
ZNNi: Maximizing the Inference Throughput of 3D
Convolutional Networks on CPUs and GPUs

Aleksandar Zlateski∗, Kisuk Lee†
∗Electrical Engineering and Computer Science Dept.

†Brain and Cognitive Sciences Dept.
Massachusetts Institute of Technology

Cambridge, MA 02139 USA
∗zlateski@mit.edu, †kisuklee@mit.edu

H. Sebastian Seung
Neuroscience Institute

and Computer Science Dept.
Princeton University

Princeton, NJ 08540 USA
sseung@princeton.edu

Abstract—Sliding window convolutional networks (ConvNets)
have become a popular approach to computer vision problems
such as image segmentation and object detection and local-
ization. Here we consider the parallelization of inference, i.e.,
the application of a previously trained ConvNet, with emphasis
on 3D images. Our goal is to maximize throughput, defined
as the number of output voxels computed per unit time. We
propose CPU and GPU primitives for convolutional and pooling
layers, which are combined to create CPU, GPU, and CPU-GPU
inference algorithms. The primitives include convolution based
on highly efficient padded and pruned FFTs. Our theoretical
analyses and empirical tests reveal a number of interesting
findings. For example, adding host RAM can be a more efficient
way of increasing throughput than adding another GPU or
more CPUs. Furthermore, our CPU-GPU algorithm can achieve
greater throughput than the sum of CPU-only and GPU-only
throughputs.

I. INTRODUCTION

Researchers have revived the use of convolutional networks
(ConvNets) for computer vision, under the banner of “deep
learning.” The revival has been driven by increases in the
speed of ConvNet training made possible by GPU imple-
mentations [1], [2], [3], [4]. This paper is focused on the
inference problem, that is, applying a trained network to
images to arrive at a classified outputs as fast as possible.
Fast inference is critical for big data applications involving
large numbers of images and/or very large images. Billions of
photos and millions of videos are shared online every day [5],
[6]. Scientists are also generating large amounts of image data.
For example, high-speed electron microscopy can generate a
petascale 3D image from a cubic millimeter of brain in a few
weeks [7]. We will focus on 3D ConvNets, which are relevant
for both videos and 3D images. 2D ConvNets are regarded as
a less costly special case.

In contemporary computer vision, researchers are most
familiar with applying ConvNets for image-to-label transfor-
mations, where the input is an image and the output is trained
to match known classes. However, ConvNets can also be used
for image-to-image transformations. In this context, a ConvNet
acts like a more complex version of a typical filtering operation
in image processing. The ConvNet is applied to a window that

slides over the input image. For each location of the window,
the ConvNet outputs a set of numbers, effectively producing
a set of output images, each with the same resolution as the
input image.

A. Throughput of sliding window inference
Sliding window ConvNets have also been applied to image

segmentation, producing an output image representing the
probability that a voxel is a boundary between objects or
not [8], and to semantic segmentation, labeling each voxel
in an input image by the class of the object to which it
belongs [9]. Here each output image represents the probability
that an object of a certain class is located at a voxel. Sliding
window ConvNets have also been applied to image segmenta-
tion, to produce an output image representing the probability
that a voxel is a boundary between objects or not [10]. And
they have been applied to semantic segmentation, the problem
of labeling each voxel in an input image by the class of the
object to which it belongs [11]. In general, sliding window
ConvNets are increasing in popularity as they are applied
to more and more problems in computer vision. However,
transforming image-to-image is even more computationally
costly than image-to-label, so the need for speeding up sliding
window ConvNets is especially acute.

In large scale sliding window inference, the input image
is divided into smaller input patches. These are transformed
by the ConvNet into output patches, which are recombined to
generate the output image. This divide-and-conquer approach
is motivated by both time and space considerations. The
computation can be sped up by assigning the patches to
multiple workers. Also if the computation were not divided,
it might not fit in the RAM available to a single worker.

Each output patch is smaller than the input patch, because
the sliding window is restricted to be entirely contained within
the input image. (This is analogous to a “valid” convolution
in MATLAB.) Therefore the input patches are chosen to
overlap so that the output patches exactly cover the output
image without overlap. (This is analogous to the overlap-save
or overlap-scrap method for computing a single convolution
described in signal processing textbooks.)

SC16; Salt Lake City, Utah, USA; November 2016
978–1–4673–8815–3/16/$31.00 © 2016 IEEE

854

We define worker throughput as the number of voxels in the
output patch divided by the time required for a single worker
to process that patch. In this paper, a worker will be a single
shared-memory machine, either CPU or GPU or combination
of the two. Our goal is to maximize worker throughput.

When computing ConvNet outputs for nearby locations of
the sliding window, some of the arithmetic operations are iden-
tical. For efficiency it is important to reuse the results of these
operations. For ConvNets with convolutional layers only, this
happens naturally as the output patch is the same resolution as
the input patch. If there are pooling layers, however, the output
patch produced by a ConvNet is a subsampling of the output of
a sliding window ConvNet. To obtain the entire output image,
one must compute all sub–samplings with different offsets
separately, and then combine them. This naı̈ve algorithm is
sub-optimal because it fails to reuse computations for nearby
output voxels.

