to solve the write-write conflicts. But the initialization step
and the CPE updating step may occupy too much time and bring
bad effects on the performance. After that, a more complex strategy
has been used in SW26010 in 2015 [29]. In this strategy, the idle
MPE is used to receive the interaction calculated by CPEs and
add them to the interaction of different particles. At that time,
only the MPE could update the interaction data. The write-write
conflict will disappear. However, the implementation is so complex
and the idle time always exists in CPEs and MPE because of the
unbalance computation ability between CPEs and MPE. And we
will talk about it in detail later. Both of those two strategies are
used to parallelize the short-range interaction calculation, however,
with non-negligible performance loss. Therefore, it motivates us
to develop a more effective strategy to tackle the challenge and
implement it on SW26010.

3 OPTIMIZATION
We first port the code of GROMACS on TaihuLight and complied
GROMACS for the SW26010. As the architecture of SW26010 shown
before, every CG of SW26010 supports one MPI thread. Then, we
find the calculation of the short-range interaction in GROMACS
is the most time-consuming part. As we can see from Table 1, the
time spend on the Force kernel (the calculation of short-range
interaction) is more than 90% in the Case 1 and about 75% in the
Case 2.

The algorithm used to compute the short-range interaction is
shown in Algorithm 1. The algorithm is partitioned by the outer
loop (in Line 1 of Algorithm 1) across all CPEs. There exist frequent
memory accesses to get the data of particles to calculate the short-
range interaction. However, in CPEs, the LDM is too small, only
64 KB, to keep the data of all the particles, which means CPEs
have to access the MPE memory frequently to fetch the essential
data. However, it can hardly meet the requirements because of the
low bandwidth between CPEs and the MPE. So the low bandwidth

SC ’19, November 17–22, 2019, Denver, CO, USA Tingjian Zhang, Yuxuan Li, etc.

Access Data Size DMA Bandwidth
8 B 0.99 GB/s
128 B 15.77 GB/s
256 B 28.88 GB/s
512 B 28.98 GB/s
2048 B 30.48 GB/s

Table 2: The bandwidth changewith the assess data size. The
first line is the memory access size. The second line is the
bandwidth changes according to the memory access size.

between CPEs and MPE becomes a key bottleneck for our . Thus,
to make full use of the computation ability of SW26010, we should
firstly reduce the restriction of memory bandwidth. Then, we will
also accelerate the part of calculation, communication, I/O, and so
on. The detailed optimization methods are listed in this section.

3.1 Fetch Strategy
During the computation process of short-range interactions, many
data elements of different particles are needed, for example, the
position, type, and amount of charge, which are placed in different
arrays. Among all these elements, apart from the interaction and
the position coordinate of each particle in 3-dimensional space, all
the other elements are not stored in a contiguous area of memory.

P1

P2

P3

x1 y1

x2

x3

y2

y3

z1

z2

z3

t1 c1

t2

t3

c2

c3

P4 x4 y4 z4 t4 c4

Particles package

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

x1 y1

x2

x3

y2

y3

z1

z2

z3

t1 c1

t2

t3

c2

c3

P4 x4 y4 z4 t4 c4

Position array Type array Coulomp array

Figure 2: Aggregate the data from different arrays to a par-
ticle package. The P means different particles. The x, y, z
means the three different position elements. The t means
the type of this particle. The C mean the column of the par-
ticle.

To achieve the peak bandwidth and reduce the frequency of
memory access, we try to aggregate the different data elements
of the same particle as a new data structure. As mentioned in the
background section, in GROMACS, every four contiguous particles
are put in one group and particles in the same group is always
calculated simultaneously. So we could aggregate the data of four
particles in one structure. We call it the particle package and it
will increase the size of the particle package as well as reduce the
memory access frequency. Finally, we get a particle package as
shown in Figure 2.

In this way, the data block size for one access increases from 4 B to
108 B, and as shown in Table 2, the bandwidth in our SW_GROMACS
increases from less than 0.99 GB/s to almost 15.77 GB/s. Moreover,
we can get the data of four particles pipeline, reduce multiple mem-
ory access and avoid the DMA conflicts.

tag

2.Compare

index offset
24bit 5bit 3bit
1.Decompose Address

Cache Line

Cach line

Particles Package

index
Cache Lineindex
Cache Lineindex
Cache Lineindex

tag
tag
tag
tag

Cache Lineindex
Cache Lineindex

tag
tag

if ≠

tag&index

Cache Lineindex
3.Fetch Cache Line

from MPE

MPE

CPE

4.Read data

Figure 3: This figure shows the read cache operation during
the short-range interaction calculation. As it shows that we
will first decompose the index id into tag number, line num-
ber and offset number. The tag numbermeans a unique id of
a cache line in MPE. The line number is the cache line index
in CPE. And the offset number is the address of the parti-
cle in the cache line. The second step is to compare the tag
of the line with the original line’s tag. If they are the same,
it means that the cache line is what we want. So we could
do the fourth step, fetching data and calculating. And if that
tag is not the samewith the original one, whichmeans cache
miss, we have to do the third step, fetching data. And then
do the fourth step.

As mentioned above, the cache architecture in SW26010 is not in-
tegrated as other platforms. As similar to another work on SW26010
[8], we design a read cache strategy to fetch particles data from
the main memory. The operation of the read cache is shown in
Figure 3. As a result, the data of different particles could be reused
and we could fetch eight particle packages in pipeline. In this way,
the accessing block size in one DMA is about 800 B and the peak
bandwidth is almost achieved, according to the Table 2.

3.2 Deferred Update
As shown in Algorithm 1, after every calculation of particle pairs,
the interaction of B particle will be updated. It means every calcu-
lation will occupy an interaction update, which is too frequent for
the low bandwidth between MPE and CPEs. In the previous work
on SW26010 [8], the redundant computation approach Algorithm
2 [16] [8] has been used. They change the generation of pair list
and make every particle pair exits in both neighbor lists of the two
particles. As Algorithm 2 shows, it only updates the interactions of
A particles in Line 10, which will reduce the update frequency. How-
ever, this strategy will double the computation and the memory
access load.

This challenge has been addressed in a different way. We find
that many particles are reused in different inner loops (Line 5 of
Algorithm 1). It means a certain particle may be updated by a
CPE more than once. So the changes of different particles could
be accumulated in the CPE and the interaction of this particles in
main memory could be updated in one time.

Accelerate GROMACS on TaihuLight SC ’19, November 17–22, 2019, Denver, CO, USA

So we have every CPE keep a certain size of LDM as the update
buffer to accumulate the interaction changes of every particle. In
the update buffer, every particle will map a certain address. The
change of every particle’s interaction will firstly be accumulated
in the update buffer instead of in the main memory. The update
of interaction in main memory will only occupy at the time that a
particle in the update buffer will be replaced by another. We call this
strategy as deferred update. To implement this strategy efficiently,
we use the ways simulated to the direct-map cache. Every data
change is base on eight particle package. For convenience, we also
call it cache line. And the detail operation is shown in Figure 4. In
this way, many DMA access could be reduced to one access. Thus
we will achieve better DMA performance.

tag

2.Compare

index offset
24bit 5bit 3bit
1.Decompose Address

Cache Line

Cach line

Force

index
Cache Lineindex
Cache Lineindex
Cache Lineindex

tag
tag
tag
tag

Cache Lineindex
Cache Lineindex

tag
tag

if ≠

tag&index

Cache Lineindex
3.Update MPE Copy

Force

MPE

CPE
4.Fetch MPE Copy

Force

5.Update Cache
Force

Cache Lineindex

Figure 4: The first and the second step is the same as Figure 3.
If the tag is the same as the original one, we can update the
data in the update buffer. While if the tag is different from
the original one. CPEs should update the interaction in the
main memory and fetch the interaction of this particle in
the main memory.

3.3 Bit-Map
To parallelize the calculation of the short-range interaction, there
exists another challenge, the write conflict. As we mentioned in the
related work, there are some solutions for the write conflict.

line0 line1 line2 line3 line4 line5 line6 line7

b0

0 1

b1 b2

1 0

b3 b4

1 0

b5 b6

0 1

b7

8*8*4=256 particles

Figure 5: We use each bit to mark the update state of a cache
line. For 1 byte memory there are 8 bits. For one cache line,
there is eight particle-package. So for one Byte size memory
we could record the update state of 256 (8 × 8 × 4) particles.

