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Abstract—Convolutional networks (ConvNets) have become
a popular approach to computer vision. It is important to
accelerate ConvNet training, which is computationally costly. We
propose a novel parallel algorithm based on decomposition into
a set of tasks, most of which are convolutions or FFTs. Applying
Brent’s theorem to the task dependency graph implies that linear
speedup with the number of processors is attainable within
the PRAM model of parallel computation, for wide network
architectures. To attain such performance on real shared-memory
machines, our algorithm computes convolutions converging on
the same node of the network with temporal locality to reduce
cache misses, and sums the convergent convolution outputs via
an almost wait-free concurrent method to reduce time spent in
critical sections. We implement the algorithm with a publicly
available software package called ZNN. Benchmarking with
multi-core CPUs shows that ZNN can attain speedup roughly
equal to the number of physical cores. We also show that
ZNN can attain over 90x speedup on a many-core CPU (Xeon
PhiTMKnights Corner). These speedups are achieved for network
architectures with widths that are in common use. The task
parallelism of the ZNN algorithm is suited to CPUs, while the
SIMD parallelism of previous algorithms is compatible with
GPUs. Through examples, we show that ZNN can be either
faster or slower than certain GPU implementations depending
on specifics of the network architecture, kernel sizes, and density
and size of the output patch. ZNN may be less costly to develop
and maintain, due to the relative ease of general-purpose CPU
programming.

I. INTRODUCTION

A standard formulation of supervised learning starts with
a parametrized class of mappings, a training set of desired
input-output pairs, and a loss function measuring deviation of
actual output from desired output. The goal of learning is to
minimize the average loss over the training set. A popular
minimization method is stochastic gradient descent. For each
input in sequence, the parameters of the mapping are updated
in minus the direction of the gradient of the loss with respect
to the parameters. Here we are concerned with a class of
mappings known as convolutional networks (ConvNets).

Significant effort has been put into parallelizing ConvNet
learning on GPUs, as in the popular software packages

Caffe [1], Torch [2] and Theano[3]. ConvNet learning has
also been distributed over multiple machines [4]. However,
there has been relatively little work on parallelizing ConvNet
learning for single shared memory CPU machines.

Here we introduce a software package called ZNN, which
implements a novel parallel algorithm for ConvNet learning on
multi-core and many-core CPU machines. ZNN implements
3D ConvNets, with 2D as a special case. ZNN can employ
either direct or FFT convolution, and chooses between the
two methods by autotuning each layer of the network. FFT
convolution was previously applied to 2D ConvNets running
on GPUs [5], [6], and is even more advantageous for 3D
ConvNets on CPUs.

As far as we know, ZNN is the first publicly available
software that supports efficient training of sliding window
max-pooling ConvNets, which have been studied by [7], [8],
[9].

There is related work on using Xeon PhiTMfor supervised
deep learning [10], [11]. and unsupervised deep learning [12].
A comparison of multi-core and GPU parallelization has been
studied by [13]. What all these methods have in common is
that they utilize fork-join model provided by OpenMP to run
multiple instances of the standard backpropagation algorithm
in parallel, or to parallelize certain parts of the algorithm. This
model resembles the SIMD parallelism of the GPU in the
sense that each thread executes the same code on different
data; however the execution is not necessary done at the same
time.

In contrast, ZNN introduces a novel task parallelization
model optimized specifically for ConvNets. This model can
achieve higher utilization of the available CPUs, and has
lower memory overhead; thus it can train much larger models
efficiently.

II. COMPUTATION GRAPH

We define a ConvNet using a directed acyclic graph (DAG),
called the computation graph (Fig. 1). Each node represents a
3D image, and each edge some image filtering operation. (2D
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Fig. 1: ConvNet computation graph. Leftmost node is input
image, and rightmost nodes are output images. Edges rep-
resent convolution (red), transfer function (green), and max
pooling/filtering (blue) operations.

Pass Pooling Filtering Transfer function
Forward f · n3 f · 6n3 log k f · n3

Backward f · n3 f · n3 f · n3

Update − − f · n3

TABLE I: Number of floating point operations (FLOPs) re-
quired by a layer with f nodes that all perform the same
nonlinear filtering operation (max-pooling, max-filtering, or
transfer function).

images are a special case in which one of the dimensions has
size one.) If multiple edges converge on a node, the node sums
the outputs of the filtering operations represented by the edges.
For convenience, the discussion below will assume that images
and kernels have isotropic dimensions, though this restriction
is not necessary for ZNN. The image filtering operations are
of the four following types.

Convolution A weighted linear combination of voxels
within a sliding window is computed for each location of
the window in the image. The set of weights of the linear
combination is called the kernel. If the input image has size
n3 and the kernel has size k3, then the output image has size
n′3 = (n − k + 1)3. Image size decreases because an output
voxel only exists when the sliding window is fully contained
in the input image.1 The convolution is allowed to be sparse,
meaning that only every sth image voxel (in every dimension)
within the sliding window enters the linear combination.