Here we instead provide pooling primitives that compute
max-pooling fragments (MPF), a more efficient strategy for
sliding window computations [12], [13]. ELEKTRONN is
the only other publicly available package with MPF support
known to us (http://elektronn.org). The MPF algorithm com-
putes the same results as the approach known as “dilated
convolution”[14], “strided kernels”[15], “max filtering”[16], or
“filter rarefaction”[17].

Given a patch, MPF is able to efficiently reuse computation
within that patch. We would like to use as large a patch
as possible to maximize efficiency, but must divide these
into smaller patches to reduce memory use. This division
incurs more costs than just a loss of computational reuse.
Reuse cannot happen for nearby locations in different output
patches, assuming the computations on the patches are done
independently. For example, it is highly inefficient to make
the input patch the same size as the sliding window, which
results in no reuse at all across different locations of the sliding
window. It is more efficient to increase the size of the input
patch, to reduce the fraction of voxels near the border and
thereby reduce inefficiency due to lack of reuse. This is not
the case for ConvNet training, where there is typically some
range of input sizes that is optimal for training speed.

The desire for a larger input patch for computational
efficiency creates pressure for more memory. Maximizing
throughput will require a trade–off between these two com-
peting factors: increasing memory use for larger patches and
more reuse and reducing memory use due to exhausting the
available RAM.

II. NOVELTY, CONTRIBUTIONS AND RELATED WORK

We believe the focus on acceleration of ConvNet throughput
for inference is a conceptual novelty, in contrast to existing
works focused on accelerating the training phase. To maximize
the inference throughput we propose a system (framework)
consisting of primitives for different layer types and computing
architectures, as well as methods to efficiently combine them.
The elements of our system have various degree of novelty.

!"#$%&'#&("'

)*+

),-.,/(&%,-0/),-.,/(&%,-0/1023*,,/%-4 1023*,,/%-4

5*+

*,,/3
6)(7889 1*: *,,/ 1*:::;7%"'#&

)(7883<=>/%#%&3
5?11

)(7883<=>/%#%&3
>"'#,=>(&'@35?11

::;7%"'#&

70&03
*0"0//'/

;0AB3
*0"0//'/

5*+3C3
D,A&3E!1

),-.,/(&%,-0/

Fig. 1: Diagram of all layers primitives. The red primitives are
wrappers primitives provided by CuDNNv4. The green primitives
are the novel primitives introduced in this paper.

We consider ConvNet architectures that contain both con-
volutional and pooling layers. GPU implementations such as
cuDNNv4 provide a number of primitives for both kinds of
layers. A particular architecture is implemented by combining
primitives. In line with this approach, we introduce a number
of new layer primitives for the CPU and GPU (Fig. 1). These
are designed to have low memory overhead, which should be
important for high throughput as mentioned above.

Our new convolutional primitives are either direct or FFT-
based. To the best of our knowledge, our system is the first
application of well-studied pruned FFTs to any kind of deep
learning. We introduce new implementations of pruned FFTs
that are faster (for kernels1 on average 5× for CPU and 10×
for GPU) while having a small memory footprint. Our FFT-
based convolutional primitive for the GPU is designed to use
much less memory than the algorithm proposed by [18], [19]
and implemented in fbfft.

We provide two new FFT-based convolutional primitives for
the CPU. The main difference between the two is the paral-
lelization strategy. As shown later, the task–parallel version is
more efficient if the number of input images and the number of
output images are both large, but at the cost of more memory
overhead than the fork–join data parallel version. However, the
task parallel algorithm is designed to use less memory than
the one previously proposed for ConvNet training [16]. Finally,
we also provide a new direct convolutional primitive for the
CPU, but this turns out to be less useful than our FFT-based
primitives in most circumstances.

In empirical tests, we combine the primitives to maximize
throughput for CPU-only and GPU-only algorithms. In some
cases, our FFT-based GPU primitives outperform the cuD-
NNv4 primitives by a large margin. The CPU-only algorithm
may achieve higher throughput than the GPU-only algorithm
because the CPU benefits from data locality and fast caches,
even if it is capable of fewer floating point operations (FLOPs)
per second.

To work around the limited onboard RAM of the GPU, we
introduce a novel GPU + host RAM primitive. We show that
using this new primitive can lead to much higher throughput,

1Convolution kernels, also known as filters, should not be confused with
GPU kernels.

855

in spite of the slow PCI-E communication between GPU and
host RAM.

Finally, we propose a novel CPU-GPU method, in which
the first layers of the ConvNet are computed by the CPU and
the later layers are computed by the GPU. The algorithm is
pipelined to utilize the CPU and GPU efficiently. This yields
the highest throughput of all the algorithms, sometimes even
greater than the sum of throughputs of GPU + host RAM and
CPU-only.

A relatively simple kind of data parallelism for utilizing
both the CPU and the GPU is proposed by Caffe con Troll
(CcT) [20]. Such “Batch parallelism” is reasonable for train-
ing, but suboptimal for inference because to fit in RAM the
input patches must be small when the batch size is large.
Furthermore, CcT handles neither 3D nor sliding window
inference.

To the best of our knowledge, the only publicly available
3D sliding window max-pooling ConvNet implementations
are the Caffe fork of [15], ZNN [16] (CPU based), and
ELEKTRONN [21] (both GPU based). The last is the only
competitor that is specifically optimized for inference.