Among them, we chose the approach of keeping an interaction
array for every CPE. In this paper, this strategy is called as the
redundant memory approach (RMA). The redundant interaction

Algorithm 2 Calculate the shorter-range interaction in RCA
method
Require:

FETCH : get the data from MPE;
UPDATE : update the interaction data in MPE;
CAL_F : calculate the interaction between two particles;
Particle_List : particles we need to traverse;
Neiдhbor_List : the neighbor particles of every particles in
particle_List array, it is a full neighbor list;
F : the array store the change data of interaction;

1: for Apar ticle ∈ Partic_List do
2: FETCH (DATA(Apar ticle))
3: FETCH (Neiдhbor (Apar ticle))
4: FA = 0
5: for Bpar ticle ∈ Neiдhbor (Apar ticle) do
6: FETCH (DATA(Bpar ticle))
7: FA,B = CAL_F (DATA(Apar ticle),DATA(Bpar ticle))
8: FA = FA + FA,B
9: end for
10: UPDATE(F (Apar ticle), FA)
11: end for

arrays are called as the copies of the original interaction. The steps
to gather up copies, get the summation of them, and write back to
memory are called as reduction step. To use RMA, all of the copies
should be initialized before the calculation, which almost consumes
the same time with calculation time. To achieve a better efficient
DMA, we propose a new strategy, the Bit-Map strategy.

During the calculation process, most of the particles will update
their interactions only in some of the 64 CPEs while few of them
will update their interaction in all CPEs. If the data of a particle is
not updated in some CPEs, the data copies of this particle in these
CPEs will never change during the calculation. So the initialization
step and the reduction step become meaningless for these parti-
cles’ copies. We call those copies of particles meaningless copies.
These meaningless copies exist widely, which occupy much time
in initialization step and reduction step. The Bit-Map could reduce
meaningless cost with little performance loss.

The main idea of the Bit-Map strategy is to record the update
status of every copy in its own CPE. To save the memory and work
with the deferred update strategy, every CPE will record the update
status of every cache line in its copy. In this way, the initialization
step could be deserted. The Algorithm 3 and Algorithm 4 show the
update mark operation in the calculation step and the reduction
step. As Line 8 of Algorithm 3 shows, if the cache line is not updated,
the value of its data must be zero (the initialized value). So the data
does not need to be fetched and can be set as zero at CPEs. At the
reduction step, as Figure 5 shows, if a cache line is not updated,
it will not need to be added to the original data. So it will not be
fetched.

To implement the Bit-Map strategy, as we show in Algorithm 3,
we use 1-bit memory in every CPE to mark the update status of a
cache line, which includes eight particle-packages with 32 particles.
It means an integer parameter could record the update status of
1024 particles. And all of those operations could be done by the bit
operations as Algorithm 3 and Algorithm 4 show.

SC ’19, November 17–22, 2019, Denver, CO, USA Tingjian Zhang, Yuxuan Li, etc.

Algorithm 3 The deferred update behavior with mark
Require:

F : the interaction we calculate;
I : the index of the particles we update;
C_L : the cache line array in CPE;
T_C : the array store the tags of cache line in CPE;
C_M : the array store the marks of cache line in CPE;
F_MPE : the copy array of the interaction in MPE;
nLines ← 2n : the number of cache lines;
Line ← 2m : the long of the cache lines;

1: Taд← I >> (n +m)
2: Line ← (I&(1 << (n +m) − 1)) >> m
3: O f f set ← I&((1 << m) − 1)
4: Cache_Beдin ← I >> m

calculate the tag, line index, offset and the cache address by bit
operation.

5: if T_C(Line) = Taд then
6: UPDATE(C_L(line,O f f set))
7: else
8: if T_C(Line) ≥ 0 then
9: PUT_MPE(C_L(Line), F_MPE(Cache_Beдin))

If the cache data has been updated the MPE data, put the
data back to the MPE copies;

10: end if
11: if (C_M >> Cache_Beдin)&1 = 1 then
12: Address ← taд << n + Line
13: FETCH_MPE(F_MPE(Address),C_L(Line))

If the cache line has been updated, we fetch it from MPE;
14: else
15: IN IT (C_L(Line))
16: C_M = C_M |(1 << Cache_Beдin)

If the cache line has not been updated, we just initial it,
and make the mark 1;

17: end if
18: end if

Algorithm 4 The reduction step with mark
Require:

Cache_Line_cnt : the number of cache lines;
Force : the interaction array we should update;
Force_Copy : the copy of interaction array;
CPE_Num : the number of CPE;
Cache_Mark : the marks of Cache line we store
F : the arrays in CPE to calculate the update of interaction;

1: for n ← 1 to Cache_Line_cnt do
2: IN IT (F)

initial the array we will use;
3: form ← 1 to CPE_Num do
4: if Cache_Mark(m) >> n = 1 then
5: F_GET ← FETCH (Force_Copy(m,n))
6: F ← F + F_GET

If the mark of the cache line is 1, we fetch and reduce it.
If it is 0, we do not fetch it.

7: end if
8: end for
9: end for

3.4 Vectorization
Since the memory access has been optimized carefully, we obtain
good performance in the short-range interaction kernel. As a result,
the computation in this kernel now becomes the new hot spot.
So we try to vectorize it. In SW26010, CPEs support 256-bit SIMD
vector registers. It supports floatv4 which could calculate four floats
once.

P
x
y
z
t
c

Particles Package
P1 P2 P3

x1

y1

x2 x3

y2 y3

z1 z2 z3

t1

c1

t2 t3

c2 c3

P4

x4

y4

z4

t4

c4

Particles Package
P1

P2

P3

x1 y1

x2

x3

y2

y3

z1

z2

z3

t1 c1

t2

t3

c2

c3

P4 x4 y4 z4 t4 c4

⇔

Calculate

Figure 6: The data layout has been changed tomake the same
position elements contiguous.

In GROMACS, there exist challenges to implement vectorization
efficiently, because some of operations could not be accelerated by
vectorization easily. In GROMACS, the particles in the outer loop
(Line 1 of Algorithm 1) are fixed, while the particles in the inner
loops (Line 5 of Algorithm 1) are often changing. With this in mind,
it will be more efficient to vectorize every four particles in the outer
loop and compute the interactions with the particles in the inner
loop.

After the vectorization, the pre-treatment and the post-treatment
seem to occupy lots of time. At the pre-treatment step, every four
floats should be transformed into a floatv4 parameter for the later
computation. In the original particle package, the same element
of different particles is not contiguous, which makes the elements
unable to be fetched and transformed into vectors efficiently. As
shown in Figure 6, we change the data layout to make them con-
tiguous, which could accelerate the pre-treatment step.

In the post-treatment, the vector should be transformed into four
float numbers and added to the three position elements. To perform
the summation operation more efficiently, we design a convert
operation including six simd_vshulff operations to transform the
vector. (The simd_vshulff, one of the fastest SIMD instructions,
could combine two vectors into a new one. It chooses two float
numbers in the first vector as the first two float numbers of the new
vector and the other two float numbers of the new vector are from
the second vector.) As shown in Figure 7, the vector could be added
to the arrays without decomposition, so that the post-treatment
can be more efficient.

3.5 Acceleration of the Pair Lists Generation
After the calculation of the short-range interaction has been care-
fully optimized, the establishment of the pair list becomes the new
hottest spot. As is introduced in the background section, the pair

Accelerate GROMACS on TaihuLight SC ’19, November 17–22, 2019, Denver, CO, USA

X1 X2 X3 X4 Y1 Y2 Y3 Y4 Z1 Z2 Z3 Z4

X1X3Y1 Y3

Initial

First Shuffle

Second Shuffle

End

X1 X2 X3 X4 Y1 Y2 Y3 Y4

X2X4Z1 Z3

X1 X2 X3 X4 Z1 Z2 Z3 Z4

Y2 Y4 Z2 Z4

Y1 Y2 Y3 Y4 Z1 Z2 Z3 Z4

X1Y1 Z1X2

X1 X3 Y1 Y3 X2 X4 Z1 Z3

Y2 Z2X3Y3

Y2 Y4 Z2 Z4 X1 X3 Y1 Y3

Z3X4Y4 Z4

X2 X4 Z1 Z3 Y2 Y4 Z2 Z4

X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3 X4 Y4 Z4

Figure 7: In the post-treatment we use the vector shuffle
in CPEs to make three position elements of the same par-
ticle continuous. And we spend six simd operations on it as
shown above.

list will be regenerated in every nslist step. On account of its com-
plicated code, researchers seldom accelerate the establishment of
the pair list by CPEs, which inspires us to tackle the challenge and
accelerate it.

