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Fig. 1. Rendering of view-dependently selected patches in a complex scene composed of billions of triangles. The top row shows the previous frame, and the
bottom row shows the current frame after a camera movement. Patches (nodes) that are topologically connected and near-equal in size (in terms of geometric
primitive count) are dynamically selected. Coherent patches already present on the GPU (those used in the previous frame and still needed for the current
frame) are reused to render the current frame. Only frame-different data is streamed from CPU to GPU at runtime. (a) shows a close-up of a surface region
with reduced geometric detail compared to the previous frame, and (b) shows a region with refined detail.

GPUs can encounter memory capacity constraints, which pose challenges
for achieving real-time rendering performance when processing large 3D
models that exceed available memory. State-of-the-art out-of-core rendering
frameworks have leveraged Level of Detail (LOD) and frame-to-frame coher-
ence data management techniques to optimize memory usage and minimize
CPU-to-GPU data transfer costs. However, the size of view-dependently
selected data may still exceed GPU memory capacity, and data transfer
remains the most significant bottleneck in overall performance costs. To
address these, we introduce a new GPU out-of-core rendering approach that
includes a LOD selection method that takes into account both memory and
coherence constraints and a parallel in-place GPU memory management
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algorithm that efficiently assembles the data of the current frame with GPU-
resident data from the previous frame and transferred data. Our approach
bounds memory usage and data transfer costs, prioritizes and schedules
the transfer of essential data, incrementally refining the LOD over subse-
quent frames to converge toward the desired visual fidelity. Our parallel
memory management algorithm consolidates frame-different and reusable
data, dynamically reallocating GPU memory slots for efficient in-place op-
erations. Hierarchical LOD representations remain a core component, and
we emphasize their role in supporting adaptive data transfer and coher-
ence management, characterized by a uniform depth and near-equal patch
size at all levels. Our approach adapts seamlessly to scenarios with varying
levels of coherence by balancing real-time performance with visual consis-
tency. Experimental results demonstrate that our system achieves significant
performance improvements, rendering scenes with billions of triangles in
real-time, outperforming existing methods while maintaining consistent
visual quality during dynamic interactions.

CCS Concepts: • Computing methodologies → Rendering; Parallel
computing methodologies.

Additional Key Words and Phrases: GPU out-of-core, massive model render-
ing, frame coherence
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Fig. 2. A GPU-based out-of-core graphics pipeline transfers data from CPU
to GPU as frequently as every frame and manages data storage in GPU
memory during runtime. According to the CPU-GPU landscape (Section 1.1),
a promising approach to increase overall performance is to cache coherent
data between frames and transfer only the frame-different data, so that
it can minimize the CPU-to-GPU data transfer cost. This is in contrast to
traditional graphics pipelines that assume the entire data set fits into GPU
memory or require much less frequent transfers.
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1 Introduction
The rapid growth of 3D data across diverse fields has outpaced
the memory capacity of modern GPUs, which struggle to handle
datasets exceeding their limits. For scenes with massive 3D meshes,
data must be stored in external memory and transferred to the GPU
in portions during runtime, a process known as GPU out-of-core
rendering [Cignoni et al. 2005; Peng and Cao 2012; Sarton et al. 2019;
Wang et al. 2013], as illustrated in Fig. 2. Despite advancements
in hardware, rendering systems often fail to manage the immense
number of vertices and triangles in large scenes. This challenge
stems from differences between CPU and GPU memory capacities,
limited bandwidth for CPU-GPU data transfer, and finite GPU ren-
dering capabilities. These factors are increasingly noticeable as 3D
datasets continue to grow in size and complexity, surpassing the
pace of hardware advancements. Addressing this challenge requires
new mesh structures and algorithms that optimize CPU-GPU com-
munication, adapt to varying caching needs, and manage geometric
data in real-time and therefore enable efficient GPU out-of-core
rendering.

1.1 CPU-GPU Landscape for Out-of-Core Rendering
Memory capacity gaps between CPU and GPU.. In today’s hard-

ware landscape, large datasets that fit into CPU memory may not fit
into GPU memory. In rendering applications, massive 3D meshes
that exceed the GPU’s memory capacity must be stored in CPU
memory, with selective data transfers to the GPU and LOD mesh
construction on the GPU occurring as frequently as every frame.

Memory Wall: Limited bandwidth in CPU-GPU communication.
GPU memory virtualization techniques (e.g., [Garg et al. 2019; Li
et al. 2019]) automate CPU-to-GPU data transfers, but the latency
from heavy data streaming requests introduces significant overhead
[Garg and Sakharnykh 2021; Sarton et al. 2019]. These techniques

often involve transferring large amounts of vertices and triangles for
each frame via the PCIe bus, whose bandwidth growth lags behind
GPU rendering performance. This issue, known as the memory
wall problem [Gholami et al. 2024; Wulf and McKee 1995], severely
impacts frame rates. For example, transferring 24 GB of data to an
RTX 3090 GPU using a PCIe 5.0 x 16 interface (64 GB/s bandwidth)
takes approximately 375 ms. This far exceeds the per-frame time
required for real-time rendering, which ranges from 33.3 ms to 11.9
ms (30-90 fps).

Rendering with Prefetched Data in GPU Memory. Hardware bench-
marks conducted by GPU manufacturers show that modern GPUs
can cache more geometric primitives than they can render into pix-
els in real-time [NVIDIA 2015, 2020]. This disparity often leaves
some GPU memory underutilized. Analogous to a prefetch buffer or
cache memory, this unused space can be repurposed to store geomet-
ric primitives that are not immediately needed by the current frame
but are prefetched for future frames. This strategy minimizes the
amount of data transferred during each frame operation, reducing
latency and improving overall rendering efficiency.

1.2 Contributions
As illustrated in Fig. 3, this work leverages frame-to-frame coher-
ence and uses available prefetch buffer to cache coherent data. It
includes the algorithm of LOD selection that takes into account both
memory and coherence constraints. When data requirements
exceed the limits set by these constraints, the algorithm prioritizes
visually important subsets to maintain smooth performance while
retaining visual fidelity.
To align data access and LOD selection in both CPU and GPU

memory, we introduce a hierarchical LOD structure with uniform
depth and near-equal node size, which streamlines memory
allocation and access patterns, facilitating efficient coordination
between CPU and GPU. For runtime data management, a novel
in-place parallel algorithm is developed to consolidate frame-
different and reusable data for rendering the current frame. The
algorithm is adaptive to varying levels of data coherence, efficiently
handling both high-coherence and low-coherence scenarios.

2 Related Works
This section reviews technical considerations in out-of-core ren-
dering, including the adoption of hierarchical data structures to
represent massive 3D datasets and the exploitation of coherence for
data management in order to speed up overall performance. These
considerations play an important role in the efficacy of out-of-core
rendering, as they shape data access patterns and locality, determine
data transfer volumes, and optimize memory utilization.

2.1 Hierarchical Structures for Adaptive LOD Selection
Out-of-core rendering approaches have traditionally relied on spa-
tial mesh hierarchies, such as Adaptive TetraPuzzles [Cignoni et al.
2004], Quick-VDR [Yoon et al. 2004], Far Voxels [Gobbetti and Mar-
ton 2005], KD-trees [Dietrich et al. 2007], and HLODs [Derzapf et al.
2010; Li 2023]. While spatial hierarchies facilitate view-dependent
LOD selection via hierarchical traversal, they often disrupt the
mesh’s topological continuity. This is because spatial partitioning
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Fig. 3. A high-level overview of our approach. The original mesh will be processed into a hierarchical mesh structure. During runtime, an adaptive node
selection method will be executed to select nodes based on the camera’s properties. Through switching between two out-of-core memory management modes:
in-place defragmentation and insertion, the nodes will be transferred and organized in the GPU memory for rendering.

may cause continuous surface regions to be simplified differently,
resulting in visible gaps or inconsistencies in the rendered mesh.
Structures like halfedge [Isenburg and Gumhold 2003; Mäntylä

1987] and sparse matrices [Krüger and Westermann 2005; Wang
and Chen 2023; Zayer et al. 2017] efficiently represent incident
and adjacency relationships in array-like formats, making them
suitable for retained-mode rendering [DiCarlo et al. 2014; Dupuy and
Vanhoey 2021; Zayer et al. 2017]. While these structures can capture
mesh locality and enable primitive simplification and refinement for
dynamic LOD adjustments, their high memory consumption often
reduces the effectiveness of caching and data transfers.

Part-based methods [Rodrigues et al. 2018] segment a mesh into
meaningful parts while preserving topological connectivity, making
them suitable for applications like anatomy classification. How-
ever, they are not well-suited for creating mesh structures and have
limited compatibility with continuous LOD selection or parallel
processing architectures. Additionally, these methods often result
in significant variations in the number of primitives between parts.
Patch-based structures (e.g., [Feng et al. 2014; Mahmoud et al.

2021; Zhang and Peng 2025]) encode local topological continuity
within surface regions, providing better alignment of LOD changes
with mesh topology and more coherent visuals compared to spatial
partitioning structures. Region growing and clustering methods are
commonly used for patch creation, but uneven vertex distribution
across patches often leads to imbalanced GPU thread block work-
loads. A GPU-based segmentation method [Zhang et al. 2023] used
spherical parameterization to balance patch sizes. However, their
approach is limited to genus-zero surface meshes and struggles with
large, non-watertight meshes or those with high-curvature features,
making it less practical for complex scenarios.
Drawing inspiration from graph partitioning, techniques like

Kernighan–Lin [Karypis and Kumar 1998], PT-Scotch [Chevalier and
Pellegrini 2008], and Zoltan [Boman et al. 2012] have been applied
to mesh partitioning. These graph partitioning techniques leverage
vertex connectivity and path lengths to carve out partitions, focusing
on edge-cut and boundary smoothness criteria. However, they often
require additional dependency structures, involve irregular data
access behaviors, and perform global index searches at a thread
level, making them unsuitable for independent node processing.