As a prelude to the layer primitives, we first introduce
lower-level FFT primitives which turn out to be important for
efficient convolution.

III. PRUNED FFT
Improving the efficiency of convolution is crucial, because

this computation is performed so many times in a ConvNet.
The advantages of FFT convolution have been shown for 2D
ConvNets running on GPUs [18], [19], and 3D ConvNets
running on CPUs [16].

In FFT convolution the kernel and the image are zero-
padded to a common size. Since the kernel is typically much
smaller than the image, the padded kernel consists mostly of
zeros. Ignoring the zeros is known as FFT pruning, and can
provide speedup [22].

The speedup from pruning FFTs is more modest for a single
convolution, which requires one padded kernel FFT, one image
FFT, and one inverse FFT. However, ConvNets, which are
dominated by kernel FFTs, can greatly benefit.

We propose and implement an algorithm for pruned 3D
FFTs, for both the CPU and GPU. Pruning 3D FFTs of a
kernel reduces the FLOPs by 3×. In practice, our approach
achieves an average of 5× speedup over the naı̈ve (zero–
padding) approach on the CPU and 10× speedup on the GPU.
The additional speedup on the CPU come from increased
memory locality, and on the GPU from better utilization of
the available cores.

While our pruned FFT algorithms give a substantial
speedup, understanding them is not necessary for understand-
ing the rest of our contributions. The reader may prefer to skip
to the next section on how pruned FFTs are used to compute
the convolutional layers.

A. General algorithm
For 3D FFT-based convolution, the 3D images x and y are

first zero-padded to the same size. The inverse FFT of the

Fig. 2: Pruned FFTs. The dark blue voxels show the locations of the
nonzero elements of the image after zero-padding.

point-wise product contains the result of the convolution. The
images x and y can be zero-padded to any size, as long as
their size is equal.

A 3D FFT is obtained by computing 1D FFTs along the
three dimensions. Some of these 1D FFTs are of an array with
all elements equal to 0. These are unnecessary to compute as
the FFT of an all zeros signal is all zeros.

We can reduce the amount of computation by computing
only necessary 1D transforms. When computing the FFT of a
trainable kernel of size k3 zero padded to size of n3, instead of
naively computing n2 1D FFTs along each dimension, which
takes Cn3 log n3 we could first only do k2 FFTs along one
dimension, then k×x along then next, and finally n2 along the
last dimension, as shown on Fig. 2. This approach reduces the
computational cost from Cn3 log n3 to Cn log n[k2+k·n+n2].
As most of the FFTs are performed on kernels, and as the
kernel sizes are usually much smaller compared to the image
sizes (k ≪ n), we could reduce the computation cost by nearly
two thirds.

B. CPU implementation
Suppose we would like to compute the FFT of an x×y×z

image zero-padded to an x′ × y′ × z′ image.
The x × y × z image is zero-padded to x′ × y × z. This

is easily implemented by doing a linear copy of the memory,
and zero-padding the rest. We then perform y · z 1D real to
complex FFT transforms along the x direction. The FFTs are
performed out of place into a pre-allocated, and zero-initialized
complex-valued ⌊x

′

2 ⌋ + 1 × y′ × z′ image. We then perform
in-place 1D transforms along the y direction, followed by the
z direction.

The inverse FFT is computed by following the above steps
in reverse order. The 1D FFTs can either be done serially, or
by N workers in parallel (in a parallel for loop).

This method induces a memory overhead of x′ × y × z, a
space required for zero–padding the image along x direction
in the first step of the algorithm.

C. GPU primitives
On the GPU, we always perform FFTs on b 3D images

simultaneously, in order to achieve high utilization of the many
GPU threads.

856

A set of b 3D images can be represented as a 4D tensor.
We need to perform 1D FFTs along the three least significant
dimensions. Our algorithm computes the 3D FFTs as a series
of tensor transforms2 and 1D FFTs along the least significant
dimension of the tensor.

When computing the FFT transforms of b 3D images each
of size x×y×z padded to x′×y′×z′, the size of the 4D input
tensor I is b×x×y×z. First, 1D in–place real to complex 1D
transforms along the z direction are performed. We prepare the
input by extending the 4D tensor along the z direction to fit
the result. The transform will need to contain z′′ = z′/2 + 1
complex numbers, and we need twice as many reals. A 4D
tensor I1 of size b× x× y × 2z′′) is first initialized to zero,
and appropriate elements from the input are filled in (elements
Ii,j,k,l get mapped to I1i,j,k,l while the rest of elements of I1

are set to zero).
A batch of b in–place real to complex 1D transforms are

then performed. The result represents a 4D complex tensor Ĩ1
of size b × x × y × z′′. Note that all the 1D transforms are
done on contiguous memory chunks (along the least significant
dimension).

In the next step we perform in-place complex to complex
transforms along the y direction. To do this the elements of Ĩ1
are permuted into another 4D tensor Ĩ2 of size b×x×z′′×y′,
such that the element Ĩ1i,j,k,l gets mapped to Ĩ2i,j,l,k and the
rest of Ĩ2 is zero–filled. We then perform in-place complex to
complex transforms along the least significant dimension of
Ĩ2.

In the final step, we perform the transform along the x
direction. We permute Ĩ2 into a new 4D complex tensor Ĩ3 of
size b× z′′× y′× x′. An element Ĩ2i,j,k,l is mapped to Ĩ3i,k,l,j .
Complex to complex in-place transforms are performed along
the least significant dimension of Ĩ3.