For the pair list in GROMACS, it comprises the neighbor lists
of every particle. For every particle, it keeps the start and the end
index of its neighbors. To implement this in a many cores system,
different cores will generate the neighbor lists of different particles.
Because of the different length of different neighbor lists, it is im-
possible to get the start index of the first neighbor list in a CPE. To
solve the problem, every CPE keeps a temporary memory in the
main memory to store neighbor lists which are calculated by corre-
sponding CPEs. Finally, the pair list will be formed by gathering
all these neighbor lists. The start and end index of every particle’s
neighbor list are calculated at the same time.

What’s more, During the establishment of the neighbor list,
it needs to access memory randomly for lots of things, which is
something like the memory access in calculation kernel.
In the calculation of short-range interaction, the performance of
the direct-map cache is excellent. Most of the time, the cache miss
ratio is less than 10%. But in the neighbor list establishment kernel,
the performance of the direct-map cache is undesirable. The cache
miss ratio is more than 85%, because of serious cache thrashing. To
eliminate the cache thrashing, the two-way associative Cache has
been used in this kernel. By this means, we make the achievement
of reducing the cache miss ratio from more than 85% to 10%.

3.6 Acceleration of Communication
In GROMACS, the overhead of th e communication increases with
the number of processes and the communication is high frequency

with small message size. To accelerate communication, we re-implement
communication by RDMA.

At the sender side of the MPI communication, the application
will first create the data to be sent in the user space. Then the data
in the user space will be copied to kernel space, where the data
is packed into a new TCP segment(a data packet). After that, the
Network Interface Card (NIC) will copy the packet from the kernel
memory to its own memory and then send it via the network. At
the receiver side, it will receive the packet in NIC, and then move
the data from device memory to kernel memory. The kernel will
unpack the packet into data. Finally, the data will be copied from
kernel memory to user memory. Following these steps above, the
data has to be copied four times and we have to pay extra CPU time
to the packing and unpacking operation.

However, the memory of a computer could access the memory of
another computer directly by RMDA technology. It moves the data
without anymemory copying and the kernel time of the CPU.When
an application performs an RDMA communication, the data will
be delivered to NIC and NIC sent the data to network directly from
the user memory. And receiver application could get the data from
the NIC directly. All those behavior could be done without CPUs,
caches or context Switching. And there is no memory copy and
Kernel bypass in RMDA which can’t be avoided in MPI. Compare
to the MPI the RDMA could get deliver the data more quickly.

3.7 Some Other Optimization
Under some circumstances, the users may ask for the position of
every particle. In this case, GROMACS have to output the particles
position file, of which the size is huge. Therefore, sometimes, the
I/O step occupies lots of time, which motivates us to accelerate the
I/O operation. In the Large-scale case, the I/O cost almost accounts
for 30% of the overall run time. In the original code, GROMACS
use the f write and f read function to do the I/O operation. To
accelerate it, these functions are reimplemented by read andwrite
with a 20M buffer, which is much quicker than before. After that,
however, there is still a lot of time spent on I/O mainly because
of the format function, which plays the role of converting double
data elements to characters for subsequent printing. To accelerate
these steps, we develop another function to transform the float
data into characters and then generate the output data. In the new
implementation, concise methods are adopted to convert data type,
from double, float or integer type to character type. Compared to
the C standard library, it saves so much time in dealing with special
cases such as illegal input, other format requests and so on. In these
ways, the time spent on I/O has been significantly reduced with
little accuracy sacrifice.

In fact, for most memory access, if the data address is in the
alignment of 128 bit, the memory access tends to be more efficient
than before. To achieve better performance, we make the address of
all parameters and arrays in the alignment of 128bit. By this means,
we speed up the entirety performance significantly.

3.8 Portability of Our Optimization
Although most of our optimizations are designed for SW26010,
many of them could also be used on other platforms. Firstly, the
cache and deferred update could be used in some platforms that

SC ’19, November 17–22, 2019, Denver, CO, USA Tingjian Zhang, Yuxuan Li, etc.

lack for an integrated memory architecture. The calculation ability
of these platforms is always restricted by memory bandwidth. By
this way, those platforms achieve the peak bandwidth. Secondly,
the update mark strategy could also work in different many-core
processors, multi-core processors and even GPU. In many Parallel
optimizations, the original methods to deal with the write conflict
problem always bring lots of performance loss. Someone use the
multi-copy strategy, which we introduce in the related work. But
the time spent on the initialization step and reduction step always
restrict the performance of this strategy. Our update mark could
reduce those time, and it could be widely used in many different
platforms. Thirdly, the optimization in I/O could be used in many
other platforms to solve the huge I/O problem.

4 EVALUATION
In this section, wewill evaluate the performance of our optimization
of GROMACS in TaihuLight. And the evaluations include Bench-
mark, The performance of our optimization on Short-range Inter-
action Calculation, Comparison with Other Strategies, The entirety
Performance, Comparison with Different Platforms, Accuracy and
Scalability.

4.1 Benchmark
Our work is based on the version of the GROMACS 5.1.5 [6]. And
we use the water case [1] as the standard case to evaluate the
performance of GROMACS in different platforms. To get better
performance, we use the mixed precision in every platforms to do
the evaluation. And the input parameter is show in Table 3.

Key Variable Value
particles number 0.9K ∽ 3, 000K

nstlist 10
ns_type дrid

coulombtype PME

rlist 1.0
coulombtype 100
cuto f f scheme verlet

Table 3: The benchmark of the case

4.2 The performance of our optimization on
Short-range Interaction Calculation

As we mentioned above, the short-range calculation is the most
time-consuming kernel. So we evaluate the performance of our op-
timization on it. As we show in the optimization section, we have
come out with lots of novel optimizations to accelerate short-range
calculation. In the first optimization step, we just use data aggre-
gation to accelerate it. At that time, we just get 3 times speed-up.
The calculation is restricted by the memory access bandwidth. By
the write cache and the read cache, we partly reduce the restriction
in memory access. We get 20 times speed-up by it. As we evaluate
that the cache-miss rate in both write cache and read cache are
under 15%. The DMA bandwidth is more than 30 G/s in each CG,
which almost achieve the theoretical peak bandwidth. The vector-
ization optimization will reduce the calculation time and speed up
the calculation almost 2 times from the cache version. Finally, we

decrease the lots of meaningless translation by the update mark.
We get another 2 times speed-up compared to the last version. We
accelerate the short-range calculation, the Lennard-Jones poten-
tial, 64 times. The different cases shown in Figure 8 seems that the
speed-up ratio will not change by the number of particles in each
CG.

Ori Pkg Cache Vec Mark
0

20

40

60

1 1 1 1 3 3 3 3

23232323

40404140

61606263

sp
ee

du
p

12K Particles
24K Particles
48K Particles
96K Particles

Figure 8: The original is the original version of the GRO-
MACS. It just runs on the MPE. The Pkg is the version uses
the data aggregation. The Cache is the version that is imple-
mented with the read & write cache. The Vec is the version
accelerates computation by vectorization. The last version
Mark is the version uses update mark strategy.

4.3 Comparison with Other Strategies

USTC_GMX

SW_LAMMPS

RMA_GMX

MARK_GMX
0

20

40

60

80

16 16.4

40

63

sp
ee

du
p

case 1

Figure 9: The speed-up of different strategies. The version
USTC_GMX is the version that is implemented by USTC on
SW26010 [29]. The version SW_LAMMPS is the LAMMPS im-
plemented on SW26010 with the RCA strategy [8]. The ver-
sion RMA_GMX is the GMX that is accelerated by us with
the RMA strategy. The MARK_GMX is the version imple-
mented by our update mark strategy.