Max-pooling divides an image of size n3 into blocks of
size p3, where n is divisible by p. The maximum value is
computed for each block, yielding an image of size (n/p)3.

Max-filtering The maximum within a sliding window is
computed for each location of the window in the image. For a
window of size k3 and an input image of size n3, the output
image has size (n−k+1)3. 3D max-filtering can be performed
by sequential 1D max-filtering of n2 arrays in each of the three
directions. For each array we keep a heap of size k containing
the values inside the 1D sliding window. Each element of
the array will be inserted and removed at most once, each
operation taking log k. For each position of the sliding window
the top of the heap will contain the maximum value.

Transfer function adds a number called the bias to each
voxel of the image and then applies a nonlinear function to
the result. The nonlinear function is typically nondecreasing.

1This is known as a valid convolution in MATLAB.

Common choices are the logistic function, the hyperbolic
tangent and half-wave rectification.

The computational complexities of max-pooling, max-
filtering, and transfer function are shown in Table I.

For ConvNets in common use, the computation graph has
the following properties:

• All convergent edges are convolutions; if a node has
a sole incoming edge, the edge represents a nonlinear
filtering operation.

• Nodes with convergent edges are not adjacent in the
graph, but are separated from each other by nonlinear
filtering edges. This is a reasonable constraint, because a
composition of two convolutions can be collapsed into a
single convolution, thereby simplifying the graph.

• The graph has a layered organization in which all edges
in a layer represent operations of the same type.

ZNN works for general computation graphs, whether or not
they possess the above properties.

A. Sliding window max-pooling ConvNet
A max-pooling ConvNet in the context of visual object

recognition [14] is a special case of the definition given above.
No max-filterings are used. The size of the input image (known
as the ConvNet field of view) is such that the convolutions
and max-poolings reduce the output image(s) to exactly one
pixel/voxel. There may be a single output representing whether
or not the input image belongs to a given object class, or a
set of n outputs representing membership in one of n object
classes.

If localization and detection are desired as well as recogni-
tion, one can slide a window over a large image, and apply
the max-pooling ConvNet at each location of the window [9].
For an input image of size n3 and a ConvNet field of view
of size v3, the output image is of size (n − v + 1)3. The
sliding window max-pooling ConvNet is also useful in the
context of boundary detection and image segmentation [15].
However, it is computationally wasteful to literally implement
the computation in this way. It is more efficient to use a max-
filtering ConvNet, in which each max-filtering layer increases
the sparsity of all subsequent convolutions by a factor equal to
the size of the max-filtering window (Fig. 2). This approach
has been called skip-kernels [9] or filter rarefaction [16], and
is equivalent in its results to max-fragmentation-pooling [8],
[7]. ZNN can implement the above, but is more general as
the sparsity of convolution need not increase in lock step with
max-filtering, but can be controlled independently.

This sparsity control capability can confer a great deal of
flexibility on ConvNets. It could be useful when implementing
a “scale-invariant” ConvNet [17], where convolutions with
shared kernel weights are performed at multiple scales to
capture scale-invariant features. The scale-invariant convo-
lution can be easily achieved by controlling the sparsity
of convolutions. Unlike max-pooling, max-filtering does not
decrease the resolution of filtered images. Thus, every image
in max-filtering ConvNets keeps the original resolution. This
is particularly beneficial to the multi-scale approach [16], [18],
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Fig. 2: The output of a sliding window max-pooling ConvNet
(left) can be efficiently computed by a max-filtering ConvNet
with sparse convolution (right).

where images with multiple resolutions are combined together
to construct the representation. In max-pooling ConvNets,
upsampling is commonly used to adjust the different resolu-
tions of images at multiple levels. Max-filtering ConvNet, in
contrast, removes the need for such upsampling in an elegant
and much more efficient way.

III. BACKPROPAGATION LEARNING

The backpropagation algorithm is a way of calculating the
gradient of the loss function with respect to the trainable
parameters in a ConvNet, the kernels and biases. For each
input, the calculation proceeds in several phases:

1) Obtain an input and desired output from the training set.
2) Forward pass - compute the actual output of the ConvNet

from the input image.
3) Compute the gradient of the loss function with respect to

the actual output.
4) Backward pass - Compute the gradient of the loss func-

tion with respect to the voxels of the output image at each
node.

5) Weight update - Compute the gradient of the loss function
with respect to the kernels and biases, and update these
parameters in the direction of minus the gradient.

The forward pass has already been described above. ZNN
implements several possibilities for the loss function, such as
the Euclidean distance between the actual and desired outputs.

A. Backward pass
It turns out that the backward pass can be represented by

another graph that looks the same as the forward computation
graph, except that the direction of every edge is reversed. The
output nodes of the forward graph become the input nodes of
the backward graph, and are initialized with the gradient of
the loss function with respect to the voxels of the output nodes
of the forward graph. The nodes of the backward graph are
associated with their own images, which are distinct from the
ones associated with the nodes of the forward graph.

Every edge in the backward graph is multiplication by the
transpose of the Jacobian matrix of the operation represented
by the corresponding edge in the forward computation graph.
The four edge operations in the forward graph become the
following four edge operations in the backward graph.