As we only perform point-wise multiplications of trans-
formed images, or take the inverse transforms of them, we
can just keep the result in this representation and avoid doing
an extra permutation.

The inverse transform can be performed taking the same
steps in reverse order.

D. Implementation details
Our approach uses 3rd party libraries to perform each batch

of 1D FFTs. Depending on the library implementation, the
size to which we pad the 3D image can greatly influence the
computational complexity.

On the CPU we use either fftw or Intel MKL, and pad
the images (and kernels) to sizes that can be written in the form
of 2a3b5c7d11e13f . When Intel MKL is used any such size
is allowed, however, when fftw is used we only allow sizes
for which e+f is either 0 or 1 [23], [24]. On the GPU we use
cuFFT [25], which has optimized algorithms only for sizes of
the form 2a3b5c7d.

4D tensor permuting requires a lot of indexing calculation,
which can involve a lot of expensive division and modulus

2This is known as a permute function in MATLAB

operations. Sometimes these operations are more expensive
than the actual 1D FFT transforms performed. We improve the
performance by using pre-computed magic numbers and shifts
as described in [26]. Image reshaping is easily implemented
using the Thrust CUDA library [27].

We limit the large cuFFT memory overhead for computing
batches of 1D transforms by splitting the batch computation
into sub–batches of 1D transforms. We make sure that the sub–
batch size is still large enough to utilize all the computational
power, but limit the size so that we limit the memory overhead.

The memory overhead of the algorithm is due to the fact
that we do out-of-place permuting of the 4D tensor, which
requires space for b·x·y′ ·z′′ complex numbers. This, however,
will not increase the memory overhead of our algorithm
for convolutional layers on the GPU, as it already needs a
temporary buffer of size b · x′ · y′ · z′′ for other purposes,
which is reused for scratch space in the FFT transforms.

Additional, relatively small, overhead comes from the mem-
ory required by cuFFT to perform a batch of 1D transforms.
By dividing the batch into sub–batches we essentially limit
this overhead to a pre–defined constant amount of memory.

IV. CONVOLUTIONAL LAYERS

We begin with the primitives for the convolutional layers,
which are the most computationally intensive.

The input to a convolutional layer is a tuple of f images,
and the output a tuple of f ′ images. We want to process a
batch of S inputs to yield a batch of S outputs, via

Os,j =
f∑

i=1

wji ∗ Is,i

for 1 ≤ s ≤ S and 1 ≤ j ≤ f ′. Here Is,i is the ith image of
the sth input in the batch, and Os,j is the jth image of the sth

output in the batch, and wji is the kernel from the ith image
in an input tuple to the jth image in an output tuple.

We will assume 3D images and kernels. If Is,i has size
n⃗ = ⟨nx, ny, nz⟩ and wji has size k⃗ = ⟨kx, ky, kz⟩, then we
can regard I as a 5D tensor of size S × f × nx × ny × nz , w
as a 5D tensor of size f ′ × f × kx × ky × kz , and O as a 5D
tensor of size S × f ′ × n′

x × n′
y × n′

z , where n⃗′ = n⃗− k⃗+ 1⃗.
We will refer to the sizes of the 5D tensors I and O as input

and output shape, respectively. The relationship between input
shape and output shape depends on kernel size as in Table I.

A. CPU primitives

We propose three parallel algorithms for the convolutional
layer that are suited for multi-core CPUs. The first algorithm
performs direct convolution, whereas the other two use FFT
based convolutions.

1) Direct convolution algorithm: The computation is par-
allelized by two parallel for loops such that each image of
each output in the batch is computed in parallel on a different
working thread (see Algorithm 1). The parallel for loops are
implemented using Intel thread building blocks such that the
work is evenly divided over the available cores.

857

Layer Input shape Output shape FLOPS

Convolutional – Direct S × f × n3 S × f ′ × [n− k]3 S · f ′ · f · n3 · k3
Convolutional – FFT–based S × f × n3 S × f ′ × [n− k]3 S · 3Cn3 logn[f ′ + f] + 4Sf ′ · f · n3 + f · f ′ · Cn logn[k2 + k · n+ n2]
Max Pooling S × f × n3 S × f × [n/p]3 S · f · n3

Max Fragment Pooling S × f × n3 [S · p3]× f × (n/p)3 S · f · n3 · p3

TABLE I: Relation between input and output shapes for convolutional and pooling layers, along with computational complexities. Input
shape is for a batch of S inputs, each of which is an f -tuple of 3D images with size n3, and output shape is analogous. The 3D kernel has
size k3. The pooling window has size p3, and the constant C for the FFT complexity depends on the FFT implementation.

Algorithm 1 Multi-core algorithm for a convolutional layer
using direct convolution.