Current hierarchical structures face limitations, including imbal-
ances, discontinuities, and inefficiencies for parallel architectures.
To address these challenges, this work introduces a balanced hierar-
chical mesh structure comprising sub-mesh nodes with near-equal
geometric primitive counts while maintaining surface locality. Using
this structure, a GPU-optimized LOD selection method is proposed,
designed to handle limited GPU memory and minimize CPU-GPU
transfer overhead.

2.2 Frame-to-frame Coherence and GPU Out-of-core Data
Management

Frame-to-frame coherence refers to the fact that a sequence of con-
secutive frames are likely to contain a high degree of consistency if
the time difference between frames is small [Groller and Purgathofer
1995; Tost and Brunet 1990]. This concept has been used to optimize
the performance by reusing information from previous frames to
render or synthesize subsequent frames more efficiently, such as
accelerating hidden/occluded surface removal [de Lucas et al. 2019;
Hubschman and Zucker 1982] and facilitating shading reuse across
adjacent frames [Mueller et al. 2021; Scherzer et al. 2010, 2012; Yang
et al. 2023].

For rendering massive 3D models, the concept of frame-to-frame
coherence has been employed for out-of-core data management to
facilitate data reuse on the GPU and therefore to reduce the cost of
data assignment and scheduling [Xu et al. 2022; Yoon et al. 2022].
One typical scenario for maximizing data reuse is to identify and
transfer frame-different data to the GPU, and then consolidate them
with the reusable portions of the data that are already on the GPU
(e.g., [Dong and Peng 2023; Liu et al. 2012; Peng and Cao 2012; Xue
et al. 2016]). We summarized the state-of-the-art approaches for
conducting such out-of-core management.

Scatter transfer and insertion. Frame-different data could be com-
posed of scattered data elements and lacking patterns in the data
repository in CPU memory. A straightforward method to transfer
them to the GPU involves multiple memory copy calls. This involves
iterating over the scattered data elements and invoking a memory
copy operation for each element. This method supports in-place
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Fig. 4. An illustration depicting the construction of a hierarchical mesh structure. The original mesh is partitioned into two sub-meshes, ensuring a balance in
the number of vertices. This partitioning process continues until the leaf level is reached. From the leaf level onward, sibling sub-meshes are simplified and
merged, forming the sub-mesh at the parent level. This iterative process continues until reaching the root node. As a result, all nodes in the hierarchy contain
a balanced number of vertices and can represent a range of detail levels.

memory management with careful page size selection [Ausavarung-
nirun et al. 2017] or by developing application-specific solutions [Li
et al. 2019; Ponchio 2009]. The virtualized geometry and streaming
implementation in Unreal Engine’s Nanite [Brian Karis 2021] is
similar to the scatter transfer and insertion method, where the GPU
requests data whenever the rendering frame needs, and the CPU
asynchronously fulfills the requests.

Sequential transfer and merging. According to the design of GPU
architectures, a preferable way for transferring frame-different data
is first collecting the data elements into a continuous memory space
in CPU memory and then sending them as an array to the GPU
with a single memory copy call. Current methods require additional
memory allocation, typically involving a separate contiguous mem-
ory allocation on the GPU to receive the frame-different data and
an out-of-place sorting process to merge them with the array of
the reusable data into a new array of data (e.g., [Dong and Peng
2023; Maurya et al. 2023; Springer and Masuhara 2019a,b] ). How-
ever, allocating additional memory leads to GPU memory wastage,
as the arrays storing frame-different data and reusable data act
as temporary memory spaces and are not active during rendering.
More importantly, out-of-place sorting requires relocating all data
elements, which can be computationally intensive.

This work presents an efficient in-place parallel data management
algorithm to retain memory compactness for rendering at every
frame, which leverages the GPU-friendly characteristics of our mesh
structure.

3 Constructing Balanced Hierarchical Mesh Structure
We designed a balanced hierarchical mesh structure with a consis-
tent degree of 2 for the nodes at each level and near-equal node sizes.
Such structural regularity facilitates quick locating and querying,
attributed to consistent indexing offsets. In addition, this structure

supports adaptive view-dependent LOD selection and continuous
LOD transitions within each node, optimizing GPU resource use
by focusing on areas closest to the viewer and minimizing abrupt
visual changes.

3.1 Top-Down Bipartitioning and Bottom-Up Merging
To create the balanced hierarchical mesh structure, we initiate a
top-down bipartitioning of the mesh, as shown on the left of Fig.
4. The top-most node is the original mesh, and it is partitioned
into two sub-meshes. The two sibling sub-meshes are balanced on
vertex counts. This partitioning process continues iteratively until
the desired depth is achieved, at which point it has reached the
leaf level. We utilized METIS [Karypis and Kumar 1997] to perform
this iterative partitioning process. It uses the multi-level bisection
method and Kernighan-Lin algorithm to refine the partitioning
result, with considerations on the relationship between vertices and
faces and edge-cuts across the sub-meshes. We enabled the “-contig”
option in METIS, so that each partitioning operation can produce
two continuous sub-mesh surfaces.

Existing hierarchical mesh structures often contain nodes of vary-
ing sizes (e.g., [Derzapf and Guthe 2012; Gobbetti and Marton 2005;
Yoon et al. 2004]). When nodes have very different triangle and
vertex counts, managing them during runtime becomes challenging.
For instance, if the memory slot released from a node is smaller than
the size of a new node intended for this slot, additional memorymust
be allocated, or the current memory usage rearranged, to accom-
modate the new node size. Such memory management operations
can lead to serious fragmentation or large memory rearrangement
overhead.

Near-equal node sizes allow for allocating uniform memory slots
for quick node access, removal, and insertion, while maintaining
a high rate of memory utilization. In this work, starting from the
leaf level, as shown on the right of Fig. 4, two sibling nodes at the
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Fig. 5. The storage of nodes converted from the AoS to SoA format.

current level are simplified and then merged to form the node at
the next higher level to provide a coarser surface detail for a larger
area.
In particular, we employed Quadric Error Metrics (QEM) [Gar-

land and Heckbert 1997] to simplify sub-mesh patches, with a con-
straint that the boundary edges of a patch are not collapsible. We
aimed to reduce the vertex count in the sibling nodes by half at
each level. Upon merging into a new node at the parent level, each
should ideally retain the same number of vertices as a leaf node.
This bottom-up simplifying and merging process continues until
reaching the root. As a result, the sub-mesh patch of each node is
able to represent a range of details, extending from the vertex count
for the finest detail to half of it.
Ideally, we seek to ensure an equal number of edge collapses

for every node. However, despite some attempts [Rahimian et al.
2013; Zhang et al. 2023], this ideal goal is not achievable due to the
constraint on patch boundaries, the occurrence of cracks (Section
3.2), or poor mesh conditions such as holes on the surface. In our
approach, non-significant differences on the primitive counts can
still result in acceptable memory usage and efficient utilization of
GPU computing resources (see Section 7.1). Each node presents its
data fields and can be independently selected and transferred from
CPU to GPU. Each node retains its capability for adaptive LOD sub-
mesh construction on the GPU in response to view changes. This
ensures locality and avoids uncoalesced mapping between local and
global index space. During runtime when the GPU schedules for
the executions, streaming multiprocessors assigned with slightly
smaller nodes would complete their execution earlier, thereby being
freed to work on other nodes.
The nodes are originally stored in an array-of-structures (AoS)

format during the construction of hierarchical mesh structure. We
converted them into a structure-of-arrays (SoA) format when ren-
dering the meshes. As shown in Fig. 5, the SoA format reorganizes
the nodes’ vertices, triangles, and edge collapses into separate arrays
with consistent per-node offsets.

3.2 Rebuilding to Address Boundary Issues
During the bottom-up reconstruction process, the quality of sim-
plified sub-meshes could be negatively affected by the constraints
on the fixed boundary vertices. Preventing collapsing boundary
vertices avoids the occurrence of cracks [Yoon et al. 2004], but it
would result in a dense cluster of vertices around the boundaries,
which may stop the clusters from being further simplified. Our ap-
proach is crack-free by enforcing a constraint that keeps boundary

(b) Regrouping and
repartitioning 

(c) Creating block barrier 

(a) Dense
boundary
between 
clusters

Simplifying 
& merging

Fig. 6. An example illustrating (a) the occurrence of dense boundaries during
the bottom-up simplifying and merging process, and (b-c) the regrouping
and repartitioning process to resolve it.

edges non-collapsible during simplification. To address the dense
boundaries issue, the affected levels are regrouped and repartitioned
so that these boundaries are treated as inner edges. In particular, at
a level during bottom-up merging, we designed a method to predict
the occurrence of dense boundaries for the upper level. We monitor
the cost of edge collapsing using QEM during mesh simplification
[Garland and Heckbert 1997]. Mesh simplification terminates when
the cost exceeds a predefined threshold. After simplifying all nodes
in the current layer, if any nodes terminate simplification due to
exceeding the cost threshold, we rebuild the level. This involves
regrouping all simplified nodes into a single mesh (the root level)
and repartition it into the same number of nodes. The newly gen-
erated nodes will replace the previous nodes at this level. Since
METIS aims to minimize the edge-cut between meshes, the newly
generated nodes won’t have the dense boundaries issue because
the number of boundary vertices is minimized. Thereby, the mesh
structure will be cut from this level into two different blocks. Fig.
6 illustrates this process. This regrouping and repartitioning pro-
cess may happen multiple times, so that the mesh structure may be
divided into multiple blocks.
The existing method to handle dense boundaries issue involves

rebuilding only the two nodes that have a dense inner boundary.
However, once an inner dense boundary is detected, it is highly
likely that the outer boundaries also contain numerous vertices and
are on the verge of experiencing the same problem. These outer
dense boundaries will manifest and need to be resolved at higher
levels, requiring the tree to be cut at multiple levels, which is not
ideal for continuous LOD algorithms. On the other hand, in our
algorithm, once a dense boundary is detected, the entire layer is
optimized by rebuilding, establishing a full connection between
the new nodes of the current and upper layers. The number of
cuts is limited to a small number of layers, which won’t affect the
robustness and performance of the LOD algorithm.