Convolution Jacobian Convolution in the forward pass
becomes convolution in the backward pass. The kernel is the
same, except that it is reflected along all three dimensions.

Reflecting an N -dimensional image along all dimensions is
easily and efficiently implemented through a one-dimensional
flipping of the memory used by the image. If the input image
has size n3 and the kernel has size k3, then the output image
has size n′3 = (n + k − 1)3. Image size increases because
an output voxel exists whenever the sliding window has some
overlap with the input image.2

Max-pooling Jacobian Within each block, all voxels are
zeroed out except for the one that was identified as the
maximum within that block in the forward pass. An image
of size n3 is expanded into an image of size n3p3.

Max-filtering Jacobian Every element of an image of size
n′3 = (n + p − 1)3 is initialized to zero. For each position
of the sliding window the appropriate value of the input is
accumulated to the position from which the maximum element
was selected for that window in the forward pass.

Transfer function Jacobian Every voxel of a backward
image is multiplied by the derivative of the transfer function
for the corresponding voxel in the forward image.

B. Weight update

After the forward and backward passes are complete, there
are “forward images” at the nodes of the forward computation
graph, and “backward images” at the nodes of the backward
computation graph (except the input nodes). These are used
to update the kernels and biases as follows.

Kernel update For a convolution going from node a to
node b in the forward graph, the gradient of the loss with
respect to the kernel is computed by convolving the reflected
forward image at node a with the backward image at node
b. A valid convolution is performed, yielding an image the
same size as the kernel. This is multiplied by a small “learning
rate parameter,” and then subtracted from the kernel.

Bias update For a bias at node a, the gradient of the loss
is calculated as the sum of all voxels in the backward image
at node a. The scalar result is multiplied by a small “learning
rate parameter,” and then subtracted from the bias.

IV. DIRECT VS. FFT CONVOLUTION

For a single convolution of an image of size n3 with a kernel
of size k3, it is well-known that the FFT method (complexity
O(n3 log n)), becomes more efficient than the direct method
(complexity O(n3k3)), for sufficiently large kernel sizes. The
crossover point of equal complexity satisfies k3 ∼ log n. It is
less well-known that the FFT-direct crossover occurs at smaller
kernel sizes for a ConvNet than for a single convolution [5],
[6]. This is because the FFT of an image at a node can be
shared by edges at that node (see Table II).3 ZNN performs
layerwise auto-tuning to choose between FFT-based or direct
convolution for each layer.

Complexity can be further reduced by memoizing the FFTs
of images and kernels obtained during the forward pass for

2This is known as a full convolution in MATLAB.
3Note that our values differ from the ones in [5] as we take into account

the difference in complexity between full and valid convolutions.
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reuse during the backward pass and weight update. This pos-
sibility was previously noted in passing but not implemented
due to limited onboard GPU memory [5], [6]. The reduction
in complexity is approximately a third (Table II).

V. TASK DEPENDENCY GRAPH

The entire gradient learning calculation can be represented
by the task dependency graph (Fig. 3). Each node repre-
sents one of the four forward operations (convolution, max-
pooling/filtering, transfer function), four backward operations
(Jacobians), or two update operations (kernel, bias) described
above. Two additional tasks interface with the training set.
The data provider obtains a training sample used for a single
round of training, and the loss gradient calculates the gradient
of the loss with respect to the network output.

The edges of the task dependency graph represent depen-
dencies. The forward task of an edge e = (u, v) in the
computation graph depends on forward pass tasks of all edges
(w, u). The backward task of the same edge depends on the
backward tasks of all edges (v, w). Finally the update task of
an edge depends on both forward and backward tasks of the
same edge.

Additionally, if there was a backward pass executed before
the current forward pass, the forward task of e also depends on
the previous update task of e. This is relevant because gradient
learning is iterative, so the gradient is calculated repeatedly by
cycling through forward, backward, and update.

Fig. 3 shows the ConvNet learning graph corresponding
to the ConvNet computation graph of Fig. 1. Steps 3 − 5
of one iteration of gradient learning are followed by steps
1 and 2 of the next iteration. This is because we enforce
synchronization after each forward pass. Therefore forward
tasks are at the bottom of the graph, and backward tasks at the
top. The topmost purple circle nodes represent the tasks that
calculate the gradient of the loss with respect to the output
of the network obtained in the previous forward pass. The
yellow circle in the middle represents the task providing the
input image for the forward tasks at the bottom. Note that
there are no update tasks for pooling/filtering. The bottom two
green circles, which represent the output of the forward pass
are dependencies for the tasks of the next 3 − 5, 1, 2 round
represented by the top two purple circles.

A. Theoretically achievable speedup

Define TP as the time required for P processors to perform
one learning iteration. We would like a parallel algorithm
that achieves a large speedup SP = T1/TP , and ideally
one that approaches linear speedup, SP = P . This should
be possible for “wide” ConvNet architectures, which contain
many convolutions that can be done in parallel. We formalize
this intuition in the following.