CONVOLUTIONAL-FORWARD-FFT-CPU1(I, w, S, f, f ′, n⃗, k⃗)

1 n⃗′ = n⃗− k⃗ + 1⃗
2 O = 5D-REAL-TENSOR(S, f ′, n′

x, n
′
y , n

′
z)

3 parallel for i = 0 to S − 1
4 parallel for j = 0 to f ′ − 1
5 for k = 0 to f − 1
6 Oi,j = Oi,j + CONVOLVE(Ii,k, wj,k)
7 FREE-MEMORY(I)
8 return O

CPU algorithm Memory required

Direct (naı̈ve) S · f · n+ S · f ′ · n′

Direct (MKL) S · f · n+ S · f ′ · n′ + T · n′

FFT algorithm 1 max

{
S · f · (n+ ñ)

S · f ′ · n′ + (S · f + 1) · ñ

FFT algorithm 2 max

⎧
⎪⎨

⎪⎩

S · f · (n+ ñ)

S · (f + f ′) · ñ+ T · ñ
S · f ′ · (n′ + ñ)

GPU algorithm Memory required

cuDNNv4 (default) S · f · n+ S · f ′ · n′

cuDNNv4 (precomp) 2S · f · n+ S · f ′ · n′

FFT K +max

⎧
⎪⎨

⎪⎩

S · f · (n+ ñ) + f · ñ
S · (f + f ′) · ñ+ 2f · ñ
S · f ′ · (n′ + ñ) + f ′ · ñ

TABLE II: Memory required by different implementations. S is the
batch size, f and f ′ represent the number of input/output images
of the layer. n and n′ represent the number of pixels in each
input/output image, and ñ represents the number of elements in the
transformed image. K is pre–defined constant amount of memory
allocated for cuFFT, and T is the number of available cores for the
CPU algorithms.

We provide one implementation using naı̈ve convolution and
the other using Intel MKL. The latter is 2× faster on average,
but requires extra memory for a temporary image where a
result of convolution is stored before accumulating it to the
output image. The memory overhead of both implementations
is given in Table II.

2) Data parallel FFT-based algorithm: The computation-
ally intensive operations are individually parallelized (see
Algorithm 2). More specifically each FFT and inverse FFT
transform is done in parallel as explained in the previous
section. The PARALLEL-MAD function computes a series of
multiply-add operations of complex numbers in parallel by
dividing the range into roughly equal sub-ranges, each of
which is executed on a single core.

Algorithm 2 Multi-core algorithm for a convolutional layer

CONVOLUTIONAL-FORWARD-FFT-CPU1(I, w, S, f, f ′, n⃗, k⃗)

1 n⃗′ = n⃗− k⃗ + 1⃗

2 ⃗̃n = FFT-OPTIMAL-SIZE(n⃗)
3 Ĩ = 5D-COMPLEX-TENSOR(S, f, ⌊ñx/2⌋+ 1, ñy , ñz)
4 for i = 0 to S − 1
5 for j = 0 to f − 1
6 Ĩi,j = PARALLEL-FFT(Ii,j)
7 FREE-MEMORY(I)
8 O = 5D-REAL-TENSOR(S, f ′, n′

x, n
′
y , n

′
z)

9 Õ = 4D-COMPLEX-TENSOR(S, ⌊ñx/2⌋+ 1, ñy , ñz)
10 w̃ = 3D-COMPLEX-TENSOR(⌊ñx/2⌋+ 1, ñy , ñz)
11 for i = 0 to f ′ − 1
12 for j = 0 to f − 1
13 w̃ = PARALLEL-FFT(wi,j)
14 for k = 0 to S − 1
15 PARALLEL-MAD(Ĩk,j , w̃, Õk)
16 for k = 0 to S − 1
17 Ok,i = PARALLEL-INVERSE-FFT(Õk)
18 FREE-MEMORY(Ĩ)
19 FREE-MEMORY(Õ)
20 FREE-MEMORY(w̃)
21 return O

The memory requirement of the algorithm equals the maxi-
mal amount of memory required by the algorithm at any single
point of time during the execution, and is given in Table II.

3) Task parallel FFT-based algorithm: The main quantities
of the task parallel algorithm are: (1) breaking up the com-
putation required by the convolutional layer into tasks that
operate on independent chunks of memory, (2) creating a task
dependency graph, and (3) scheduling the tasks for execution.

There are five different task types:
• Input image transform task computes the forward FFT

transform of a single input image.
• Kernel transform task computes the forward FFT trans-

form of a single kernel.
• Multiply-add task computes the point-wise product of

an input image and a kernel FFT accumulating the result
to an appropriate image transform.

• Output image transform task computes the inverse FFT
of the appropriate accumulated image transform. This
task is also responsible for adding the bias and applying
the transfer function.

• Synchronization tasks, beside serving as synchronization
points, are the only tasks responsible (and only ones
allowed) to allocate and/or deallocate memory.

The task dependency graph of all the tasks required for
computing the output images of a convolutional layer with

858

Fig. 3: Task dependency diagram of a task–based convolutional layer.

four input and five output images for a batch size of four
is shown on Fig. 3. The tasks are created and queued when
all their dependencies have been satisfied. There are four
synchronization tasks effectively dividing the computation
into three stages. The layout of the kernel transform tasks
forms a grid, with the number of columns equal to the number
of output images, and the number of rows equal to the number
of input images. The task of the ith column and jth row
computes the transform of the kernel wi,j . Furthermore, each
such task has S dependent multiply-add tasks, where S is
the batch size of the input (equal to four in Fig. 3). The kth

dependent multiply-add task of a kernel transform task in
column i and row j accumulates the product of the transforms
of the jth input image of the kth batch and the filter wi,j to
the transform of the ith output image of the kth batch.