ACM Trans. Graph., Vol. 44, No. 4, Article 139. Publication date: August 2025.
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Fig. 7. A node selection example. The bounding sphere of each node is
projected onto the tangent plane of the “near sphere” of the camera. The
selection of the desired LOD result is determined based on the screen
coverage ratio, which is the percentage of the projection size over the screen
size on the near plane of the camera.

4 Adaptive Node Selection

4.1 Transition Map (𝑡_𝑚𝑎𝑝) for In-Between LOD Selection
State-of-the-art LOD selection methods for GPU out-of-core render-
ing incorporate view dependency by determining a desired subset of
nodes per frame [Derzapf and Guthe 2012; Hu et al. 2009; Lambert
et al. 2018], selected from the pool of nodes in CPU memory and
transferred to the GPU. Our view-dependent selection criterion uses
screen-ratio metrics [Dalei et al. 2022; Zhu et al. 2010], covering a
360-degree range, selecting both visible nodes for rendering and
hidden nodes that may become visible in future frames, as shown
in Fig. 7.
During camera movements, reduced visual sensitivity to details,

supported by perceptual-driven theories [Bartz et al. 2008; Lin and
Kuo 2011], suggests that rendering at the target LOD selection result
is not always necessary. Instead, prioritizing smooth performance
can maintain perceived visual fidelity [Luebke and Hallen 2001;
Petrescu et al. 2023]. To achieve this, our method introduces a tran-
sition map (𝑡_𝑚𝑎𝑝), which guides the selection along a pathway
in the node hierarchy toward the desired LOD result, particularly
under the CPU-GPU bandwidth constraints (see Section 4.2). In such
cases, 𝑡_𝑚𝑎𝑝 allows for selecting nodes on the pathway to reduce
the overheads and ensure smooth rendering transitions, avoiding
abrupt changes that could impact performance or cause quality
inconsistencies between frames.
𝑡_𝑚𝑎𝑝 is constructed during the process of determining the de-

sired LOD result. As shown in the top image of Fig. 8, nodes are
labeled based on the selection criteria: -1 if they need to be merged
to form a coarser version at an upper level, 1 if they need to be split
for a finer version at a lower level, and 0 if they meet the desired
selection. Algorithm 1 details the steps. Initially, all leaf nodes are
labeled as 0, and all other nodes as 1 (lines 2–4). A node’s height,
defined as its distance from the leaf nodes, determines its hierarchi-
cal level. Starting from the level above the leaf nodes, if both child
nodes of a parent meet the selection criteria, the parent is labeled

Algorithm 1 Perform LOD Selection and Construct t_map
1: procedure ViewDepSel(t_map)
2: for each 𝑖𝑡ℎ node in the mesh hierarchy in parallel do
3: 𝑡_𝑚𝑎𝑝 [𝑖 ] ← 𝑛𝑜𝑑𝑒𝑖 is in leaf level ? 0 : 1;
4: end for
5: Bottom-up traverse to evaluate nodes with screen-error metrics in

parallel per-level;
6: for 𝑑 ← 1 to𝑚𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡 − 1 do
7: for each 𝑖𝑡ℎ node in the level at height 𝑑 in parallel do
8: if Screen coverage ratios of both child nodes of𝑛𝑜𝑑𝑒𝑖 are below

the minimum ratios then
9: 𝑡_𝑚𝑎𝑝 [𝑛𝑜𝑑𝑒𝑖 .𝑙𝑒 𝑓 𝑡_𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥 ] ← −1;
10: 𝑡_𝑚𝑎𝑝 [𝑛𝑜𝑑𝑒𝑖 .𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥 ] ← −1;
11: 𝑡_𝑚𝑎𝑝 [𝑖 ] ← 0;
12: end if
13: end for
14: end for
15: return 𝑡_𝑚𝑎𝑝 ;
16: end procedure
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Fig. 8. A visualized example of the transition map. The nodes in the red
area need to be merged, and the nodes in the yellow area need to be split.
The nodes in the dashed line represent the desired LOD selection result.
In the case of 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 = 3, our method executes node merging and
splitting operations towards the desired LOD as much as possible. The blue
nodes represent the LOD selection result of the previous frame. The green
nodes represent the LOD selection result of the current frame after node
actions. The solid arrows are the node actions executed in this frame. The
dashed arrows are the node actions not executed due to the limitation of
the coherence budget.

0, and the children are relabeled as -1 (lines 6–14). This process
iterates upward until reaching the root node.
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Algorithm 2Coherence-constrained adjustment to selection results
1: procedure SelectionAdjustment(t_map, coh_budget, node_Fc,

node_Fp)
2: copy all elements in 𝑛𝑜𝑑𝑒_𝐹𝑝 to 𝑛𝑜𝑑𝑒_𝐹𝑐 in parallel;
3: 𝑡𝑜𝑡𝑎𝑙 ← 0;
4: while 𝑡𝑜𝑡𝑎𝑙 < 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 do ⊲ Perform node merging
5: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 ← all the elements equal to 0 in parallel;
6: for each 𝑖𝑡ℎ node in the mesh hierarchy in parallel do
7: if its children in 𝑡_𝑚𝑎𝑝 = -1 & in 𝑛𝑜𝑑𝑒_𝐹𝑐 are selected then
8: if its children in 𝑛𝑜𝑑𝑒_𝐹𝑝 are selected then
9: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 [𝑖 ] ← 1;
10: else if its children in 𝑛𝑜𝑑𝑒_𝐹𝑝 are not selected then
11: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 [𝑖 ] ← −1;
12: else
13: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 [𝑖 ] ← 0;
14: end if
15: end if
16: end for
17: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡_𝑠𝑢𝑚 ← the prefix-sum of 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 in parallel;
18: Find the max 𝑘 where 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡_𝑠𝑢𝑚[𝑘 ] <= 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 −

𝑡𝑜𝑡𝑎𝑙 in parallel;
19: for each 𝑖 ∈ [0, 𝑘 ] in parallel do
20: if its children in 𝑡_𝑚𝑎𝑝 = -1 & in 𝑛𝑜𝑑𝑒_𝐹𝑐 are selected then
21: 𝑛𝑜𝑑𝑒_𝐹𝑐 [𝑛𝑜𝑑𝑒𝑖 .𝑙𝑒 𝑓 𝑡_𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥 ] ← 0; ⊲ deselect
22: 𝑛𝑜𝑑𝑒_𝐹𝑐 [𝑛𝑜𝑑𝑒𝑖 .𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥 ] ← 0; ⊲ deselect
23: 𝑛𝑜𝑑𝑒_𝐹𝑐 [𝑖 ] ← 1; ⊲ select
24: end if
25: 𝑡𝑜𝑡𝑎𝑙+ = 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 [𝑖 ];
26: end for
27: if no node merging is detected then
28: break;
29: end if
30: end while
31: while 𝑡𝑜𝑡𝑎𝑙 < 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 do ⊲ Perform node splitting
32: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 ← all the elements equal to 0 in parallel;
33: for each 𝑖𝑡ℎ node in the mesh hierarchy in parallel do
34: if this node in 𝑡_𝑚𝑎𝑝 = 1 & in 𝑛𝑜𝑑𝑒_𝐹𝑐 is selected then
35: if this node in 𝑛𝑜𝑑𝑒_𝐹𝑝 is selected then
36: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 [𝑖 ] ← 2;
37: else
38: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 [𝑖 ] ← 1;
39: end if
40: end if
41: end for
42: 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡_𝑠𝑢𝑚 ← the prefix-sum of 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 in parallel;
43: Find the max 𝑘 where 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡_𝑠𝑢𝑚[𝑘 ] <= 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 −

𝑡𝑜𝑡𝑎𝑙 in parallel;
44: for each 𝑖 ∈ [0, 𝑘 ] in parallel do
45: if this node in 𝑡_𝑚𝑎𝑝 = 1 & in 𝑛𝑜𝑑𝑒_𝐹𝑐 is selected then
46: 𝑛𝑜𝑑𝑒_𝐹𝑐 [𝑛𝑜𝑑𝑒𝑖 .𝑙𝑒 𝑓 𝑡_𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥 ] ← 1; ⊲ select
47: 𝑛𝑜𝑑𝑒_𝐹𝑐 [𝑛𝑜𝑑𝑒𝑖 .𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥 ] ← 1; ⊲ select
48: 𝑛𝑜𝑑𝑒_𝐹𝑐 [𝑖 ] ← 0; ⊲ deselect
49: end if
50: 𝑡𝑜𝑡𝑎𝑙+ = 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 [𝑖 ];
51: end for
52: if no node splitting is detected then
53: break;
54: end if
55: end while
56: return 𝑛𝑜𝑑𝑒_𝐹𝑐 ;
57: end procedure

Fig. 9. The example illustrating the view-dependent node evaluation results
over successive frames. Nodes at lower levels of the hierarchy are selected
for the regions close to the camera. The circled regions include the coherent
nodes between the frames, which are reusable.

4.2 Coherence-Constrained Adjustment
Frame-to-frame coherence tracks differences between the current
and previous camera frames, transferring only the changed data
to the GPU and merging it with reusable data for rendering [Dong
and Peng 2023; Peng and Cao 2012]. The level of coherence varies
with camera movement. As shown in Fig. 9, significant camera
movement can reduce overlap between consecutive LOD selections,
increasing frame-different data volume and potentially exceeding
transfer bandwidth or making merging operations costly.