According to Brent’s theorem [19], if a computation can be
performed in T∞ time with an infinite number of processors,
then

TP ≤ T∞ +
T1 − T∞

P
(1)

This amounts to a speedup of at least

SP ≡ T1

TP
≥ S∞

1 + S∞−1
P

(2)

We will refer to the right hand side as the “theoretically achiev-
able speedup,” because it depends on the idealized assumptions
of the PRAM model used to prove Brent’s theorem.

We will estimate the theoretically achievable speedup for
layered architectures in which every convolutional layer is
fully connected. As before, time complexity is measured in
number of floating point instructions. We can already estimate
T1 by summing the times in Tables I and II for each layer of
the network. To estimate T∞, we analyze the following algo-
rithm employing an infinite number of processors. (1) Move
sequentially through the layers, and perform all forward tasks
in each layer in parallel. (2) Compute the loss gradient for
all output nodes in parallel. (3) Move sequentially backward
through the layers, and perform all backward tasks in each
layer in parallel. (4) Perform the weight updates for all kernels
and biases in parallel.

Since the layers are done sequentially, the total time for
the forward pass is the sum of contributions from each layer
(convolutional, transfer function, or max pooling/filtering) as
specified in Tables III and IV. The time for the backward pass
is calculated similarly. Since all kernel and bias updates are
done in parallel, the total update time is the maximum of the
individual update times, as specified in Tables III and IV. The
sum of forward, backward, and update times yields the time
complexity of one gradient learning iteration.

Most of the formulas in the tables do not depend on the
widths of the layers, f and f ′. This is because all tasks in
a layer are done in parallel. The only exception is that the
complexity of a convolutional layer depends logarithmically on
width (⌈log2 f⌉), because summing the results of f convergent
convolutions requires this amount of time using the binary
collapse algorithm described in [19].

Plots of the theoretically achievable speedup (2) for net-
works of different width and depth are shown in Fig. 44. In
all cases, SP → P in the limit of large network width f . This
is because T1 scales like f2 for large f (see terms in Table II),
while T∞ scales like log f (see terms in Table III). It follows
that S∞ diverges with f , so the bound on SP in Eq. (2) is
equal to P in the limit of large f .

According to Fig. 4, the network width at which SP reaches
a fixed fraction (say 75%) of its maximal value (P ), increases
with P . This behavior is consistent with Eq. (2). We expect
SP to approach a fixed fraction of S∞ when S∞ ≈ P . Since
S∞ scales like f2 (neglecting the logarithmic factor due to
T∞), this should happen when f2 ≈ P . The power of two
means that the theoretically achievable speedup approaches its
maximum value even for networks with rather modest widths.

VI. TASK SCHEDULING AND EXECUTION

Brent’s theorem guarantees the existence of a parallel
algorithm that achieves a large speedup for training wide

4The constant C for the FFT operations is assumed to be 5.
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Pass Direct FFT-based FFT-based (Memoized)
Forward f ′ · f · n′3 · k3 3Cn3 logn[f ′ + f + f ′ · f ] + 4f ′ · f · n3 3Cn3 logn[f ′ + f + f ′ · f ] + 4f ′ · f · n3

Backward f ′ · f · n′3 · k3 3Cn3 logn[f ′ + f + f ′ · f ] + 4f ′ · f · n3 3Cn3 logn[f ′ + f ] + 4f ′ · f · n3

Update f ′ · f · n′3 · k3 3Cn3 logn[f ′ + f + f ′ · f ] + 4f ′ · f · n3 3Cn3 logn[f ′ · f ] + 4f ′ · f · n3

Total 3f ′ · f · n′3 · k3 9Cn3 logn[f ′ + f + f ′ · f ] + 12f ′ · f · n3 6Cn3 logn[f ′ + f + f ′ · f ] + 12f ′ · f · n3

TABLE II: Computational complexity of a fully connected convolutional layer, which maps f input images to f ′ output images
using ff ′ kernels. FFT complexity for an n× n× n image is assumed to be Cn3 log n3. Complexity is measured in number
of floating point operations.

Fig. 3: Task dependency graph. Each edge of the computation graph (Fig. 1) generates multiple nodes of the task dependency
graph, corresponding to forward (circle), backward (square), and update (diamond) tasks. Node colors indicate transfer function
(green), convolution (red), pooling/filtering (blue), input provider (yellow), loss gradient (purple).

Pass Direct FFT-based FFT-based (Memoized)
Forward – T fwd

∞ n′3 · k3 + n′3⌈log2 f⌉ 6Cn3 logn+ 4n3⌈log2 f⌉ 6Cn3 logn+ 4n3⌈log2 f⌉
Backward – T bwd

∞ n′3 · k3 + n3⌈log2 f ′⌉ 6Cn3 logn+ 4n3⌈log2 f ′⌉ 6Cn3 logn+ 4n3⌈log2 f ′⌉
Update – Tupdate

∞ n′3 · k3 6Cn3 logn+ 4n3 3Cn3 logn+ 4n3

TABLE III: Time required to perform operations on fully connected convolutional layers with infinite number of processors
available.
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Fig. 4: Theoretically achievable speedup (2) using (a) direct
convolution (b) FFT-based convolution with memoizing en-
abled. Multiple lines of the same color represent networks
with different depths, ranging from 4 to 40. The kernels in all
the networks have size of 53.