The tasks are executed by N worker threads, where N
equals the number of available cores (or virtual cores, when
hyper–threading is enabled). Each worker thread is pinned to
a single core. This means that there is 1–1 relation between the
workers and the available cores – each worker is allowed to
run only on a specific hardware core, as described in [28].
For this reason, we will use “worker thread” and “core”
interchangeably.

The first synchronization task allocates memory for the
FFT transforms of the input images. The number of dependent
input image transform tasks equals the number of input
images times the batch size S. They are then executed by the
N worker threads, such that each worker picks up an arbitrary
task and executes it.

The last thread to complete the execution of an input image
transform task immediately executes the second synchroniza-
tion task. This tasks deallocates the memory holding the input
images, as their values are no longer required. It then allocates
memory for the transforms of the output images. At this point
M threads are chosen as primary threads, where M is the
maximum of N – total number of threads, and the number of
output images. The primary threads are chosen so that they are
evenly distributed over multiple physical chips. Each primary
thread is given a temporary buffer equal to the size required
to fit the transform of a padded kernel for that layer.

The kernel transform tasks and multiply-add tasks are
then scheduled for execution based on their distance to the
sink node of the task dependency graph, such that the more
distant nodes get scheduled first. The scheduling has two
additional constraints: (1) the kernel transform tasks can
only be executed by a primary thread, and (2) its dependent
multiply-add tasks can only be executed by worker threads
that are pinned to the cores on the same physical chip.

This strategy is chosen over the popular alternative approach
to task scheduling based on work stealing [29], [30] because
it divides the work more evenly over multi–chip machines and
further increase cache locality. On a 4-way machine it yields
more deterministic results – very little variance in run-time
and average of 20% speed improvement over the alternative.

The last multiply-add task to complete executes the third
synchronization task. This task deallocates the memory
buffers given to the primary threads as well as the memory
used to store the transforms of the input images. It also
allocates the memory to store the final result – the output
images.

The number of output image transform tasks equals the
number of output images times the batch size. The tasks are
executed by all N workers, such that each worker picks up an
arbitrary task and executes it. The last output image trans-
form task to finish also executes the final synchronization
task, which frees the memory required for the output image
transforms.

The memory required by the task parallel algorithm can
be higher than the one of the data parallel algorithm, when
many cores are available. The exact memory required equals
the maximal memory required by each of the 3 stages, and is
given in Table II.

The task–parallel approach has two main advantages over
the data-parallel approach. The coarse-grained tasks allow
fewer synchronization points which raises utilization of the
available cores. In the data–parallel primitive, each convolution
and point-wise summation is done using fork–join parallelism,
which can induce severe overhead, as joins wait for the last
thread to finish. Further, the design of the task dependency
graph ensures efficient use of the L3 cache, which is especially
beneficial for multi–chip systems. On a 4–way Intel Xeon E7–
8890 v3 machine the task parallel algorithm is up to 10× faster
than the data parallel one (for large enough f ′ · S and f · S).

B. GPU primitives

For the GPU, we propose three different algorithms. Two
of them use cuDNN’s 3D primitives that are based on implicit
matrix–matrix multiplication. The third FFT–based implemen-
tation is based on our, previously described, algorithm for
pruned FFTs.

1) Direct convolution using cuDNNv4: The two algorithms
using the direct convolution are implemented using cuDNN.
CuDNN performs 3D convolution as an implicit matrix–matrix
multiplication, meaning that the matrices are not actually
created. The first algorithm uses extra memory to store pre-

859

computed indices. The second algorithm, which we find 3-5×
slower, does not require any extra memory.

2) FFT based algorithm: FFT-based convolutional layer
is based on the GPU implementation of the pruned FFT
algorithm described in Section III-C.

Algorithm 3 FFT based convolutional layer algorithm for the
GPU.

CONVOLUTIONAL-FORWARD-FFT-GPU(I, w, S, f, f ′, n⃗, k⃗)

1 n⃗′ = n⃗− k⃗ + 1⃗
2 Ĩ = 5D-COMPLEX-TENSOR(S, f, ⌊nx/2⌋+ 1, ny , nz)
3 s̃ = 5D-COMPLEX-TENSOR(f, ⌊nx/2⌋+ 1, ny , nz)
4 for i = 0 to S − 1
5 Ĩi = GPU-PARALLEL-FFT(Ii, s̃)
6 FREE-MEMORY(I)
7 Õ = 5D-COMPLEX-TENSOR(S, f ′, ⌊nx/2⌋+ 1, ny , nz)
8 for i = 0 to f ′ − 1
9 w̃i = PARALLEL-FFT(wi, s̃)

10 for j = 0 to S − 1
11 s = PARALLEL-MULT(w̃i, Ĩj)
12 Õj,i = PARALLEL-ACCUMULATE(s)
13 FREE-MEMORY(Ĩ)
14 FREE-MEMORY(s̃)
15 O = 5D-REAL-TENSOR(S, f ′, n′

x, n
′
y , n

′
z)

16 s̃ = 5D-COMPLEX-TENSOR(f ′, ⌊nx/2⌋+ 1, ny , nz)
17 for i = 0 to S − 1
18 Oi = GPU-PARALLEL-INVERSE-FFT(Õi)
19 FREE-MEMORY(Õ)
20 FREE-MEMORY(s̃)
21 return O

The algorithm, given in Algorithm 3 resembles the task
based CPU algorithm in the sense that it consists of three
stages with memory allocated/deallocated between the stages.
The lines 2 and 3 allocate memory required for the in-
put image transforms and the scratch space required by
GPU-PARALLEL-FFT procedure (explained in Section III-C).
The first stage (lines 4 and 5) computes the transforms of
all the input images by performing f 3D FFTs in parallel.
The memory used by the input images is then released, and
memory for storing the FFTs of the output images is allocated
(lines 6 and 7).