By leveraging 𝑡_𝑚𝑎𝑝 , we developed a coherence-constrained ad-
justment algorithm (Algorithm 2) to control coherence levels and
maintain a stable frame rate while minimizing visual quality loss.
The algorithm introduces a coherence budget (𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 ), defined
as the maximum number of nodes transferable from CPU to GPU
between frames. If the node transfer load for the desired LOD result
exceeds the 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 , the algorithm utilizes 𝑡_𝑚𝑎𝑝 to control the
transfer load within the budget by performing node merging or
splitting actions. A variable 𝑡𝑜𝑡𝑎𝑙 tracks the number of new (frame-
different) nodes and is compared against 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 while adjusting
the selection through 𝑡_𝑚𝑎𝑝 .
In each frame, nodes in the mesh hierarchy have been flagged

as selected or not in the previous frame, represented by the array
𝑛𝑜𝑑𝑒_𝐹𝑝 . The algorithm begins by copying 𝑛𝑜𝑑𝑒_𝐹𝑝 to the current
frame’s flag array (𝑛𝑜𝑑𝑒_𝐹𝑐 ), and then merges or splits nodes based
on the 𝑡_𝑚𝑎𝑝 labels. Nodes labeled 𝑡_𝑚𝑎𝑝 [𝑖] = 0 represent the
desired LOD result. The algorithm performs nodemerging first (lines
4-30), so that GPU memory is freed up to enable subsequent node
splitting (lines 31-55). The image at the bottom of Fig. 8 illustrates
an example of this coherence-constrained adjustment.

To ensure 𝑡𝑜𝑡𝑎𝑙 remains within the 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 , an integer array
𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 tracks the number of new nodes created by merging
or splitting a node. A prefix sum of 𝑐𝑜ℎ_𝑎𝑑 𝑗𝑢𝑠𝑡 determines the
maximum node index (lines 17-18 and 42-43), limiting operations to
nodes between indices 0 and this maximum (lines 19-26 and 44-51).
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The execution of the algorithm stops when 𝑡𝑜𝑡𝑎𝑙 reaches the budget,
or no merging or splitting is detected.

4.3 Memory Constraint and Selection Across Blocks
It happens that the amount of desired nodes exceeds the memory
sector allocated for rendering. Before the coherence-constrained
adjustment, a pruning process is executed on 𝑡_𝑚𝑎𝑝 to limit the
number of desired nodes. All nodes are processed in parallel iter-
atively during pruning. Nodes with lower visual importance are
prioritized for pruning to minimize the impact on rendering quality.
Specifically, the desired sibling nodes are replaced with their parent
nodes, merging into a coarser representation. We repeat this prun-
ing process on 𝑡_𝑚𝑎𝑝 until the final count of the desired nodes is
within the capacity of the memory sector allocated.

In addition, it is possible that the node selection result includes
nodes spanning multiple blocks. As explained in Section 3.2, the
blocks in the mesh structure are barriers that force the entire mesh
to be retopologized. They avoid long, dense boundaries and ensure
nodes at all levels can be merged and simplified to near-equal size.
However, nodes across blocks do not ensure surface continuity.

If the desired nodes cross multiple blocks, a target block is deter-
mined based on which block contains the most desired nodes. On
the 𝑡_𝑚𝑎𝑝 , desired nodes in upper blocks are refined to the top level
of the target block, while desired nodes in lower blocks are pruned
to the bottom level of the target block. After this, if the number of
desired nodes exceeds the node budget, the nodes at lower levels in
the target block continue to be pruned until the number is within
the budget. If the number of desired nodes is still over the budget
after they have all been pruned to the top level of the target block,
the set of desired nodes will be replaced by the bottom-level nodes
in the upper block, and we repeat the pruning process if necessary
until the number of desired nodes is within the budget.

5 In-place GPU Data Management
Our approach allocates a fixed-size memory sector corresponding
to the current frame. By leveraging the property that the memory
allocated for every node in our mesh structure is nearly equally
sized, this memory sector is sliced into an array of memory units,
each corresponding to holding a node and accessing data and indices
locally. As mentioned in Section 3, the vertices and triangles in each
node can be accessed and rendered independently since they remain
in their locality.

When the GPU receives new nodes, the memory sector can be ex-
tended using dynamic memory allocation or buffer resizing [Schäfer
et al. 2013; Yang et al. 2010]. However, these techniques can result in
frequent memory reallocations, particularly problematic when ren-
dering large and complex scenes where the memory consumption
accumulates and may exceed the available GPU memory.

Our data management method updates the nodes within the fixed-
size memory sector. This section first describes the identification
of frame-different nodes (Δ𝑓 𝑛𝑜𝑑𝑒𝑠). Memory units designated for
nodes used in rendering the previous frame — but not selected for
the current frame — will be marked as released and made available
for the nodes of the current frame. Then, we present a simple and
efficient algorithm to determine in a parallel fashion the target GPU
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Fig. 10. Node selection example showing the frame difference by subtracting
the node selection result of the previous frame (𝑛𝑜𝑑𝑒_𝐹𝑝 ) from the result
of the current frame (𝑛𝑜𝑑𝑒_𝐹𝑐 ). The frame-different nodes will be fetched
from the CPU and the memory units released by removing unnecessary
nodes of the previous frame will be filled with the nodes of the current
frame.

memory location among these released memory slots that the nodes
should be moved to. This algorithm is in-place, suitable for both
moving nodes from CPU to GPU and moving them within the GPU,
adaptive to both high and low coherence cases.

5.1 Finding Memory Utilization Changes Due to Frame
Difference

The node selection result (Section 4) is in array format, with a size
equal to the total number of nodes. Each element in this array cor-
responds to a node ID in the mesh structure and stores a binary
code to represent whether the node is to be displayed or hidden.
Initially, all memory units on the GPU are empty. For the first frame,
all nodes labeled as “display” in the selection result are transferred
to the GPU and stored into continuous memory units in increas-
ing index order. Additionally, two indexing arrays are created to
track node presence in GPU memory. The first array, denoted as
𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑒𝑚, tracks the memory location of each node, with each
element corresponding to a node ID and the value indicating the
index of the memory unit it currently occupies. If the node does not
exist in GPU memory, the value is set to an invalid memory index.
The second array, denoted as𝑚𝑒𝑚_𝑡𝑜_𝑛𝑜𝑑𝑒 , tracks which node is
stored in each memory unit, with each element corresponding to
a memory unit index and the value indicating the node ID. If the
memory unit is empty, the value is set to an invalid node ID.

During runtime, we maintain two node selection results simulta-
neously: one for the current frame (𝑛𝑜𝑑𝑒_𝐹𝑐 ) and the other inherited
from the previous frame (𝑛𝑜𝑑𝑒_𝐹𝑝 ). They are swapped at the con-
clusion of each frame. A parallel subtraction operation is performed
over the two selection results, resulting in an array denoted as
𝑓 𝑟𝑎𝑚𝑒_𝑑𝑖 𝑓 𝑓 , which indicates changes in memory utilization be-
tween the current and previous frames, as shown in Fig. 10. In
𝑓 𝑟𝑎𝑚𝑒_𝑑𝑖 𝑓 𝑓 , a label of 1 denotes a node that needs to be added to
the GPU, while -1 indicates a node that should be removed.
For example, in the array [0, 0, 1, 0, 0,−1,−1], 𝑛𝑜𝑑𝑒2 needs to be

added, 𝑛𝑜𝑑𝑒5 and 𝑛𝑜𝑑𝑒6 need to be removed from the GPU. Other
nodes are either already in GPU memory and to be reused, or they
are not needed and do not need to be removed or added.
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Algorithm 3 Converting frame-difference to the changes in mem-
ory utilization
1: procedure ConvertFrameDifftoMemUtil(frame_diff, mem_util,

mem_to_node, node_to_mem)
2: for each 𝑖𝑡ℎ memory unit in the memory sector in parallel do
3: if𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑖 ] == 1 then
4: 𝑛𝑖𝑑 ←𝑚𝑒𝑚_𝑡𝑜_𝑛𝑜𝑑𝑒 [𝑖 ];
5: 𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑒𝑚[𝑛𝑖𝑑 ] ← 𝑖;
6: end if
7: end for
8: for each 𝑖𝑡ℎ node index in 𝑓 𝑟𝑎𝑚𝑒_𝑑𝑖 𝑓 𝑓 in parallel do
9: 𝑚𝑖𝑑 ← 𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑒𝑚[𝑖 ];
10: if 𝑓 𝑟𝑎𝑚𝑒_𝑑𝑖 𝑓 𝑓 [𝑖 ] == −1 then
11: 𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑚𝑖𝑑 ] ← 0;
12: 𝑚𝑒𝑚_𝑡𝑜_𝑛𝑜𝑑𝑒 [𝑚𝑖𝑑 ] ← −1;
13: end if
14: end for
15: return𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 ;
16: end procedure

Abetter representation of changes inmemory utilization is needed
in order to provide instance access to memory units marked as avail-
able on the GPU. Algorithm 3 shows the steps to use an array,
denoted as𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 , to represent and compute memory utilization.
The size of this array is equal to the maximum number of memory
units that the GPU is capable of allocating or that the user arbitrar-
ily defines. The value of each element in𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 is either 1 or 0,
indicating whether the corresponding memory unit currently stores
a reusable node.

After consolidating the frame-different and reusable nodes in the
memory sector using𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 (Section 5.2), the arrays𝑛𝑜𝑑𝑒_𝑡𝑜_𝑚𝑒𝑚

and𝑚𝑒𝑚_𝑡𝑜_𝑛𝑜𝑑𝑒 are updated to reflect the updated node presence
in GPU memory.