Pass Pooling Filtering Transfer function
Forward – T fwd

∞ n3 6n3 log k n3

Backward – T bwd
∞ n3 n3 n3

Update – Tupdate
∞ − − n3

TABLE IV: Time required to perform pooling, filtering and
transfer function on a full layer with infinite number of
processors available.

ConvNets. We now turn to the problem of designing a parallel
algorithm that actually achieves large speedup in practice.
Since Brent’s theorem assumes no synchronization and com-
munication overhead, we design our algorithm to minimize
synchronization overhead and increase temporal locality of
computation to reduce cache misses.

The central quantity in our algorithm is a global priority
queue that contains tasks that are ready to be executed together
with their priority. A predetermined number of workers will
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then execute the tasks from the global queue. Each worker
picks up and executes a task with the highest priority on the
queue.

A. Scheduling algorithm
Assuming that all tasks require roughly the same amount

of time to execute, a well-known scheduling heuristic for
achieving low latency is to prioritize each task by the distance
of the longest path to any sink node in the task dependency
graph.

We will modify this heuristic for update tasks. These will
be given lower priority in the queue than all other tasks, and
execution will be forced whenever the dependent forward task
is scheduled for execution. This modification has little effect
on latency, and forced execution respects cache locality.

The priority of a forward (backward) task of an edge e =
(u, v) is given by the ordered pair (d, n), where d is the longest
distance from the node v to any output (input) node in the
ConvNet computation graph and n is the index of v in some
total ordering of the nodes of the ConvNet computation graph.
Ordering by d is a heuristic for low latency, and ordering by
n breaks ties in a way that increases cache locality.

A backward or update task is placed in the priority queue
when all its dependencies are satisfied. A forward task is
placed in the queue when all its non-update dependencies are
satisfied, and its update dependency is queued, executing, or
complete.

B. Task execution algorithms
Forward task algorithm is shown in the Algorithm 1.

The main functionality of the forward task is to apply the
appropriate FORWARD-TRANSFORM on the given input image
I and accumulate the result to the sum stored in the output
node. The task that adds the last image to the sum then queues
all dependent forward tasks for execution.

The main functionality of the forward task is shown in the
procedure DO-FORWARD. However such procedure can only
be executed when the update task from the previous round
has been completed. This is ensured by creating a new sub-
task containing the main functionality and calling the FORCE
method.

Algorithm 1 Executing a forward task

FORWARD-TASK(e, I)

1 t = CREATE-TASK(DO-FORWARD, e, I)
2 FORCE(e.update task , t)

DO-FORWARD(e = (u, v), I)

1 Iout = e.FORWARD-TRANSFORM(I )
2 if ADD-TO-SUM(v. fwd sum, Iout)
3 v.If = GET-SUM(v. fwd sum)
4 for e′ ∈ v.out edges
5 t = CREATE-TASK(FORWARD-TASK, e′, v.If )
6 ENQUEUE(e′.fwd priority , t)

The FORCE function receives an update task and a forward
subtask as parameters. The goal of the function is to execute

the forward subtask but also make sure that the update task has
been completed. In order to do that the method first examines
the state of the update task which can be one of the following
(Note that the FORCE is called from the thread scheduled to
execute the appropriate forward task).

1) Completed - the execution of the update task has been
completed; in this case the calling thread just executes
the forward subtask.

2) Queued - the update task is on the queue waiting to be
scheduled for execution; in this case the update task is
removed from the queue, and the calling thread executes
both the update task and the forward subtask.

3) Executing - the update task is currently being executed
by some other thread; in this case the forward subtask
gets attached to the update task. This flags the thread ex-
ecuting the update task to execute the forward subtask as
soon as the update task is completed. The calling thread
then returns and picks up another task for execution.

Such design ensures that no thread is ever waiting for
completion of an update task, but rather executes the required
update task itself, or delegates the forward subtask to the
thread currently executing the update task.

Algorithm 2 Executing a backward task

BACKWARD-TASK(e = (u, v), I)

1 Iout = e.BACKWARD-TRANSFORM(I )
2 if e. is trainable
3 If = u. fwd image
4 e.update task = CREATE-TASK(UPDATE, e, If , I)
5 ENQUEUE(lowest priority , e.update task)
6 if ADD-TO-SUM(u.bwd sum, Iout)
7 u.Ib = GET-SUM(u.bwd sum)
8 for e′ ∈ u. in edges
9 t = CREATE-TASK(BACKWARD-TASK, e′, u.Ib)

10 ENQUEUE(e′.bwd priority , t)

Backward task algorithm is shown in Algorithm 2. When
scheduled for execution, all the dependencies of the backward
task have been satisfied. The backward task then applies the
appropriate BACKWARD-TRANSFORM on the given image and
then queues an appropriate update task for execution with the
lowest common value as priority. Similarly to the forward task,
the transformed image is then added to the sum stored in the
input node, and the thread to add the last image to the sum
queues the dependent tasks for execution.