In the second stage (lines 8–12) we loop over the f ′ output
images. For each output image we compute the transform of
the f relevant kernels (ones connecting each of the input
images and the current output image). We then loop over
the inputs in the batch, and for each batch we compute the
point–wise product of the relevant input image transforms with
the relevant kernel transforms, producing f complex valued
images. The values of the f images are then accumulated
to a single image, – the transform of the appropriate output
image. Note how we can re–use the scratch space s (used for
GPU-PARALLEL-FFT) to store the point–wise product of f
transformed images.

The memory used by the input image transforms, and the
scratch space, is then released. We then allocate memory for
the output images as well as new scratch space of different
size, required for computing f ′ inverse FFT transforms at once
(lines 13–16).

Fig. 4: Decomposing a convolutional layer into multiple convolutional
sub–layers.

In the final stage (lines 17 and 18) we compute the output
images by looping over the batches and computing f ′ inverse
FFTs in parallel. Finally we free the memory of the output
transforms and the scratch space.

The memory required by the algorithm is equal to the
maximum of memory required in each of the three stages
(Table II).

C. GPU + host RAM primitive
Consider a convolutional layer whose input is shape is

(S, f, x, y, z) and output shape (S, f ′, x′, y′, z′). The compu-
tation performed by the layer can be divided into N sub–
layers with input shapes of (Si, fi, x, y, z) and output shape
(Si, f ′

i , x
′, y′, z′). Fig. 4 illustrates how the computation of a

convolutional layer with S = 1, f = 6, and f ′ = 4 can be
divided into N = 4 sub–layers, each having Si = 1, fi = 3
and f ′

i = 2. The blue color represents the input images that
have to be transferred to the GPU, the red color represents the
memory that has to be allocated on the GPU. The green color
represent the results that have to be transferred back to the
host. The computation of each sub–layer can be performed
by any of the GPU–only primitives. The time required for
processing the layer will equal to the sum of processing time of
each sub–layer and the time required for memory transfers. To
reduce the transfer overhead two CUDA streams are used. One
stream is responsible for uploading and downloading data from
the device, while the other stream simultaneously performs the
computation. Due to the GPU’s memory limit, not all divisions
are feasible.

For a given input shape, picking the optimal division is
done by an exhaustive search with the following heuristic.
When S > 1, we prefer the divisions into sub–layers such
that fi = f , f ′

i = f ′, and Si ≤ S. This, essentially divides
the batches of the input into sub–batches that are processed
on the GPU. In other cases (S = 1) we consider all possible
divisions and pick one of the GPU–only primitives described
above based on empirical measurement.

The host memory requirement for this layer equals the
amount of memory required to store the input and the output
tensor, and GPU on–board memory has to be large enough to
facilitate each sub–layer.

V. MAX-POOLING AND MAX-POOLING FRAGMENTS

Max pooling of an image of size n⃗ with the window size
of p⃗ = ⟨px, py, pz⟩ divides an image into blocks of size p⃗.
The maximum value is computed for each block, yielding an

860

image of size ⟨nx/px, ny/py, nz/pz⟩. The input image size n⃗
is restricted such that nx, ny and nz are divisible by px, py
and pz respectively.

On the CPU, we implement the max-pooling layer so that
the max-pooling of each image is performed in parallel (e.g.
by using parallel for loop). For the GPU we use the cuDNN
primitives for max-pooling.

When the input image has the same size as the ConvNet
field of view, the output image consists of a single voxel.

Max pooling fragmentation of an image of size n⃗ with
the window size of p⃗ produces px × py × pz output images
(fragments) by performing multiple max pooling operations on
the image at offsets (x, y, z), where 0 ≤ x < px, 0 ≤ y < py ,
and 0 ≤ z < pz . When the image has size such that n⃗+ 1⃗ is
divisible by p⃗, the sizes of all produced fragments will equal
⟨⌊nx/px⌋, ⌊ny/py⌋, ⌊nz/pz⌋⟩.

It is important to note that max-pooling fragmentation
increases the batch size for subsequent layers. For an MPF
layer, the number of output images is equal to the number of
input images times the number of fragments px×py×pz . The
increase in the batch size has an impact on the parallelization
of subsequent layers. Simple max-pooling does not change the
batch size.

Our CPU implementation loops over all the f input images
of each of S inputs in a parallel for loop, and performs the
max-pooling operation at each offset.

In the GPU implementation, for each valid offset (x, y, z)
we invoke the cuDNN max-pooling primitive to compute the
max-pooling of all input images at that offset.

Implementing GPU + host RAM MPF layer turned out
to be impractical. When the input is stored in host RAM,
it is more efficient to compute the MPF layers using the
CPU, even when very few cores are available. This is because
of the expensive transfer to and from the device and low
computational complexity of the MPF layers.