5.2 Determining Target Memory Locations for Efficient
Node Movement

Before moving any node, we need to determine the target mem-
ory units for the nodes from the available memory units, which
are labeled as 0 in 𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 . Due to the utilization of frame-to-
frame coherence, the indices of available memory units are sparse
in𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 . Existing methods based on stream compaction [Bil-
leter et al. 2009; Dong and Peng 2023; Springer and Masuhara 2019b]
often require extra buffers or memory to store intermediate results
during the scan and compact operations, consolidating renderable
primitives into a new memory space [Dong and Peng 2023; Sarton
et al. 2019]. This reliance on additional GPU memory can signif-
icantly impact memory efficiency, especially when dealing with
large 3D meshes or when hardware has limited memory capacity.
Our algorithm enables in-place data management, eliminating

the need for additional GPU memory when consolidating frame-
different and reusable nodes.When coherence is high, frame-different
nodes can be directly inserted from the CPU to the identified target
memory units on the GPU. Since the target memory units are not
continuously located, insertion must occur through multiple mem-
ory copy calls, transferring one node at a time. Even with multiple
memory copy calls, data management can still be done efficiently

when coherence is high due to the small number of frame-different
nodes.
However, when coherence is low, transferring all the nodes in a

chunk becomes preferable. To maintain the in-place management
strategy, nodes already on the GPUmust be moved to allow a contin-
uous set of available memory units in the memory sector to receive
the new nodes. This process is akin to defragmentation, but it aims
to move reusable nodes within the memory sector so that the avail-
able memory units are rearranged into a contiguous memory chunk.
This process may occur as frequently as every frame. Our algorithm
accommodates both coherence cases. We describe the algorithm
for handling the low-coherence case to defragment for available
memory units on the GPU, and then explain its adaptation for the
high-coherence case and assisting for node collection on CPU.

5.2.1 Aiming for GPU defragmentation for low-coherence case. The
memory sector is divided into two memory zones: the CycleZone
and ForgeZone. The CycleZone, starting at the beginning of the
memory sector, will be used to hold all reusable nodes from the
previous frame. Its size is determined by the number of reusable
nodes counted from the ‘1’s in𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 . The ForgeZone covers the
remaining section and will be used to receive the frame-different
nodes. Our algorithm, as outlined in Algorithm 4, returns an instruc-
tion that informs parallel execution about which memory unit in
the CycleZone each reusable node in the ForgeZone should move
to.

Algorithm 4 Find memory locations for moving nodes
1: procedure FindMemLocations(mem_util, lookup range (s))
2: for each 𝑖𝑡ℎ element within the range [0, 𝑠 − 1] in𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 in

parallel do
3: 𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑖 ] ←𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑖 ] == 0 ? 1 : 0;
4: end for
5: Perform parallel prefix-sum into𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 ;
6: for each 𝑖𝑡ℎ element (𝑖 > 0) in 𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 (prefix-summed) in

parallel do
7: if𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑖 ] >𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑖 − 1] then
8: 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛[𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑖 ] − 1] ← 𝑖;
9: end if
10: end for
11: return 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛;
12: end procedure

After moving these reusable nodes to the CycleZone, the Forge-
Zone will be completely available to receive the chunk of new nodes
from the CPU with a single CPU-to-GPU memory copy.

For the input of Algorithm 4, the lookup range 𝑠 is set to the size
of CycleZone. First, we invert the values of the elements within
the lookup range in 𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 (lines 2-4), so the 1s in the Cycle-
Zone signify the locations of available memory units. The 1s in the
ForgeZone, which are not altered, still correspond to the memory
locations storing the reusable nodes. Then, a parallel prefix-sum
operation is applied to the entire array (line 5) to signify the cumu-
lative count of 1s at each position. This operation incurs minimal
overhead due to the small size of the𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 array. We identify
positions where the accumulated sum values make their first ap-
pearances in a parallel fashion (lines 6-10) and record them into the
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Fig. 11. An example illustrating the process of compacting reusable nodes.
For this example, let’s assume there are a total of 7 GPU memory units
in the memory sector. The values of the elements in the CycleZone of the
𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 are inverted. Subsequently, a parallel computation of the prefix-
sum is performed over the𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 array, leading to the creation of the
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 array. Finally, based on the 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 array, the reusable
nodes in the ForgeZone of the memory sector are moved to the available
memory units in the CycleZone in a parallel fashion.

instruction, continuously and appearing in order. Each element in
the instruction holds a memory unit index, representing the element
holding the value 1 in the partially inverted𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 .

After the inversion (lines 2-4), the counts of 1s in both zones are
equal (refer to Appendix). This forms the basis for the 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
to establish one-to-one memory index mappings from the Forge-
Zone to the CycleZone. Let’s denote this count as 𝜑 , which is half
of the last element’s value in the prefix-summed, partially-inverted
𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 (𝜑 =𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 [𝑙𝑎𝑠𝑡]/2). Thus, the 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 can be di-
vided into two equal halves, where each element in the first half
denotes an available memory unit in the CycleZone, and each el-
ement in the second half denotes the memory location storing a
reusable node in the ForgeZone. With this property, we can move
𝜑 reusable nodes in the ForgeZone in a parallel fashion. Each GPU
thread locates the reusable node at 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛[𝜑 + 𝑖] and moves it
to the available memory unit at 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛[𝑖]. Fig. 11 illustrates an
example of using this algorithm to find the 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 and use it

for defragmentation. After that, the chunk of frame-different nodes
collected in CPU memory is transferred to the ForgeZone.

5.2.2 Aiming for node insertion for high-coherence case. The mem-
ory sector functions as a single memory zone, and the lookup range
for Algorithm 4 is set to the size of𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 . Consequently, the
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 records all available memory units in the entire memory
sector in the order of their appearance. In this operation, the algo-
rithm behaves similarly to stream compaction, but the difference
lies in compacting the indices of all available memory units.

5.2.3 Aiming for finding node IDs for collecting them on CPU. Al-
gorithm 4 can be used to find the list of frame-different node IDs
(labeled as 1s in 𝑓 𝑟𝑎𝑚𝑒_𝑑𝑖 𝑓 𝑓 ). To do this, the input 𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 is
replaced with 𝑓 𝑟𝑎𝑚𝑒_𝑑𝑖 𝑓 𝑓 , and the lookup range is set to the size
of𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 . In the algorithm, -1s in 𝑓 𝑟𝑎𝑚𝑒_𝑑𝑖 𝑓 𝑓 are treated as 0s.
By looping through the list, nodes can be fetched from the mesh
structure in CPU memory and inserted directly into the memory
sector on the GPU without allocating additional memory.

6 LOD Mesh Construction and Rasterization
Prior to rasterizing the nodes selected for the current frame, our
approach performs view-frustum culling for the nodes in parallel.
The bounding sphere of each node is tested against the volume of
the view-frustum. The nodes that are inside or intersected with the
view-frustum will be rendered, and others will be marked as hidden
and excluded from the rendering of the current frame.
During the node selection stage (Section 4), each selected node

has been determined with a desired LOD, represented as the desired
vertex and triangle counts in this node, which is obtained from map-
ping the coverage ratio interval values between the maximum and
minimum vertex and triangle counts of this node. Note that even for
these reusable nodes that were retained on the GPU and continue
to be used by the current frame, they may receive new LOD desires.
Thus, all the to-be-rendered nodes should be reconstructed to adap-
tive patch versions as alternatives in rasterization. As mentioned in
Section 3.1, each node has been pre-processed to embed continuous
edge collapses in arrays for sub-mesh simplification. During the
runtime, we employed the mesh reformation method [Hu et al. 2009;
Peng and Cao 2012], which looks up the pre-recorded edge collapses
and constructs a valid mesh topology under the desired vertex and
triangle counts. The mesh reformation method is performed at a
triangle-level parallelization. When a vertex index of the triangle is
larger than the number of selected vertices, the GPU thread looks
up the edge collapses and replaces it with the index of the vertex it
collapses to. Subsequently, this index is checked again to determine
if it is now smaller than the number of selected vertices. If not,
the index needs to be replaced with the index of the next vertex it
collapses to, until a within-range one is found.

Our approach supports the rendering of characters with skeletal
animations and textures. The implementation leverages a GPU-
based texture preservation method [Peng et al. 2011], originally
applied to objects, which we have adapted for use with patches. In
our approach, patches are topologically connected surface regions,
and because their topology remains unchanged during animation,
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Fig. 12. The screenshots of the combined scene. The left image is a bird’s eye view of the scene. The right image is a close view of the animated characters.

the texture-preserving method can treat each patch as an individual
object.
We utilized the single-buffer multiple draw call technique to

enhance rasterization performance. Instead of issuing a separate
draw call for each node, which can incur significant CPU overhead
due to buffer switching, we issued draw calls with a single buffer
for rasterizing the nodes to be rendered in a single pass.

7 Evaluation
We conducted the experiments on a workstation equipped with
an Intel Core i9-10980XE 3.00GHz CPU, boasting 18 cores, 256 GB
RAM, a PCIe 3.0 ×16 interface, and an NVIDIA GeForce RTX 3090
GPU with 24 GB memory. The NVIDIA driver version 546.01. The
operating system is 64-bit Windows 10. We used C++, CUDA 11.6,
and OpenGL to implement our approach. All the parallel algorithms,
including LOD selection, reformation, culling, and out-of-core data
management, are implemented using CUDA. OpenGL is utilized for
rasterization.

Table 1. Each model is pre-processed into the balanced hierarchical repre-
sentation. The seven statue models are composed into Statue Models scene
for this experiment.

Name Triangle # Vertex #
St. Matthew 372,783,137 186,868,583
Atlas 507,532,941 254,877,810
David 56,230,962 28,184,520
Fangyi 55,287,586 27,643,703
Gong 65,726,059 32,862,956
Lucy 28,055,742 14,027,870
George Washington 31,260,808 15,630,410
Statue Models 1,116,877,235 560,095,852
Moana Island 1,286,959,510 984,065,632
Total 2,403,836,745 1,544,161,484

The test scenes for our experiment incorporate a set of models
from Stanford’s Digital Michelangelo Project [Levoy et al. 2000],
Smithsonian 3D Digitization [Smithsonian Institution 2024], and
Disney’s Moana Island [Disney Animation Studios 2018]. As shown
in Fig. 12, our experiment demonstrates that our method is capable
of rendering large surface models and complex environments mixed
with a large number of individual objects and animated characters.