Update tasks algorithm is shown in Algorithm 3. First the
gradient of the loss is calculated, and then is multiplied by
a small “learning rate” η and subtracted from the set of the
training parameters (weights of the kernel or the bias). Finally,
if a forward subtask has been attached it is detached and
executed.

VII. SYNCHRONIZATION ISSUES

It is important to minimize the amount of time spent in
critical sections – parts of the code that can be only executed
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Algorithm 3 Executing an update task

UPDATE(e, If , Ib)

1 G = e.COMPUTE-GRADIENT(If , Ib)
2 e.params = e.params − e.η ·G
3 if this. fwd subtask
4 t = this. fwd subtask
5 this. fwd subtask = NIL
6 EXECUTE(t)

by a single thread at a time. The main three points in the al-
gorithm that require synchronization are memory management
(allocation/deallocation), operations on the global task queue
and concurrent summations.

A. Queue operations
The operations on the global task priority queue have to

be synchronized. The queue is implemented as a heap of lists
lowering the complexity of insertion and deletion from logN
to logK, where N is the total number of tasks in the queue
and K is the number of distinct values for the priority of the
tasks inside the queue. Depending on the network structure,
this number can be much smaller than the total number of tasks
in the queue, which is especially true for wide networks.

B. Wait-free concurrent summation
When multiple edges converge on the same node in the com-

putation graph, it means that multiple convolutions executed
in parallel need to add their results to the same accumulated
sum. The additions have to be synchronized; only one thread
is allowed to change the sum. The naive strategy, waiting until
all other threads have finished adding their images to the sum,
would lead to critical section time that scales linearly with the
image size n3. We propose a novel method that eliminates
the dependence on image size by performing only pointer
operations inside the critical section, which works as follows.

Suppose that multiple threads are executing ADD-TO-SUM
in Algorithm 4. For each thread, v points to a different 3D
image. We would like the pointer to the sum of all these images
to be stored in the object S when the computation terminates.
This is accomplished by having each thread repeatedly try
to reset the pointer to the sum stored in S.sum to point to
v instead. If the thread succeeds, it stops working. If the
thread fails, it adds the value pointed to by S.sum to the
location referenced by v, and sets the pointer to NIL. Every
thread continues to work until it succeeds. Once the last
thread succeeds, S will contain the correct answer. Note that
this algorithm does the time-consuming additions outside the
critical section (lines 5-11).

C. Memory management
ZNN implements two custom memory allocators. These

are designed to be faster than standard memory management
routines, at the cost of using more memory. One custom allo-
cator is dedicated to 3D images, which are usually large, and
the other is dedicated to small objects used in auxiliary data
structures. Both allocators maintain 32 global pools of memory

Algorithm 4 Wait-free concurrent summation algorithm

ADD-TO-SUM(S, v)

1 v′ = NIL
2 last = FALSE
3 while TRUE
4 ACQUIRE(S. lock )
5 if S.sum = = NIL
6 S.sum = v
7 v = NIL
8 S. total = S. total + 1
9 last = (S. total = = S.required)

10 else v′ = S.sum
11 S.sum = NIL
12 RELEASE(S. lock )
13 if v = = NIL
14 return last
15 else ADD-TO(v, v′) // v = v + v′

chunks. Each pool i, i ∈ 0 . . . 31 contains chunks of sizes of
2i. Lock-free queues, as described in [20] and implemented as
a part of the boost [21] library are used to implement the pool
operations. The only difference between the allocators is the
memory alignment—the 3D image memory allocator ensures
proper memory alignment for utilizing SIMD instructions. No
memory is shared between the two allocators.

When a chunk of memory of size s is requested, first s is
rounded up to the nearest power of 2. The appropriate pool is
examined for available memory chunks. If there’s an available
chunk we return it and remove it from the pool. If no chunks
are available we allocate one from the system and return it.

When de-allocating a chunk memory, it is simply added to
the appropriate pool, and no memory is ever returned to the
system. This means that the memory usage of our program can
never decrease. In practice, as the ConvNet training consist of
a single loop performing the same work, our memory usage
peaks after a few rounds.

In the worst case this strategy can lead to near 2× memory
usage overhead; however the available memory to the CPU is
rarely a limiting factor in training a network. In the future,
we might consider implementing more advanced memory
allocators, such as ones with thread-local pools in addition to
the global pool, or ones with higher granularity of available
chunk sizes to reduce the size overhead.

VIII. SCALABILITY

We performed measurements of the speedup achieved by
our proposed parallel algorithm relative to the serial algorithm,
using the CPU systems listed in Table V. Amazon EC2
instances with 8 and 18 cores (c4.4xlarge and c4.8xlarge) were
chosen for benchmarking, because they are readily available to
anyone. A 4-way CPU system was included because it has 40
cores, though this is a relatively specialized piece of hardware.
For an even larger number of cores, we also benchmarked
the Xeon PhiTMKnights Corner. All measurements used the
Intel compiler (version 15.0.2) with Intel MKL (version 11.2)
libraries for FFTs and direct convolution.
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Fig. 5: Speedup versus number of threads for 2D (first row) and 3D (second row) achieved on machines in Table V (left-to-right
columns). In each graph, the lines are for network widths 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, from bottom to top.