To accelerate the calculation of the short-range interaction in
different many-core accelerators, the write conflict has to be solved
andmany different strategies have been proposed before. Compared
with those previous strategies, the strategy we come up with in
this paper is a more efficient way to deal with the write conflict.
We will discuss those strategies in this subsection.

One of previous strategies has been used in Power Cell processor
[17], the work we introduce in the related work. They overcome

Accelerate GROMACS on TaihuLight SC ’19, November 17–22, 2019, Denver, CO, USA

the write conflict by having every core accumulate local interac-
tion totals for all particles, which is something like the strategy we
implement without update mark. As mentioned above, this strat-
egy contains lots of meaningless transmissions. The update mark
strategy we come up with achieves almost 2 times speedup com-
pare to it Figure 8. After that, a more complex method is proposed.
People from USTC use MPE to collect the interaction calculated by
CPEs and update the interaction array, at the time of CPEs calcula-
tion. However, it is hard to strike a computation balance between
CPEs and MPE. In the implementation of their GROMACS [29],
they finally achieved 24 times speedup in the optimization of short-
range calculation, which is far from our implementation. There
is also another strategy, the RCA strategy, which is implemented
on SW26010 [8]. To avoid the write conflict, the pair list has been
changed and all the interactions will be calculated twice and every
core will only update the particles in the outer loop. As a result,
every interaction will be calculated twice and particles every core
update are totally different. It is obvious that this strategy doubles
the computation, which causes performance loss. Finally, int the
L-J interaction performance, they get 24 times speed-up.

As for our implementation, by the update strategy, the initiation
step is deserted and the reduction time is only about the 1.2% of the
calculation time. So the performance loss is very small. We finally
achieve 63 times speed up in the L-J (short-range) interaction. As
shown in Figure 9, our strategy is much better than other strategies.

4.4 The Overall Performance
Besides the optimization on the calculation of the short-range inter-
action, we also do some other optimization in neighbor searching,
I/O and communication. And because the performances of some
optimization in different cases are different. So we use two cases in
different scales to evaluate the performance better. The first case,
which contains 48,000 particles, is in the single CG. The second case
contains 3,072,000 particles and we use 512 CGs to simulate it. In the
single CG case, most of the time spend on neighbor searching and
short-force calculation. As Figure 10 shows that we could get a bet-
ter speed-up ratio in version 1 and version 2. While optimizations
in version 3 and version 4 seem useless. Especially communication
optimization, since there is no communication in single CG simula-
tion. While the time in 512 CG scale is spent in different aspects. So
the speed-up ratio if case 2 in version 1 and version 2 is not as good
as case 1. The speed-up ratio in version 3 and version 4 is better
than case1. Finally, we get 32 times speed-up in case 1 and 18 times
speed-up in case 2.

4.5 Comparison with Different Platforms
To compare the performance with other platforms, we use the case
with more than 3,000,000 particles. And we compare our version
with KNL and GPU. As for GPU, we have used P100. The platform
information is shown in Table 4. As we mentioned above, the band-
width of our implementation is more than 30 G/s, which almost
achieve the peak bandwidth. It means that SW_GROMACS is re-
stricted by the memory bandwidth as some other MD problems
[8]. To evaluate the performance of our implementation, we have
decided to use the time to fulfill (TTF) [8] value to do fair perfor-
mance comparison with other platforms. We first compare SW26010

Ori Cal List Other
0

10

20

30

1 1

20

6

30

8

32

18

sp
ee

du
p

case 1
case 2

Figure 10: The performance of different optimizations. In
case 1, one CG simulates about 48,000 particles. In case 2,
512 CGs simulate about 3,000,000 particles. The Ori version
is the version without any optimization and simulates only
byMPE. The Cal version is the version optimizes the calcula-
tion of short-range interaction. And List version optimizes
the generation of pair list. The Other version contains other
optimizations we implement.

with KNL. In KNL, every two cores have 1 MB L2 cache. The cache
miss rate of L1 cache on KNL is about 2%, which is almost half
of the cache miss rate on SW26010. And the L2 cache miss rate
of KNL is less than 4%. So the total miss rate of the cache in KNL
is less than 0.08%, which is about 2.5% of the cache miss rate on
SW26010. And the bandwidth of the KNL is about three times of
SW26010. Based on these number we can compute Equation (3),
from it we can see that SW26010’s TTF is about 150 times as many
as KNL’s. As for P100, the cache miss ratio of L1 is 6%. The cache
miss ratio of its L2 is 15%. Thus the total cache miss ratio is about
0.9%. The bandwidth of P100 is 720 G/s. Based on these number we
can compute Equation (4), from it we can see that SW26010’s TTF
is about 24 times as many as P100’s.

Knights Landing SW26010 P100
Flops 6 T 3 T 10 T

Bandwidth 400 G/s 132 G/s 720 G/s
Cache 32 KB+1 MB 64 KB LDM 64 KB+4 MB
Table 4: The base information different platforms.

TTFSW
TTFKNL

=

LAA ·MRSW
BWSW

LAA ·MRKNL
BWKNL

=
MRSW · BWKNL
MRKNL · BWSW

≈ 150 (3)

TTFSW
TTFP100

=

LAA ·MRSW
BWSW

LAA ·MRP100
BWP100

=
MRSW · BWP100
MRP100 · BWSW

≈ 24 (4)

Based on Equation (3) and Equation (4), Figure 11 shows per-
formance comparisons for our implementation running on 150
SW26010, GROMACS 5.1.5 running on 1 KNL, and GROMACS 5.1.5
running on 1 P100. From it we can see that the performance of 150
SW26010 is much better than 1 KNL. And the performance of 24
SW26010 is also comparable with P100. We can also see that the
scalability of our implementation is better than GROMACS 5.1.5
running on GPU (the performance of 48 SW26010 is better than 2
P100s).

SC ’19, November 17–22, 2019, Denver, CO, USA Tingjian Zhang, Yuxuan Li, etc.

0 5 10 15 20 25

21.47
17.20

1.00

22.92
22.77

1.00

18.06
1.77

1.00

48× CPE
2× P100

48× MPE

24× CPE
1× P100

24× MPE

150× CPE
KNL

150× MPE

speedup

SW_MPE
KNL

SW_CPE
P100

Figure 11: The performance of different platforms. The KNL
and P100 means the performance of GROMACS in them.
The MPE means the performance of GROMACS only in the
MPE. The CPEmeans the versionwe accelerat GROMACS in
CPEs. And all the performances are entirety performance.

4.6 Scalability
In this subsection, we will discuss our study on the scalability of our
optimization version of GROMACS. In the evaluation, we use the
water case with 48,000 particles as the case in the strong scalability
test. And we expend our simulation from 4 CG to 512 CG. As for the
weak scalability, we make each CG simulation over 10,000 particles
and make the scale from 4 CG to 512 CG. To calculate the parallel
efficiency, we use the two equation Equation (5) and Equation (6). In
the equation Equation (5), the Effstronдly is the parallel efficiency
of the strong scalability. The T4 is the time we simulate the case1
by 4 CG (one SW26010). And in the equation Equation (6), the TN
is the time we simulate case1 by N CG. And the T4 is the same as
that in the equation Equation (5).

As we can see from Figure 12, we get great weak scalability. There
is almost no performance loss as the scale increase at the beginning.
As shown in Figure 12, the performance of strong scalability seems
not very bad. The parallel efficiency goes down to 0.60 at 512 CGs.
It seems that the number of particles in every CG is too small, so
more time has to be spent on communication. It is very bad for the
parallel efficiency.