The test scenes, totaling over 2 billion triangles, require 149.03 GB
as OBJ files for meshes and FBX files for animated characters (Table
1). Each scene was rendered at 1920x1080 resolution along recorded
camera paths (Fig. 13), featuring positional and rotational transitions
that create varying levels of coherence between frames, commonly
occurring in video games and 3D visualization applications.
The node size, which can be determined based on our desired

depth of the mesh structure, is an independent variable that affects
overall performance and memory usage. Another independent vari-
able is the size of the memory sector allocated in GPU memory.
This size is determined by the node budget. It affects the quality
and overall performance of rendering. Additionally, the coherence
budget, which specifies the maximum amount of data transferred
from CPU to GPU between frames, plays a critical role in balanc-
ing visual quality and smoothness. According to the description in
Section 5, the algorithms in our approach support node insertion
and in-place defragmentation modes for runtime data management.
We conducted a systematic analysis of these two modes and found
an optimal way to combine them in terms of variation of the trans-
ferred node amount to achieve the best overall performance. We
also compared our approach with other state-of-the-art methods in
out-of-core rendering.

7.1 Node Size Analysis
We conducted an experiment to evaluate the impact of different
node sizes on overall performance and memory usage ratio. The
experiment utilizes the Statue Models scene. The node size is de-
termined by the maximum number of triangles and vertices in the
nodes, which in turn depends on the depths of the hierarchical mesh
structures during their construction. For example, when the Atlas
model is partitioned and represented in an 18-level mesh structure,
we found the maximum number of triangles in a node is 2,586 tri-
angles, and the maximum number of vertices in a node is 1,841. As
shown in Table 2, the frame time (representing the average total ex-
ecution time spent on a frame) decreases as the node size is reduced,
reaching the time nadir (node size: 19,214 triangles, 9,680 vertices)
for both insertion and in-place defragmentation data management
modes.

However, further reducing the node size beyond that at the time
nadir causes the frame time to increase again. This is attributed to
the mixed effects of several execution components in our approach
reacting to different sizes of nodes. Fig. 14 shows the performance

ACM Trans. Graph., Vol. 44, No. 4, Article 139. Publication date: August 2025.



139:12 • Huadong Zhang, Lizhou Cao, and Chao Peng

\G | Tae 

a 
SS 

AS! 
ge 

5S 
EN wee e ie 

sy A U/ 
gid 

q ery NWA 
& 

fi / 
21% i) 

a M 
j \ § 

ts 4 

Yh 
ui ke Nf bs oy 

Z Ti 

yf 

aN 
sh J aN 

Transferred Nodes: 30 ee * > 

Frame Time (In-place Defrag. Mode): 14.07 ms \ 
Frame Time (Insertion Mode): 15.04 ms MW | \ 

{ tt es 
ie 

eo it 
AB te C5 

[ps Nios 
NX y v\ ZA <2 os | iW, 2s xcs @ 

Pe 1\5 
Transfexted Nodes: 2 

i Ang 
mm: 

Pree BN Frame Time (In-place Defrag. Mode): 9.92 ms 
= 

Transferred Nodes: 15 Frame Time (Insertion Mode)\8.88 ms 
a 

Frame Time (In-place Defrag. Modg): 23.80 ms 
eH 

Frame Time (Insertion Mode)} 24.11 ms SSS
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time of three picked frames. When the number of transferred nodes is larger than 15, the in-place defragmentation mode spends less time. On the contrary,
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Table 2. Performance and Memory Usage Ratio in the Statue Models scene
under the Configuration with Different Node Sizes. For implementation,
nodes have been converted from an AoS format to a SoA format to make
them compatible with GPU storage (see Fig. 5). Consequently, we deter-
mined the node size in the triangle array and the node size in the vertex
array, based on the highest counts of triangles and vertices, respectively,
within the nodes of the mesh structure.

Node Size Frame Time Triangles Memory
(Triangles/Vertices) Defrag. Insert. Rendered Usage RatioMode Mode
4,251,178 / 2,125,752 27.86 ms 24.78 ms 50.43 million 82.88%
2,127,135 / 1,063,760 26.81 ms 23.06 ms 52.32 million 83.28%
1,070,293 / 537,062 23.37 ms 19.98 ms 47.57 million 83.30%
540,949 / 271,845 22.44 ms 18.67 ms 42.62 million 82.67%
273,454 / 137,636 20.83 ms 17.78 ms 45.08 million 81.96%
139,544 / 70,397 17.47 ms 14.82 ms 39.16 million 80.85%
71,103 / 39,630 14.04 ms 12.09 ms 36.28 million 76.70%
36,276 / 18,315 11.63 ms 10.00 ms 28.37 million 78.99%

19,214 / 9,680 (time nadir) 11.22 ms 9.75 ms 22.50 million 76.00%
9,934 / 6,204 12.75 ms 10.95 ms 19.08 million 68.41%
5,024 / 3,223 14.46 ms 12.86 ms 16.55 million 67.15%
2,586 / 1,841 18.66 ms 17.40 ms 16.42 million 63.05%

breakdown of the insertion and in-place defragmentation modes.
The components from our out-of-core data management approach,
including “Find Δ𝑓 node IDs”, “Collect Δ𝑓 nodes”, “Instruction (In-
sertion)”, “Instruction (Defrag.)”, and “Defrag.”, do not become per-
formance bottlenecks, nor does the “Transfer” (transfer Δ𝑓 nodes
from CPU to GPU) component due to leveraging frame-to-frame
coherence. The “Rasterization” time emerges as a primary factor
influencing overall performance, and it scales with the number of
triangles to be rendered. “Reformation” time, which consistently
decreases as node size decreases, is second to it. Rasterization time
decreases from 16.16 ms to 3.11 ms, but beyond this point, it starts
to increase again as node size continues to decrease. This is because

smaller node sizes lead to more accurate culling results (where
“Culling” is efficient), reducing the number of triangles for raster-
ization. However, if the node size becomes too small, specifically
smaller than at the time nadir, it leads to a larger number of nodes to
be rendered and higher overhead due to invoking more draw calls,
consequently causing the rasterization time to increase again.
Looking into our data management approach and the cost of

data transfer, the times spent on “Transfer” and “Collect Δ f nodes”
decrease with smaller node sizes. Smaller nodes is able to reduce
the amount of unnecessary vertices and triangles transferred with
the nodes, thereby lowering the overall cost of data management.
However, a smaller node size leads to more nodes in the mesh struc-
ture, and results in increased execution times in other components
of the data management approach because they scale up with the
increasing number of nodes. These execution times become more
obvious and considerable when the node size falls below that at
the time nadir, where the trade-off between the out-of-core data
management and rasterization becomes less favorable.
Since the memory consumption of the nodes are not exactly

balanced, there are unused memory portions in each memory unit
when it is occupied by a node. We defined the term “Memory Usage
ratio” to reflect the percentage of occupied memory size over the
total size of the memory sector allocated. This ratio is influenced
by the node size, varying from 82.88% to 63.05% in our experiment.
When the node size is at the time nadir, it maintains an acceptable
memory utilization of 76%. When the node is configured to the next
smaller size, the ratio drops by 7.59%.

For other experiments, we selected the node size at the time nadir,
with which the mesh structure for the entire scene requires 186.07
GB of storage (24.85%more than their original 149.03 GB), consisting
of 507,785 nodes in total. Under this node size configuration, the
rebuilding process was rarely invoked. For instance, in the case
of the Atlas model, the rebuilding occurred only once at layer 6,
producing a hierarchy with only two blocks. In contrast, for smaller
models such as David, no rebuilding was required.
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Fig. 14. Performance breakdown of different components of in-place de-
fragmentation and insertion modes and how they change with the change
of node sizes. The rasterization time first decreases and then increases, bot-
toming out at the node size of 9680 vertices. The costs of “Collect Δ𝑓 nodes”,
“Reformation”, and “Transfer” components decrease with the decrease of
node size. The costs of “Node Selection”, “Find Δ𝑓 node IDs”, “Instruction
(Insertion)”, and “Instruction (Defrag.)” components increase with the de-
crease in node size. The cost of “Defrag.” and “Culling” components are
stable over changes in node size.

7.2 Efficiency Analysis for Out-of-core Data Management
Our algorithms support the implementation of two data manage-
ment modes: insertion and in-place defragmentation. The insertion
mode allows identifying and transferring frame-different nodes di-
rectly to the available memory units in the memory sector, but
it requires multiple memory copy calls to transfer them one by
one. The in-place defragmentation mode needs to first compact the
reusable nodes in an in-place manner and then transfer the frame-
different nodes in a chunk to the target memory slot in the memory
sector with a single memory copy call.
In addition to our two modes, we implemented a standard out-

of-place defragmentation approach for comparison. This approach
allocates an extra memory sector to store reusable nodes inherited
from the previous frame, and uses an out-of-place sorting process to
consolidate new and reusable nodes into the active memory sector
for the current frame [Dong and Peng 2023]. This approach simpli-
fies the algorithm for mitigating the risks of memory conflicts or
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Fig. 15. Comparison of defragmentation and insertion modes in terms
of total out-of-core time. The in-place defragmentation mode starts to
outperform the insertion mode when the number of transferred nodes is
equal to or larger than 15.

interference between read and write operations. We implemented
the out-of-place defragmentation approach using the stream com-
paction algorithm [Bakunas-Milanowski et al. 2017] executed with
CUDA Thrust.