CPU Frequency Cores/Threads
Intel R⃝ XeonTM E5-2666 v3 2.9 GHz 8 cores/16 threads
Intel R⃝ XeonTM E5-2666 v3 2.9 GHz 18 cores/36 threads
Intel R⃝ XeonTM E7-4850 2.0 GHz 40 cores/80 threads
Intel R⃝Xeon PhiTM5110P 1.053 GHz 60 cores/240 threads

TABLE V: Machines used for the experiments

The 3D ConvNets contained four fully-connected convolu-
tional (C) layers with 3 × 3 × 3 kernels, each followed by a
transfer function layer (T) with rectified linear function, and
two 2 × 2 × 2 max-filtering (M) layers. Each convolutional
layer The sequence of layer types was CTMCTMCTCT. The
output patch size was 12× 12× 12.

The 2D ConvNets contained 6 fully-connected convolu-
tional layers with 11× 11 kernels, each followed by rectified
linear transfer function layer (T), and two 2× 2 max-filtering
layers (2nd and 4th). The sequence of layer types was CTM-
CTMCTCTCTCT. The output patch size was 48× 48.

The time of one learning iteration was defined as the interval
of time between two consecutive forward pass completions.
This is the most accurate estimate as there the execution is
being synchronized after the completion of a forward pass. As
the speed can be slightly lower until memory usage converges,
we ignore the first 5 iterations and average the times of the
next 50 iterations. The GPU measurements were averaged over
100 rounds.

2D ConvNets were implemented as a special case of 3D
ConvNets, by setting one of the dimensions to have size one.
The width of the ConvNets was varied as described below. FFT
convolution was employed for 2D, and direct convolution for
3D to illustrate the use of both methods; reversing this yields
similar results. Other network architectures and kernel sizes

also yield similar results.
Fig. 5 shows speedup attained by various CPUs as a function

of two parameters, number of worker threads and network
width. Each graph shows the result of varying the number
of workers while network width is held fixed. To achieve
near maximal possible speedup ZNN requires sufficiently
wide networks (≥ 30 for multicore CPUs and ≥ 80 for the
manycore CPU) and sufficiently many worker threads (number
of hyperthreads for multicore and number of hardware threads
for manycore) 5. The value of the maximal speedup is equal to
the number of cores or a bit larger (maximal height of graphs).

For a wide network on multicore CPUs, speedup increases
linearly until the number of worker threads equals the number
of cores. After that the increase continues at a slower rate. For
wide networks on Xeon PhiTM, speedup increases linearly until
the number of worker threads equals the number of cores, then
more slowly until double that number, and then even slower
until the number of hardware threads. The maximal achieved
speedups for networks of different widths are shown in Figs. 6
and 7.

IX. CPU VS. GPU

While the preceding results show that ZNN can efficiently
utilize CPUs, it is also important to know how the resulting
performance compares to GPU implementations of ConvNet
learning. Therefore, we benchmarked ZNN against Caffe [1]
and Theano [3], two popular GPU implementations. Compar-
ison can be tricky because CPU and GPU implementations by
definition cannot be run on the same hardware.

5Xeon PhiTMhas hardware threads which differ from virtual thread tech-
nology of the desktop XeonTMprocessors.
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Fig. 6: Achieved speedups on 2D networks compared to the
serial algorithm.
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Fig. 7: Achieved speedups on 3D networks compared to the
serial algorithm.

We chose to run Caffe and Theano on a Titan X GPU
(CUDA 7.0 and cuDNN v3), and ZNN on an 18 core Amazon
EC2 instance (c4.8xlarge). We chose this particular compari-
son, because the alternatives seemed unfair. For example, we
could have run ZNN on specialized hardware with more CPU
cores than the EC2 instance. This comparison seemed unfair
because the specialized hardware would have been much more
costly than Titan X and less accessible than Amazon EC2.
Also, we could have used GPU instances from Amazon EC2,
but these are currently much slower than Titan X (3× or more
on our benchmarks) and have half the onboard RAM.

For Caffe, both default and cuDNN[22] implementations
were used. For 3D ConvNets we only used Theano, as the
official release of Caffe still does not support 3D ConvNets.
Our Caffe and Theano code is publicly available in the ZNN
repository. We

ZNN used FFT convolution for both 2D and 3D, as this
was found to be optimal by the auto-tuning capability of ZNN.
Caffe and Theano used direct convolution.

Our ConvNets contained 6 fully-connected convolutional
(C) layers, each followed by a rectified linear transfer function
layer (T), and two max-pooling (P) layers, either 2 × 2 or
2 × 2 × 2. The sequence of the layer types was CTPCT-
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Fig. 8: Comparison of ZNN, Caffe (with and without cuDNN)
and Theano for 2D ConvNets. The charts from the top down
have kernel sizes of 102, 202, 302 and 402 respectively. Where
Caffe data is missing, it means that Caffe could not handle
networks of the given size.