E f fstronдly (N) =
T4

N
4 ·TN

(5)

E f fweakly (N) =
T4
TN

(6)

4.7 Accuracy
Because many optimizations have been used in our implementation,
it may bring some changes in the result. So we should evaluate
the accuracy of our implementation. As we show in Figure 13 We
compare the result of E5-2680-v3 and our final version on SW26010.
The main parameters we compare is the temperature and the total
energy of the simulation in every 100 steps in a 500,000 steps long
test. Although there is some deviation between the outcome of
E5-2680-v3 and our implementation. But it seems that the deviation

4 8 16 32 64 128 256 512

1
2
4
8

16
32
64

128

1.00
1.00

0.99
0.90

0.90
0.89

0.89
0.87

1.00
0.97

0.94
0.92

0.90
0.78

0.63
0.47

thread number

sp
ee

du
p

weak_scalable
strong_scalable

Figure 12: Weak & Strong Scalability

could be contained in a certain range and our implementation is
stable enough to simulate a long-running step.

0 100000 200000 300000 400000 500000

Steps

-530K

-555K

-580K

-605K

-630K

T
ot

al
 E

ne
rg

y(
kJ

/m
ol

)
450K 452.5K 455K

-610K

-620K

-630K

450K 452.5K 455K

290

300

310

300

320

340

360

380

400

T
em

pe
ra

tu
re

(k
J/

m
ol

)

opt4_ener
knl_ener

opt4_tem
knl_tem

Figure 13: The energy and temperature difference between
our version and X86 version

5 CONCLUSION AND FUTUREWORK
GROMACS is a classical scientific application as well as an excellent
representative of various MD applications [25]. The calculation of
the short-range interaction is the most frequently used kernel in
GROMACS. To achieve an efficient implementation on SW26010,
we have proposed a series of new strategies and achieved more
than 60 times speedup for the calculation of the short-range inter-
action, which is much better than any other implementations of the
short-range interaction on SW26010. Our strategies are general and
could also be implemented in other manycore and multicore pro-
cessors. Experiments show that our implementation achieves better
performance than both Intel KNL and Nvidia P100 GPU when using
appropriate number of SW26010 processors for a fair comparison.

6 ACKNOWLEDGEMENT
We would like to thank all the anonymous reviewers for their in-
sightful comments and suggestions, also, my workmate Bin Yang
from Shandong University provided a number of suggestions for
developing GROMACS on the TaihuLight. This work is partially
supported by the National Natural Science Foundation of China
(Grant No. U1806205, 51761135015), National Key R&D Program of
China (2017YFA0604500), Center for High Performance Comput-
ing and System Simulation, Pilot National Laboratory for Marine
Science and Technology (Qingdao). The corresponding authors are
Xiaohui Duan (sunrise.duan@mail.sdu.edu.cn), Haohuan Fu (hao-
huan@tsinghua.edu.cn), Wei Xue (xuewei@tsinghua.edu.cn), and
Weiguo Liu (weiguo.liu@sdu.edu.cn).

Accelerate GROMACS on TaihuLight SC ’19, November 17–22, 2019, Denver, CO, USA

REFERENCES
[1] [n. d.]. The Benchmark of water case. ftp://ftp.gromacs.org/pub/benchmarks/

water_GMX50_bare.tar.gz.
[2] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C

Smith, Berk Hess, and Erik Lindahl. 2015. GROMACS: High performance molec-
ular simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX 1 (2015), 19–25.

[3] Sadaf Alam and Ugo Varetto. 2014. GROMACS on hybrid CPU-GPU and CPU-
MIC clusters: Preliminary porting experiences, results and next steps.

[4] Joshua A Anderson, Chris D Lorenz, and Alex Travesset. 2008. General purpose
molecular dynamics simulations fully implemented on graphics processing units.
Journal of computational physics 227, 10 (2008), 5342–5359.

[5] Markus Deserno and Christian Holm. 1998. How to mesh up Ewald sums. II. An
accurate error estimate for the particle–particle–particle-mesh algorithm. The
Journal of Chemical Physics 109, 18 (1998), 7694–7701.

[6] GROMACS development team. [n. d.]. GROMACS 5.1.5 version. http://manual.
gromacs.org/documentation/5.1.5/download.html.

[7] Wenqian Dong, Kenli Li, Letian Kang, Zhe Quan, and Keqin Li. 2018. Imple-
menting molecular dynamics simulation on the Sunway TaihuLight system with
heterogeneous many-core processors. Concurrency and Computation: Practice
and Experience 30, 16 (2018), e4468.

[8] Xiaohui Duan, Ping Gao, Tingjian Zhang, Meng Zhang, Weiguo Liu, Wusheng
Zhang, Wei Xue, Haohuan Fu, Lin Gan, Dexun Chen, et al. 2018. Redesign-
ing LAMMPS for peta-scale and hundred-billion-atom simulation on Sunway
TaihuLight. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 148–159.

[9] Maria Eleftheriou, Blake Fitch, Aleksandr Rayshubskiy, TJ Christopher Ward,
and Robert Germain. 2005. Performance measurements of the 3d FFT on the Blue
Gene/L supercomputer. In European Conference on Parallel Processing. Springer,
795–803.

[10] Ulrich Essmann, Lalith Perera, Max L Berkowitz, Tom Darden, Hsing Lee, and
Lee G Pedersen. 1995. A smooth particle mesh Ewald method. The Journal of
chemical physics 103, 19 (1995), 8577–8593.

[11] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song, Xiaomeng
Huang, Yang Chao, Xue Wei, Fangfang Liu, and Fangli Qiao. 2016. The Sunway
Taihu Light supercomputer:system and applications. Science China Information
Sciences 59, 7 (2016), 072001.

[12] Gerhard Hummer. 1995. The numerical accuracy of truncated Ewald sums for
periodic systems with long-range Coulomb interactions. Chemical physics letters
235, 3-4 (1995), 297–302.

[13] Christian Kriebel, Matthias Mecke, Jochen Winkelmann, Jadran Vrabec, and
Johann Fischer. 1998. An equation of state for dipolar two-center Lennard–Jones
molecules and its application to refrigerants. Fluid phase equilibria 142, 1-2 (1998),
15–32.

[14] J Andrew McCammon, Bruce R Gelin, and Martin Karplus. 1977. Dynamics of
folded proteins. Nature 267, 5612 (1977), 585.

[15] William McDoniel, Markus Höhnerbach, Rodrigo Canales, Ahmed E Ismail, and
Paolo Bientinesi. 2017. LAMMPSâĂŹPPPM Long-Range Solver for the Second
Generation Xeon Phi. In International Supercomputing Conference. Springer, 61–
78.

[16] Trung Dac Nguyen. 2017. GPU-accelerated Tersoff potentials for massively
parallel molecular dynamics simulations. Computer Physics Communications 212
(2017), 113–122.

[17] Stephen Olivier, Jan Prins, Jeff Derby, and Ken V. Vu. 2007. Porting the GROMACS
Molecular Dynamics Code to the Cell Processor. In IEEE International Parallel &
Distributed Processing Symposium.

[18] Szilárd Pall, Mark James Abraham, Carsten Kutzner, Berk Hess, and Erik Lindahl.
2014. Tackling exascale software challenges in molecular dynamics simulations
with GROMACS. In International Conference on Exascale Applications and Software.
Springer, 3–27.

[19] Conor Parks, Lei Huang, Yang Wang, and Doraiswami Ramkrishna. 2017. Accel-
erating multiple replica molecular dynamics simulations using the Intel® Xeon
PhiâĎć coprocessor. Molecular Simulation 43, 9 (2017), 714–723.

[20] Shaoliang Peng, Xiaoyu Zhang, Yutong Lu, Xiangke Liao, Lu Kai, Canqun Yang,
Liu Jie, Weiliang Zhu, and Dongqing Wei. 2017. mAMBER: A CPU/MIC col-
laborated parallel framework for AMBER on Tianhe-2 supercomputer. In IEEE
International Conference on Bioinformatics & Biomedicine.

[21] Steve Plimpton. [n. d.]. lammps website. https://lammps.sandia.gov/index.html.
[22] SzilÃąrd PÃąll and Berk Hess. 2013. A flexible algorithm for calculating pair

interactions on SIMD architectures. Computer Physics Communications 184, 12
(2013), 2641–2650.

[23] Romelia Salomon-Ferrer, David A Case, and Ross C Walker. 2013. An overview
of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews:
Computational Molecular Science 3, 2 (2013), 198–210.