We conducted numerical tests to evaluate and determine the op-
timal switching scheme between the insertion and in-place defrag-
mentation modes, as well as to compare their performance with the
out-of-place defragmentation approach. We set the budget of 16,000
nodes, and examined the out-of-core performance by streaming 0
to 200 nodes.
Fig. 15 illustrates the test results. It is evident that when the

number of frame-different nodes is small, the insertion mode per-
forms efficiently. When the number of nodes is large, the in-place
defragmentation mode offers better performance. We found that
the crossover point for performance occurs when transferring 15
nodes from the CPU to GPU. Fig. 16 provides more details through
a performance breakdown. It shows that the impact of the “Defrag.”
component of in-place defragmentation mode diminishes as a sig-
nificant factor with an increasing number of transferred nodes, as
its contribution to overall performance remains relatively stable.
Conversely, the insertionmode becomes less efficient because the cu-
mulative overhead of transferring nodes individually progressively
exceeds the cost of compacting and transferring frame-different
nodes on the CPU side.

Based on the results from this test, we implemented a hybrid in-
place approach that uses 15 nodes as the mode switching threshold.
The rendering system automatically switches between insertion and
in-place defragmentation modes to optimize performance dynami-
cally.

In comparison, the out-of-place defragmentation mode exhibits a
consistent frame time delay of approximately 20 ms compared to
the in-place defragmentation mode. This additional overhead arises
primarily from the need to manage an extra memory sector for
reusable nodes and to perform the out-of-place sorting process. In
our in-place defragmentation mode, the number of reusable nodes
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moving from the ForgeZone to the CycleZone is influenced by the
overall count of reusable nodes and the size of the ForgeZone. As the
total number of reusable nodes increases and the ForgeZone shrinks,
there is a higher possibility that the number of reusable nodes in
the ForgeZone decreases. We analyzed a theoretically worst-case
scenario for our in-place defragmentation mode, where half of the
nodes on the GPU are determined to be reusable, and they all happen
to be situated in the ForgeZone. In this scenario, our approach
would handle the maximum possible reusable nodes moving from
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Fig. 17. User evaluations of visual quality, visual smoothness, and overall
experience under different𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 settings. The overall rating peaks at a
budget of 80, indicating an optimal balance between quality and smoothness.

the ForgeZone to the CycleZone. However, it would still outperform
the out-of-place defragmentation mode, which has to operate all
nodes residing in the GPU memory without benefiting from any
frame-to-frame coherent property.

7.3 Coherence Budget Analysis
To determine an appropriate setting for 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 , we conducted
a user study using the Moana Island scene. Eight participants were
recruited to provide feedback on visual quality, visual smoothness,
and overall visual experience for each 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 setting, ranging
from 0 to 200. Additionally, we added a test case that 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡
equals to the maximum node count that can be held by the size of
GPU memory, denoted as𝑀𝑎𝑥𝐿𝑖𝑚𝑖𝑡 . In this case, the node selection
result will always be the desired LOD for every frame. Feedback
was recorded on a scale of 1 to 10, where 1 indicates dissatisfaction
and 10 indicates high satisfaction.
The user study results in Fig. 17 indicate that visual quality im-

proves as 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 increases, as higher budgets allow selections
to align more closely with the desired LOD results. Visual smooth-
ness decreases with larger budgets due to the increased data transfer
load between the CPU and GPU. At a 𝑐𝑜ℎ_𝑏𝑢𝑑𝑔𝑒𝑡 of 80, the overall
visual experience receives the highest rating. This setting achieves
visual quality that is only marginally lower than at higher budgets,
while the reduction in visual smoothness remains minimal.

7.4 Comparison with Other Approaches
7.4.1 Comparison with Academic Methods. Our approach, featuring
frame-to-frame coherence and in-place data management (FTFC-
ID), was compared to three existing GPU out-of-core approaches in
the research literature. These approaches were implemented based
on theories and methodologies presented in prior work.
• Frame-to-frame coherence and out-of-place defragmentation
(FTFC-OD): As described in Section 7.2, this method uses
an additional memory sector to store reusable nodes from
the previous frame. It consolidates these nodes with frame-
different nodes into the active memory sector using an out-
of-place sorting process to avoid read-write conflicts. But this
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Table 3. Performance Breakdowns of Different Approaches in the Statue Models scene.

Approaches Frame Triangles Node Out-of-core Reformation Culling RasterizationTime Rendered Selection Δf nodes Prep. Instruction & Defrag. Transfer
FTFC-ID (Ours) 9.65 ms 22.50 million 0.82 ms 0.68 ms 0.41 ms 1.06 ms 3.46 ms 0.13 ms 3.10 ms

FTFC-OD 49.02 ms (2.01% of 0.84 ms 1.82 ms 39.03 ms 0.64 ms 3.31 ms 0.15 ms 3.22 ms
FTFC-DM 1083.25 ms total triangles) 0.99 ms — — 28.24 ms 965.97 ms 1.27 ms 86.78 ms
NFTFC 1932.49 ms 0.84 ms 721.07 ms — 1203.94 ms 3.22 ms 0.20 ms 3.22 ms

method introduces additional overhead due to the need for
extra memory allocation.
• Frame-to-frame coherence and dynamic memory manage-
ment (FTFC-DM): This approach leverages frame-to-frame
coherence but does not maintain single or double fixed-size
memory buffers in GPU memory [Varadhan and Manocha
2002]. Instead, it manages nodes as individual mesh objects
and is able to retain reusable ones in GPU memory between
frames through buffer objects [Angel and Shreiner 2011].
The system manages memory allocation and deallocation
automatically. This approach offers flexible management for
nodes, but it requires multiple rendering passes.
• Streaming data without frame-to-frame coherence (NFTFC):
This approach streams nodes from CPU to GPUwithout main-
taining coherence between frames [Woo et al. 1999]. A fixed-
size memory sector is allocated and used during the runtime
for rendering the current frame. The nodes selected for the
current frame are collected in CPU memory and transferred
to GPU with a single memory copy call. This approach does
not require computing data-transfer instructions or defrag-
menting GPU-resident data. The ways it manages the nodes
and memory are the same as those in the standard GPU graph-
ics pipeline [Kenzel et al. 2018], where the data of the entire
frame is transferred to the GPU.

We used the Statue Models scene as the test case. Table 3 shows
the performance comparison. For the GPU out-of-core approaches,
the GPU memory sector is set to hold a maximum of 16,000 nodes,
as this is the highest node count that FTFC-OD can support due to
its requirement for extra memory allocations. During runtime, an
average of 22.50 million triangles are rendered per frame, constitut-
ing 2.01% of the triangle count in the original dataset. All the GPU
out-of-core approaches spend a similar amount of time on “Node
Selection”. FTFC-OD, NFTFC, and our approach use single-pass
rendering and fixed-size memory allocation for the frame, so the
execution times on “Reformation” and “Rasterization” are similar,
and they are much faster than those in the FTFC-DM approach.

FTFC-DM has the worst performance. It has significant overheads
in executing “Transfer”, “Reformation”, and “Rasterization” com-
ponents. This is because each node is instantiated and destroyed
on the GPU separately, and dynamic memory allocation and deal-
location commands add extra cost to the process of data transfer.
“Reformation” in FTFC-DM runs for each node separately, making
GPU computational ability not fully utilized. Additional overhead
on kernel launches makes the execution of “Reformation” very slow.
In terms of “Rasterization”, FTFC-DM assigns each node to a buffer
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Fig. 18. The FPS over the frames of the Statue Models scene. The node
budget is set to 16,000. Our approach significantly outperforms FTFC-OD,
FTFC-DM, and NFTFC.

object, causing extra overhead due to irregular memory access pat-
terns.
NFTFC, despite not requiring defragmentation, spends a signifi-

cant amount of time on “Δ𝑓 nodes Prep.” (“Find Δ𝑓 node IDs” and
“Collect Δ𝑓 nodes”) and “Transfer” since it has to transfer all the
selected nodes. The time spent on these two components constitutes
99.38% of the total time of the NFTFC approach. In comparison, our
approach and FTFC-OD provide better performance, benefiting from
the use of both frame-to-frame coherence and fixed-size memory
allocations.

Our approach demonstrates higher efficiency in managing out-of-
core data than FTFC-OD, making the GPU out-of-core component
not the bottleneck in our approach. Out-of-core data management
is the most time-consuming stage in FTFC-OD and NFTFC. Fig. 18
shows the FPS changes over 5,773 frames of the camera path. Our
approach outperforms other approaches, with an average FPS of
122.29, compared to FTFC-OD (20.55 FPS), FTFC-DM (3.36 FPS), and
NFTFC (0.52 FPS).

7.4.2 Comparison with Commercial Systems. Rendering systems
in modern game engines, such as Unity and Unreal, are widely
recognized for their real-time rendering applications beyond video
games due to their advanced graphical capabilities.

Unity is unable to load our test scenes, as it lacks the specialized
structures and data management optimizations required to handle
scenes containing billions of geometric primitives. The most com-
plex scene configuration tested with Unity (v2022.3.44f1) contains
744 million triangles and renders at a peak of 1.41 FPS with the basic
shading setting.
Unreal introduces Nanite system [Brian Karis 2021], which is

a commercial solution designed to support the rendering of large
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Table 4. Performance Breakdowns of Our Approaches in Different Scenes

Scenes Frame Triangles Node Out-of-core Reformation Culling RasterizationTime Rendered Selection Δf nodes Prep. Instruction & Defrag. Transfer
Statue Models 9.65 ms 22.50 million (2.01%) 0.82 ms 0.68 ms 0.41 ms 1.06 ms 3.46 ms 0.13 ms 3.10 ms
Moana Island 10.99 ms 20.81 million (1.62%) 1.75 ms 1.01 ms 0.88 ms 1.23 ms 2.36 ms 0.11 ms 3.65 ms

Combined Scene 17.12 ms 41.74 million (1.74%) 2.59 ms 1.19 ms 0.96 ms 1.54 ms 2.77 ms 0.10 ms 7.97 ms

3D scenes. It uses an HLOD structure to dynamically adjust and
stream geometric data based on the viewer’s position and perspec-
tive. Nanite manages complex assets by delivering only the neces-
sary details, reducing memory usage and data streaming demands.
Unlike our approach, Nanite adopts a Directed Acyclic Graph

(DAG) as its hierarchical structure to handle dense boundaries be-
tween clusters. During DAG construction, clusters are grouped into
fixed-size sets, and each cluster is linked to all relevant parent clus-
ters within the DAG. This structure restricts LOD selection decisions
to the group level. Nanite’s structure is best suited for representing
static geometries. Our approach is capable of handling dynamic
scenes. As long as the original mesh topology remains unchanged,
meshes in the input scene, including deformable ones or those with
skeletal animations, can be preprocessed into our hierarchical mesh
structure and integrated into the out-of-core GPU data management
and rendering pipeline.