PCTCTCTCT. All networks had width 40, while the sizes of
the kernels and the output patch varied.

All benchmark times were for “sparse training,” meaning
that the ConvNet is used to produce predictions for pixels in
the output patch that form a lattice with period 4 in every
dimension. The loss of predicted output pixels is due to the
two layers of max-pooling.

As noted before, ZNN can also perform “dense training,”
meaning that the ConvNet is used to produce predictions for
every pixel in the output patch by applying the ConvNet to a
window that slides across every “valid” location in the input
patch. Requiring Caffe or Theano to perform dense training
could have been accomplished by computing 16 sparse outputs
in 2D and 64 in 3D to assemble a dense output. This method
is very inefficient and would have been no contest with ZNN.

A. Speed
The comparison of 2D ConvNets is shown in Fig. 8. ZNN

is faster than Caffe and Theano for sufficiently large kernels
(30×30 or larger). This makes sense because FFT convolution
(ZNN) is more efficient than direct convolution (Caffe and
Theano) for sufficiently large kernels.

Such large kernels are not generally used in practice, so
ZNN may not be competitive with GPU implementations for
2D networks. On the other hand, ZNN opens up the possibility
of efficiently training networks with large kernels, and these
might find some practical application in the future.

The comparison of 3D ConvNets is shown in Fig. 9. ZNN is
comparable to Theano even for modest kernel sizes of 5×5×5
and outperforms Theano for kernel sizes of 7 × 7 × 7 and
greater. Such kernel sizes are currently relevant for practical
applications [23]. Again the benchmark makes sense, because
we expect the crossover point for complexity of FFT vs. direct
convolution to occur for smaller (linear) kernel sizes in 3D.

B. Memory
Working memory is another computational resource that is

important for training ConvNets. Given the limited amount
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Fig. 9: Comparison of ZNN and Theano for 3D ConvNets.
The charts from the top down have kernel sizes of 33, 53 and
73.

of onboard GPU memory, we were unable to use Theano to
train 3D networks with kernel sizes larger than 7× 7× 7. We
were also unable to use Caffe to train many 2D networks (see
missing bars in Fig. 8).

ZNN enables training of larger networks mostly because a
typical CPU system has much more RAM than even a top
GPU. Titan X, for example, has just 12 GB of onboard RAM.
Additionally, ZNN can achieve even higher speed by using
extra RAM space, as in the case of FFT memoization. When
using FFT-based convolutions, with the memoization disabled,
ZNN is more efficient in its usage of RAM than the proposed
GPU methods. The memory overhead of the methods proposed
in [5], [6] could be very high as it is proportional to the number
of kernels in a layer. In contrast ZNN’s memory overhead is
proportional to the number of workers.

X. IMPLEMENTATION DETAILS

ZNN is implemented in C++ and is publicly available under
the GPL2 license (https://github.com/zlateski/znn-release). It
can use either fftw or Intel MKL for FFTs and either provided
code or Intel MKL libraries for direct convolution. Using fftw
instead of MKL yields same scalability but lower absolute per-
formances due to the differences in single thread performances
of the two libraries. The repository also provides alternative
scheduling strategies such as simple FIFO or LIFO as well
as some more complex ones based on work stealing [24]. The
alternative scheduling strategies achieve noticeably lower scal-
ability than the one proposed in the paper for most networks.
However, some very specific networks might benefit from
alternative scheduling algorithms. Future work can include
automatic detection of the best scheduling strategy.

XI. CONCLUSIONS

ZNN achieves high performances by efficiently utilizing the
available CPUs. We expect an increase in the number of cores
per chip (or Xeon PhiTMcard) in the future, making ZNN
even more practical. In fact, we have already used ZNN to
achieve state of the art results in boundary detection [25] and
computation of dendritic arbor densities [26].

Having a large amount of RAM available to the CPU, ZNN
can efficiently train very large ConvNets with large kernels.

ZNN allows for easy extensions and can efficiently train a
ConvNet with an arbitrary topology, allowing for new research.

Unlike the ZNN’s task parallelization model, the current
GPU implementations employ SIMD parallelism to perform
computation on one whole layer at a time, thus limiting
the network structure. Mainly, the computation is parallelized
such that a single thread computes the value of a single
voxel of an output image. Libraries like cuDNN provide
optimized primitives for fully connected convolutional layers
by reducing all the required convolutions in the layer to a
matrix multiplication, which is then parallelized on the GPU.

Extending the functionality requires the user to provide
a parallelized implementation of the new layer type, which
typically requires great knowledge of GPU programming,
and might take a long time. Contrary to that, ZNN’s task
parallelism allows for easy extensions by simply providing
serial functions for the forward and backward pass, as well
as the gradient computation, if required. ZNN’s repository
contains some sample extensions providing functionality of
dropout [27] and multi-scale [16], [18] networks.
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