[24] Frank Suits, MC Pitman, Jed W Pitera, William C Swope, and Robert S Germain.
2005. Overview of molecular dynamics techniques and early scientific results
from the Blue Gene project. IBM Journal of Research and Development 49, 2.3

(2005), 475–487.
[25] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark,

and Herman JC Berendsen. 2005. GROMACS: fast, flexible, and free. Journal of
computational chemistry 26, 16 (2005), 1701–1718.

[26] Peter Welch. 1967. The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified periodograms.
IEEE Transactions on audio and electroacoustics 15, 2 (1967), 70–73.

[27] Bin Yang, Xu Ji, Xiaosong Ma, Xiyang Wang, Tianyu Zhang, Xiupeng Zhu,
Nosayba El-Sayed, Haidong Lan, Yibo Yang, Jidong Zhai, et al. 2019. End-to-end
I/O Monitoring on a Leading Supercomputer. In 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19). 379–394.

[28] Juekuan Yang, Yujuan Wang, and Yunfei Chen. 2007. GPU accelerated molecular
dynamics simulation of thermal conductivities. J. Comput. Phys. 221, 2 (2007),
799–804.

[29] Yang Yu, Hong An, Junshi Chen, Weihao Liang, Qingqing Xu, and Yong Chen.
2017. Pipelining Computation and Optimization Strategies for Scaling GROMACS
on the Sunway Many-Core Processor. In International Conference on Algorithms
& Architectures for Parallel Processing.

ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz
ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz
http://manual.gromacs.org/documentation/5.1.5/download.html
http://manual.gromacs.org/documentation/5.1.5/download.html
https://lammps.sandia.gov/index.html

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We accelerate the GROMACS v5.1.5 on Sunway TaihuLight
supercomputer. As described in the paper, we use the case of
water with different atom numbers. Every could get by: $ wget
ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz
This data includes example “water” data of different sizes with folder
names like 0384, 0768, and 1536. The name of the folder corresponds
to the number of atoms in thousands. And we to run it on the Taihu-
light use the cmake command: LD=mpiCC CC=mpicc CXX=mpiCC
cmake .. -DGMX_FFT_LIBRARY=fftpack -DGMX_MPI=on -
DGMX_BUILD_MDRUN_ONLY=ON -DBUILD_SHARED_LIBS=off
-LH bsub -I -n <thread number> bin/mdrun_mpi -s <case name> -v

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/BEYHHH/SW_GROMAC

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Sunway TaihuLight supercomputer,
with SW26010 processor

Operating systems and versions: Customized Linux with kernel
version 3.8.0

Compilers and versions: SWCC Compilers: Version 5.421-sw-500

Applications and versions: GROMACS 5.1.5

Libraries and versions: athread/mvapich-2.2

Key algorithms: molecular dynamics

Input datasets and versions: The water case support by GRO-
MACS

Paper Modifications: Makelist , docemdo, nbnxn_kernels, I/O,

Output from scripts that gathers execution environment informa-
tion.

USER=swsduhpcLD_LIBRARY_PATH=/usr/local/ora_cli/prod ⌋

uct/10.2.0/lib:↪→

/usr/local/ora_cli/product/10.2.0/lib32:/gfspenvhome ⌋

/penvSvr/lib/:/usr/sw-cluster/intel/composer_xe_ ⌋

2013_sp1.4.211/compiler/lib/intel64:/usr/sw-clus ⌋

ter/intel/composer_xe_2013_sp1.4.211/mpirt/lib/i ⌋

ntel64:/usr/sw-cluster/intel/composer_xe_2013_sp ⌋

1.4.211/compiler/lib/intel64:/usr/sw-cluster/int ⌋

el/composer_xe_2013_sp1.4.211/mkl/lib/intel64:/u ⌋

sr/sw-cluster/intel/composer_xe_2013_sp1.3.174/c ⌋

ompiler/lib/intel64:/usr/sw-cluster/intel/compos ⌋

er_xe_2013_sp1.3.174/mpirt/lib/intel64:/usr/sw-c ⌋

luster/intel/composer_xe_2013_sp1.3.174/ipp/../c ⌋

ompiler/lib/intel64:/usr/sw-cluster/intel/compos ⌋

er_xe_2013_sp1.3.174/ipp/lib/intel64:/usr/sw-clu ⌋

ster/intel/composer_xe_2013_sp1.3.174/compiler/l ⌋

ib/intel64:/usr/sw-cluster/intel/composer_xe_201 ⌋

3_sp1.3.174/mkl/lib/intel64:/usr/sw-cluster/inte ⌋

l/composer_xe_2013_sp1.3.174/tbb/lib/intel64/gcc ⌋

4.4:/usr/sw-cluster/slurm-16.05.3/lib:/usr/sw-cl ⌋

uster/mpi2/lib:/home/export/online1/systest/swpe ⌋

rf/wd/BLCR/lib::

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

/home/export/online1/systest/swsduhpc/local/libHOME= ⌋

/home/export/online1/systest/swsduhpcTERM=xtermP ⌋

ATH=/home/export/online1/swmore/local/bin:/home/ ⌋

export/online1/swmore/release/bin:/usr/sw-mpp/bi ⌋

n/:/usr/bin:/home/export/online1/swmore/minicond ⌋

a3/bin:/home/export/online1/swmore/miniconda3/co ⌋

ndabin:/usr/sw-mpp/bin:/usr/java/jdk1.6.0_07/bin ⌋

:/usr/sw-cluster/intel/composer_xe_2013_sp1.4.21 ⌋

1/bin/intel64:/usr/sw-cluster/intel/composer_xe_ ⌋

2013_sp1.4.211/mpirt/bin/intel64:/usr/sw-cluster ⌋

/intel/composer_xe_2013_sp1.4.211/debugger/gdb/i ⌋

ntel64_mic/py26/bin:/usr/sw-cluster/intel/compos ⌋

er_xe_2013_sp1.4.211/debugger/gdb/intel64/py26/b ⌋

in:/usr/sw-cluster/intel/composer_xe_2013_sp1.4. ⌋

211/bin/intel64:/usr/sw-cluster/intel/composer_x ⌋

e_2013_sp1.4.211/bin/intel64_mic:/usr/sw-cluster ⌋

/intel/composer_xe_2013_sp1.4.211/debugger/gui/i ⌋

ntel64:/usr/sw-cluster/intel/composer_xe_2013_sp ⌋

1.3.174/bin/intel64:/usr/sw-cluster/intel/compos ⌋

er_xe_2013_sp1.3.174/mpirt/bin/intel64:/usr/sw-c ⌋

luster/intel/composer_xe_2013_sp1.3.174/debugger ⌋

/gdb/intel64_mic/py26/bin:/usr/sw-cluster/intel/ ⌋

composer_xe_2013_sp1.3.174/debugger/gdb/intel64/ ⌋

py26/bin:/usr/sw-cluster/intel/composer_xe_2013_ ⌋

sp1.3.174/bin/intel64:/usr/sw-cluster/intel/comp ⌋

oser_xe_2013_sp1.3.174/bin/intel64_mic:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Zhang, et al.