Nanite’s LOD selection method primarily relies on screen-space
error metrics. Advancing this method, our approach also accounts
for CPU-GPU transfer bandwidth limits and allows specifying a
coherent data budget, providing an additional layer of optimization.
This is especially useful in scenarios where transferring all selected
nodes would exceed the real-time rendering capability, making it
impractical despite satisfying visual quality criteria.

Additionally, Nanite does not specify how GPU memory is man-
aged after streaming. Our in-place GPU data management algorithm
could serve as a potential solution to efficiently align current frame
data with rasterization requirements and help mitigate data frag-
mentation in subsequent frames.

We tested the Statue Models scene in Unreal v5.5.1 using the basic
shading setting and set r.Nanite.MaxPixelsPerEdge to its minimum
value for the highest possible geometry quality; otherwise, small
objects may disappear or exhibit popping artifacts. We set other
settings of Nanite at their default values, as modifying them does not
affect the geometry quality. As Unreal is a commercial game engine,
differences in the rendering pipelines lead Nanite and our approach
to not produce identical shading results. In this test, Nanite achieves
an average frame time of 30.05 ms while rendering an average of
15.91 million triangles, three times slower than our approach (FTFC-
ID).

7.5 Discussion
7.5.1 Scenario Adaptability. To understand the adaptability of our
method across different scenarios, Statue Models scene,Moana Island
scene, and a combined scene are tested and the performance results
are shown in Table 4. Performance varies with scene complexity.
As complexity increases, frame time grows, reaching 17.12 ms in
the combined scene, primarily due to rasterization time, which rises
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Fig. 19. The costs of components of FTFC-ID over the frames in the Statue
Models scene. Due to high frame-to-frame coherence, the most time-
consuming components are “Reformation” and “Rasterization”, which made
performance fluctuations based on the changes of rendered triangles.

significantly with the increased triangle count (41.74 million) and
the addition of textured and animated models. In contrast, node
selection and out-of-core data management times increase more
moderately, demonstrating the scalability of our method. For in-
stance, node selection time rises from 0.82 ms in the Statue Models
scene to 2.59 ms in the combined scene, while out-of-core data
management increases from 2.15 ms to 3.69 ms. These small incre-
ments highlight the approach’s adaptability to larger datasets with
minimal overhead.

7.5.2 Out-of-core Cost. Our approach significantly reduces the out-
of-core data management cost. In the experiment with the Statue
Models scene, the out-of-core stage of our approach comprised only
22.23% (2.15 ms) of the total time, a substantial improvement com-
pared to FTFC-OD, where defragmentation consumes 84.64% (41.49
ms). This efficiency gain arises from our hybrid approach integrat-
ing both insertion and in-place defragmentation modes for data
management.

7.5.3 Quality of Coherence. Our node selection strategy takes into
account spatial coherence, ensuring superior performance compared
to existing methods. In interactive visualization applications, where
camera positions change more smoothly than orientations, this
approach enables nodes not immediately required to be preselected
and transferred to the GPU as anticipative nodes for future frames.
Modern GPUs can cache more geometric primitives than they can
render into pixels in real-time (Section 1). By storing anticipative
nodes, memory resources for real-time rendering remain unaffected,
while the buffer enhances memory utilization and contributes to
smoother upcoming frames.
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Table 5. Performance Breakdowns of Our Approach in the Statue Models scene with Different Node Budgets (# of Nodes)

# of Frame Triangles Node Out-of-core Reformation Culling RasterizationNodes Time Rendered Selection Δf nodes Prep. Instruction & Defrag. Transfer
2,000 5.11 ms 4.28 million (0.38%) 0.81 ms 0.85 ms 0.40 ms 1.25 ms 0.80 ms 0.18 ms 0.82 ms
4,000 6.01 ms 7.53 million (0.67%) 0.79 ms 0.85 ms 0.42 ms 1.40 ms 1.16 ms 0.18 ms 1.22 ms
6,000 7.35 ms 11.06 million (0.99%) 0.82 ms 1.00 ms 0.41 ms 1.77 ms 1.56 ms 0.11 ms 1.68 ms
8,000 7.41 ms 12.60 million (1.13%) 0.81 ms 0.85 ms 0.41 ms 1.45 ms 1.89 ms 0.11 ms 1.89 ms
10,000 7.31 ms 13.30 million (1.19%) 0.80 ms 0.70 ms 0.41 ms 1.20 ms 2.15 ms 0.11 ms 1.95 ms
12,000 9.54 ms 19.33 million (1.73%) 0.81 ms 0.99 ms 0.42 ms 1.57 ms 2.84 ms 0.12 ms 2.79 ms
14,000 9.39 ms 21.81 million (1.95%) 0.81 ms 0.71 ms 0.42 ms 1.05 ms 3.30 ms 0.13 ms 2.98 ms
16,000 9.65 ms 22.50 million (2.01%) 0.82 ms 0.68 ms 0.41 ms 1.06 ms 3.46 ms 0.13 ms 3.10 ms
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Fig. 20. Screenshots demonstrating the visual quality loss with different node budgets. The blue highlights indicate the differences between the scene with the
selected nodes and the scene with the original meshes. A higher node budget better preserves visual quality. In our experiment, the budget with 16,000 nodes
resulted in rendering that is very close to the groundtruth quality of the original meshes.

7.5.4 Memory Management Efficiency. A key strength of our mem-
ory management approach is that the defragmentation algorithm
operates entirely in-place within a single memory buffer. This con-
serves GPU memory that would otherwise be consumed by FTFC-
OD, enabling a higher node budget through the saved resources.

7.5.5 Performance Fluctuations. As shown in Fig. 18, most approaches
exhibit performance fluctuations over time in the Statue Models
scene. The FPS of our approach is ranged from 35.23 to 205.72. This
variability is due to the dynamic changes in the number of rendered
triangles, which are adjusted based on the results of LOD selection
and culling. Fig. 19 shows the temporal cost variations of differ-
ent components in our approach over time. The primary factors
influencing performance are the reformation and rasterization com-
ponents, as their costs vary with the number of rendered triangles.
In contrast, the performance of other components remains stable
throughout.

7.5.6 Performance and Quality with Different Node Budgets. Node
budgets affect both rendering performance and quality. We evalu-
ated the performance of rendering the Statue Models scene under
node budgets ranging from 2,000 to 16,000 nodes, as shown in Table
5. The time spent on “Node Selection”, “Out-of-core”, and “Culling”
components remains stable across all cases, while other compo-
nents experience only modest increases in execution time as the

node budget grows. As shown in Fig. 20, higher node budgets lead
to improved quality, closer to the ground truth. Each node in our
mesh structure supports continuous LOD, enabling smooth quality
transitions to coarser parent nodes. This feature effectively reduces
popping artifacts, even when nodes are selected across levels or
switch back and forth.

8 Conclusion
In this paper, we presented aGPU out-of-core approach that achieves
real-time performance for rendering complex scenes composed of
billions of triangles. We introduced a coherence-constrained LOD
selection algorithm and an in-place parallel data management ap-
proach that leverage the properties of a balanced hierarchical mesh
structure and frame-to-frame coherence. This minimizes the cost on
CPU-to-GPU data transfer and allows for the direct consolidation
of new and reusable data within a memory sector.

We demonstrated the advancements of our approach by compar-
ing it to the existing approaches. We also gained valuable insights
into the effectiveness of our approach in supporting real-time ren-
dering across scenarios of varying complexity, including those with
textured and animated models.
For future work, we plan to incorporate advanced lighting and

shading effects, such as shadow mapping and material properties,
to enhance the aesthetic quality of the rendering.
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Appendix:
Given an array containing randomly assigned values of 0s and 1s. If
the array is cut into two parts at a position where the size of the first
part is equal to the number of 1s in the entire array, the following
statement is true:
The count of 0s in the first part is equal to the count of 1s in the

second part.
Proof: Given an array 𝐴 of length 𝑛 containing randomly as-

signed values of 0s and 1s,
(1) Let 𝑛 be the length of array 𝐴 and 𝑘 be the total number of

1s in 𝐴.
(2) Partition 𝐴 such that the first part 𝐴[0 : 𝑘] has 𝑘 elements,

where 𝑘 is the number of 1s.
(3) Let 𝑘1 and 𝑧1 be the counts of 1s and 0s in 𝐴[0 : 𝑘], respec-

tively. Then, 𝑘1 + 𝑧1 = 𝑘 .
(4) Let 𝑘2 and 𝑧2 be the counts of 1s and 0s in 𝐴[𝑘 + 1 : 𝑛],

respectively. Then, 𝑘2 = 𝑘 − 𝑘1.
(5) From 𝑘1 + 𝑧1 = 𝑘 , we get 𝑧1 = 𝑘 − 𝑘1. Thus, 𝑧1 = 𝑘2.
Thus, the equation holds true, confirming that the number of 0s

in the first part will be equal to the number of 1s in the second part
when the array is cut at the position where the size of the first part
is equal to the number of 1s in the entire array.
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