/usr/sw-cluster/intel/composer_xe_2013_sp1.3.174/deb ⌋

ugger/gui/intel64:/usr/lib64/qt-3.3/bin:/usr/ker ⌋

beros/sbin:/usr/kerberos/bin:/opt/clusconf/bin:/ ⌋

usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr ⌋

/sbin:/sbin:/opt/ibutils/bin:/usr/sw-cluster/slu ⌋

rm-16.05.3/sbin:/usr/sw-cluster/slurm-16.05.3/bi ⌋

n:/usr/sw-cluster/slurm-16.05.3/bin:/usr/sw-clus ⌋

ter/mpi2/bin:/bin::/usr/sw-mpp/bin:/usr/kerberos ⌋

/bin/:/usr/sw-mpp/swcc/sw5gcc-binary/bin/:/home/ ⌋

export/online1/systest/swsduhpc/local/binMV2_HAN ⌋

G_WHEN_ERROR=1SHELL=/bin/bashPWD=/home/export/on ⌋

line1/systest/swsduhpc/dxh/workspace/testcollect ⌋

TZ=CST-8RMS_RANK=0RMS_MYID=0SSH_CLIENT=192.168.1 ⌋

67.11 38041
22QTDIR=/usr/lib64/qt-3.3QTINC=/usr/lib64/qt-3.3 ⌋

/includeORACLE_BASE=/usr/local/ora_cliMAIL=/var/ ⌋

spool/mail/swsduhpcKDE_IS_PRELINKED=1LANG=en_US. ⌋

UTF-8MODULEPATH=/usr/share/Modules/modulefiles:/ ⌋

etc/modulefiles:/usr/sw-cluster/Modules/modulefi ⌋

lesLOADEDMODULES=KDEDIRS=/usrSSH_ASKPASS=/usr/li ⌋

bexec/openssh/gnome-ssh-askpassSHLVL=2LOGNAME=sw ⌋

sduhpcQTLIB=/usr/lib64/qt-3.3/libCVS_RSH=sshCLAS ⌋

SPATH=.:SSH_CONNECTION=192.168.167.11 38041
41.0.0.188 22MODULESHOME=/usr/share/ModulesLESSO ⌋

PEN=||/usr/bin/lesspipe.sh
%sORACLE_HOME=/usr/local/ora_cli/product/10.2.0G ⌋

_BROKEN_FILENAMES=1BASH_FUNC_module()=() { eval
`/usr/bin/modulecmd bash $*`

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}_=/usr/sw-mpp/bin/bsubRMS_USER=swsduhpcRMS_USER_HOM ⌋

E=/home/export/online1/systest/swsduhpcMKLROOT=/ ⌋

usr/sw-cluster/intel/composer_xe_2013_sp1.4.211/ ⌋

mklMANPATH=/usr/sw-cluster/intel/composer_xe_201 ⌋

3_sp1.4.211/man/en_US:/usr/sw-cluster/intel/comp ⌋

oser_xe_2013_sp1.4.211/man/en_US:/usr/sw-cluster ⌋

/intel/composer_xe_2013_sp1.3.174/man/en_US:/usr ⌋

/sw-cluster/intel/composer_xe_2013_sp1.3.174/man ⌋

/en_US:/usr/kerberos/man:/opt/clusconf/man:/usr/ ⌋

local/share/man:/usr/share/man/overrides:/usr/sh ⌋

are/man/en:/usr/share/man:::/usr/sw-mpp/mpi2/sha ⌋

re/man/PROJ_LIB=/home/export/online1/swmore/mini ⌋

conda3/share/projLINK_F64=-Wl,-defsym,athread_sp ⌋

awn64_=athread_spawn64,-defsym,athread_join64_=a ⌋

thread_join64,-defsym,athread_enter64_=athread_e ⌋

nter64,-defsym,athread_leave64_=athread_leave64H ⌋

OSTNAME=psn013SLURM_ROOT=/usr/sw-cluster/slurm-1 ⌋

6.05.3IPPROOT=/usr/sw-cluster/intel/composer_xe_ ⌋

2013_sp1.3.174/ippINTEL_LICENSE_FILE=/usr/sw-clu ⌋

ster/intel/composer_xe_2013_sp1.3.174/licenses:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

/usr/sw-cluster/intel/licenses:/home/export/online1/ ⌋

systest/swsduhpc/intel/licenses:/usr/sw-cluster/ ⌋

intel/composer_xe_2013_sp1.4.211/licenses:/usr/s ⌋

w-cluster/intel/licenses:/home/export/online1/sy ⌋

stest/swsduhpc/intel/licensesHISTSIZE=5000CATALI ⌋

NA_HOME=/usr/local/tomcat/apache-tomcat-6.0.20MV ⌋

2_MEMORY_OPTIMIZATION=0GDBSERVER_MIC=/usr/sw-clu ⌋

ster/intel/composer_xe_2013_sp1.4.211/debugger/g ⌋

db/target/mic/bin/gdbserverLIBRARY_PATH=/usr/sw- ⌋

cluster/intel/composer_xe_2013_sp1.4.211/compile ⌋

r/lib/intel64:/usr/sw-cluster/intel/composer_xe_ ⌋

2013_sp1.4.211/compiler/lib/intel64:/usr/sw-clus ⌋

ter/intel/composer_xe_2013_sp1.4.211/mkl/lib/int ⌋

el64:/usr/sw-cluster/intel/composer_xe_2013_sp1. ⌋

3.174/compiler/lib/intel64:/usr/sw-cluster/intel ⌋

/composer_xe_2013_sp1.3.174/ipp/../compiler/lib/ ⌋

intel64:/usr/sw-cluster/intel/composer_xe_2013_s ⌋

p1.3.174/ipp/lib/intel64:/usr/sw-cluster/intel/c ⌋

omposer_xe_2013_sp1.3.174/compiler/lib/intel64:/ ⌋

usr/sw-cluster/intel/composer_xe_2013_sp1.3.174/ ⌋

mkl/lib/intel64:/usr/sw-cluster/intel/composer_x ⌋

e_2013_sp1.3.174/tbb/lib/intel64/gcc4.4CONDA_SHL ⌋

VL=1LINK_OTRACE=-Wl,--whole-archive,-wrap,openat ⌋

64,-wrap,openat,-wrap,__openat,-wrap,__openat64, ⌋

-wrap,__libc_openat,-wrap,__libc_openat64,-wrap,o ⌋

pen,-wrap,open64,-wrap,__open,-wrap,__open64,-wr ⌋

ap,__libc_open,-wrap,__libc_open64
/home/export/online1/swmore/release/lib/libotrac ⌋

e.a
-Wl,--no-whole-archiveCONDA_PROMPT_MODIFIER=(bas ⌋

e)
SW_CLUSTER_PATH=/usr/sw-clusterJBOSS_HOME=/opt/o ⌋

pev/jboss-4.2.3.GALINK_SPC=-Wl,--whole-archive,- ⌋

wrap,athread_init,-wrap,__expt_handler,-wrap,__r ⌋

eal_athread_spawn
/home/export/online1/swmore/release/lib/libspc.a
-Wl,--no-whole-archiveSSH_TTY=/dev/pts/33MIC_LD_ ⌋

LIBRARY_PATH=/usr/sw-cluster/intel/composer_xe_2 ⌋

013_sp1.4.211/compiler/lib/mic:/usr/sw-cluster/i ⌋

ntel/composer_xe_2013_sp1.4.211/mpirt/lib/mic:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SW_GROMACS: Accelerate GROMACS on SUNWAY TaihuLight

/usr/sw-cluster/intel/composer_xe_2013_sp1.4.211/com ⌋

piler/lib/mic:/usr/sw-cluster/intel/composer_xe_ ⌋

2013_sp1.4.211/mkl/lib/mic:/usr/sw-cluster/intel ⌋

/composer_xe_2013_sp1.3.174/compiler/lib/mic:/us ⌋

r/sw-cluster/intel/composer_xe_2013_sp1.3.174/mp ⌋

irt/lib/mic:/usr/sw-cluster/intel/composer_xe_20 ⌋

13_sp1.3.174/compiler/lib/mic:/usr/sw-cluster/in ⌋

tel/composer_xe_2013_sp1.3.174/mkl/lib/mic:/usr/ ⌋

sw-cluster/intel/composer_xe_2013_sp1.3.174/tbb/ ⌋

lib/micCLUSCONF_HOME=/opt/clusconfLINK_MPI_DIAG= ⌋

-Wl,-wrap,MPI_Send,-wrap,MPI_Recv,-wrap,MPI_Isend ⌋

,-wrap,MPI_Irecv,-wrap,MPI_Sendrecv,-wrap,MPI_Se ⌋

ndrecv_replace,-wrap,MPI_Barrier,-wrap,MPI_Bcast ⌋

,-wrap,MPI_Gather,-wrap,MPI_Gatherv,-wrap,MPI_Sc ⌋

atter,-wrap,MPI_Scatterv,-wrap,MPI_Allgather,-wr ⌋

ap,MPI_Allgatherv,-wrap,MPI_Alltoall,-wrap,MPI_A ⌋

lltoallv,-wrap,MPI_Alltoallw,-wrap,MPI_Reduce,-w ⌋

rap,MPI_Allreduce,-wrap,MPI_Reduce_scatter,-wrap ⌋

,MPI_Ibarrier,-wrap,MPI_Ibcast,-wrap,MPI_Igather ⌋

,-wrap,MPI_Igatherv,-wrap,MPI_Iscatter,-wrap,MPI ⌋

_Iscatterv,-wrap,MPI_Iallgather,-wrap,MPI_Iallga ⌋

therv,-wrap,MPI_Ialltoall,-wrap,MPI_Ialltoallv,- ⌋

wrap,MPI_Ialltoallw,-wrap,MPI_Ireduce,-wrap,MPI_ ⌋

Iallreduce,-wrap,MPI_Ireduce_scatter,-wrap,MPI_W ⌋

ait,-wrap,MPI_Waitall,-wrap,MPI_Init

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

/home/export/online1/swmore/release/lib/mpi_diag.oLS ⌋

_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so ⌋

=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31 ⌋

;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw ⌋

=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*. ⌋

tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*. ⌋

lzma=01;31:*.tlz=01;31:*.txz=01;31:*.zip=01;31:* ⌋

.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lz=01 ⌋

;31:*.xz=01;31:*.bz2=01;31:*.tbz=01;31:*.tbz2=01 ⌋

;31:*.bz=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;3 ⌋

1:*.jar=01;31:*.rar=01;31:*.ace=01;31:*.zoo=01;3 ⌋

1:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.jpg=01;35 ⌋

:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;3 ⌋

5:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;3 ⌋

5:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01; ⌋

35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01 ⌋

;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=0 ⌋

1;35:*.mkv=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=0 ⌋

1;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=0 ⌋

1;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=0 ⌋

1;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=0 ⌋

1;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01; ⌋

35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01; ⌋

35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01; ⌋

36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01 ⌋

;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01 ⌋

;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01; ⌋

36:*.spx=01;36:*.xspf=01;36:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

CONDA_EXE=/home/export/online1/swmore/miniconda3/bin ⌋

/condaMIC_LIBRARY_PATH=/usr/sw-cluster/intel/com ⌋

poser_xe_2013_sp1.3.174/tbb/lib/micCPATH=/usr/sw ⌋

-cluster/intel/composer_xe_2013_sp1.4.211/mkl/inc ⌋

lude:

↪→

↪→

↪→

↪→

/usr/sw-cluster/intel/composer_xe_2013_sp1.3.174/ipp ⌋

/include:/usr/sw-cluster/intel/composer_xe_2013_ ⌋

sp1.3.174/mkl/include:/usr/sw-cluster/intel/comp ⌋

oser_xe_2013_sp1.3.174/tbb/includeCLOUD_HOME=/op ⌋

t/cloudmon_CE_CONDA=NLSPATH=/usr/sw-cluster/inte ⌋

l/composer_xe_2013_sp1.4.211/compiler/lib/intel6 ⌋

4/locale/%l_%t/%N:/usr/sw-cluster/intel/composer ⌋

_xe_2013_sp1.4.211/mkl/lib/intel64/locale/%l_%t/ ⌋

%N:/usr/sw-cluster/intel/composer_xe_2013_sp1.4. ⌋

211/debugger/gdb/intel64_mic/py26/share/locale/% ⌋

l_%t/%N:/usr/sw-cluster/intel/composer_xe_2013_s ⌋

p1.4.211/debugger/gdb/intel64/py26/share/locale/ ⌋

%l_%t/%N:/usr/sw-cluster/intel/composer_xe_2013_ ⌋

sp1.4.211/debugger/intel64/locale/%l_%t/%N:/usr/ ⌋

sw-cluster/intel/composer_xe_2013_sp1.3.174/comp ⌋

iler/lib/intel64/locale/%l_%t/%N:/usr/sw-cluster ⌋

/intel/composer_xe_2013_sp1.3.174/ipp/lib/intel6 ⌋

4/locale/%l_%t/%N:/usr/sw-cluster/intel/composer ⌋

_xe_2013_sp1.3.174/mkl/lib/intel64/locale/%l_%t/ ⌋

%N:/usr/sw-cluster/intel/composer_xe_2013_sp1.3. ⌋

174/debugger/gdb/intel64_mic/py26/share/locale/% ⌋

l_%t/%N:/usr/sw-cluster/intel/composer_xe_2013_s ⌋

p1.3.174/debugger/gdb/intel64/py26/share/locale/ ⌋

%l_%t/%N:/usr/sw-cluster/intel/composer_xe_2013_ ⌋

sp1.3.174/debugger/intel64/locale/%l_%t/%NNFSCON ⌋

F=/opt/clusconf/etc/nfs.cfgCPL_ZIP_ENCODING=UTF- ⌋

8TBBROOT=/usr/sw-cluster/intel/composer_xe_2013_ ⌋

sp1.3.174/tbbCONDA_PREFIX=/home/export/online1/s ⌋

wmore/miniconda3JAVA_HOME=/usr/java/jdk1.6.0_07N ⌋

CARG_ROOT=/home/export/online1/swmore/miniconda3 ⌋

IPMICONF=/opt/clusconf/etc/ipmi.cfgIDB_HOME=/usr ⌋

/sw-cluster/intel/composer_xe_2013_sp1.4.211/bin ⌋

/intel64GDB_CROSS=/usr/sw-cluster/intel/composer ⌋

_xe_2013_sp1.4.211/debugger/gdb/intel64_mic/py26 ⌋

/bin/gdb-micAUTOCLUSCONF=/opt/clusconf/etc/autoc ⌋

onf.cfgGDAL_DATA=/home/export/online1/swmore/min ⌋

iconda3/share/gdalHISTCONTROL=ignoredupsMPM_LAUN ⌋

CHER=/usr/sw-cluster/intel/composer_xe_2013_sp1. ⌋

4.211/debugger/mpm/bin/start_mpm.sh_CE_M=PS1_BAC ⌋

KUP_SWMORE=[\u@\h \W]\$
MPI_ROOT=/usr/sw-cluster/mpi2STARTWAITTIME=300OR ⌋

IG_PYTHON_PATH=/usr/binCONDA_DEFAULT_ENV=baseINC ⌋

LUDE=/usr/sw-cluster/intel/composer_xe_2013_sp1. ⌋

4.211/mkl/include:/usr/sw-cluster/intel/composer ⌋

_xe_2013_sp1.3.174/mkl/includeHISTFILE=/tmp/.his ⌋

tory/swsduhpc/192.168.167.11.history.2019:04:10: ⌋

18:05:44HISTTIMEFORMAT=[%Y.%m.%d %H.%M:%S]
RMS_NODE_MPES=1RMS_RUN_TPROCS=1RMS_TPROCS=1RMS_N ⌋

NODES=1RMS_ONLY_MASTERCORE=1RMS_JOBLANG=seriesRM ⌋

S_FT_POLICY=rerunRMS_BIND_CPU=1RMS_CKPT_TYPE=sys ⌋

ckptRMS_STATE_DIR=/usr/sw-mpp/stateRMS_JOBID=454 ⌋

63180RMS_JOBNAME=cpRMS_INTERACTIVE=1RMS_QUEUE=q_ ⌋

sw_exprRMS_SUBCWD=/home/export/online1/systest/s ⌋

wsduhpc/dxh/workspace/testcollectRMS_NODE_EXCLUS ⌋

IVE=1RMS_TS_VERSION=ts_ver_ftRMS_PROGNAME=/bin/cp

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Algorithms
	2.2 Previous work on optimizing GROMACS

	3 OPTIMIZATION
	3.1 Fetch Strategy
	3.2 Deferred Update
	3.3 Bit-Map
	3.4 Vectorization
	3.5 Acceleration of the Pair Lists Generation
	3.6 Acceleration of Communication
	3.7 Some Other Optimization
	3.8 Portability of Our Optimization

	4 EVALUATION
	4.1 Benchmark
	4.2 The performance of our optimization on Short-range Interaction Calculation
	4.3 Comparison with Other Strategies
	4.4 The Overall Performance
	4.5 Comparison with Different Platforms
	4.6 Scalability
	4.7 Accuracy

	5 Conclusion and Future Work
	6 Acknowledgement
	References