VI. GPU-ONLY OR CPU-ONLY INFERENCE

By stringing together the CPU (or GPU) layer primitives
defined above, we can now construct CPU-only (or GPU-
only) algorithms for ConvNet inference. For each layer, we
have a choice between several primitives. Each max–pooling
layer can be replaced by a MPF layer. The size of the input
patch and the number of inputs in the batch should be chosen.
These parameters and the primitives should be chosen to
maximize throughput. Below we describe some theoretical
considerations and empirical data about the optimal choice.

A. Maximizing throughput
The result of a network applied to an input I is obtained

by sequentially applying each primitive. The input to the
first layer’s primitive is I , and the input to every subsequent
primitive will be the output of the previous layer’s primitive.
The output of the last layer will be our desired result I ′. Note
that if MPF layers are used, the most significant dimension of
the output can increase. For an input shape of (S, f, x, y, z)
the output shape will be of the form (αS, f ′, x′, y′, z′). Where

Fig. 5: A network of form CPCPCCCC with the first half executed
one layer at a time, and the second half one batch at a time. The
pooling window size of the MPF layers is 2× 1× 1.

α value is depends on the amount of MPF layers used and
their pooling window sizes. This output represents S sets, each
having α fragments which should be recombined to obtain the
sliding–window result. [12], [13].

The throughput of the network is therefore defined as:

SIZE(I ′)∑
1≤i≤L TIME(Primitivei, Ii)

Where Ii is the input of the ith layer’s primitive. The
output shape will depend on the shape of the input I and the
primitives chosen for each max–pooling layer. As the input
shapes to each layer need to have integral sizes, not every
combination of layer primitives and input shapes are allowed
(see Table I). Additional constraint is that the memory required
for ith primitive to process input Ii has to be smaller than the
memory available to the system (either the CPU or the GPU).

In general case, the highest throughput network implemen-
tation can be found using an exhaustive search:

1) Loop over all possibilities for the max–pooling layers.
This will introduce constraints on the allowable input
shapes.

2) Loop over all allowed input shapes.
3) Determine the best implementation for each convolutional

layer.
This is possible because for fixed choice of max–pooling or

MPF of each pooling layer, and fixed input shape, the time
and space required for each convolutional layer is uniquely
determined. We pick the fastest one that satisfies the memory
constrain.

In the empirical measurements below, it will turn out that
for our networks, the highest throughput is obtained when all
the max–pooling layers are replaced with MPF layers, and
when the input batch size is one (S = 1). Additionally, higher
throughput is achieved for larger input sizes.

VII. GPU + HOST RAM AND CPU–GPU INFERENCE

A. GPU + host RAM ConvNet execution

The simplest way to execute a network using the GPU for
computation and host RAM for storage is to use individually
optimized GPU + host RAM layer described above for each
convolutional layer, and the CPU implementation of a MPF
layer for each pooling layer.

When using MPF layers for evaluating a max-pooling
ConvNet, it turns out that better performance is achieved by
minimizing the data transferred to and from the GPU. To

861

understand how performance can be improved, we note this
property of a ConvNet:

A ConvNet with input shape I = (S, f, x, y, z) with
S > 1, will have the batch size S′ of the output shape
I ′ = (S′, f ′, x′, y′, z′) always divisible by S. The values
I ′(S

′

S i : S′

S (i + 1), :, :, :, :) will only depend on I(i, :, :, :, :).
This means that concatenating results of applying a layer on
two inputs I1(S1, f, x, y, z) and I2(S2, f, x, y, z) will equal to
the result of the concatenated input of size (S1+S2, f, x, y, z).

Consider the output shape of the first θ layers of a ConvNet.
The computation of the rest of the layers can be considered to
be another ConvNet that takes the output of the θth layer as the
input. If some of the first θ layers were MPF layers, the batch
size of the θth layer output Sθ will be greater than 1. Instead
processing one layer at a time for the rest of the layers, one
might be able to process all remaining layers for a sub–batch
Ŝθ at a time using a GPU–only network. This will reduce
the memory transfer overhead as no intermediate results have
to be transferred back to the host. In Fig. 5 we illustrate the
timeline of executing a network of the form CPCPCCCC by
having the first four layers executed one layer at a time, and
the rest one batch at a time.

Finding the optimal network execution strategy for this
pattern becomes more complex. The first additional parameter
we have is θ, (0 ≤ θ ≤ L), where L is the number of layers
of the given ConvNet. This parameter represents the number
of layers that will be processed one at a time using the GPU
+ host RAM or CPU-MPF layer at a time. The rest of the
network is executed one (or more) batches at a time using the
GPU–only primitives.

For a given value of θ and a given input size, this approach
has two limitations. Firstly, θ layers have to fit on the host
RAM. Secondly, there has to exist a GPU–only network that
can process the latter layers on the GPU.

In order to find an optimal implementation we, consider any
valid input shape and any valid θ that are convolutional to use
GPU + host RAM primitive, and separately optimize the rest
of the GPU–only network

B. CPU–GPU ConvNet execution
Finally, inference can be done by utilizing both CPU and

GPU. As in the GPU + host RAM approach described above,
the network layers are divided into two groups. For the first θ
layers, we use the optimal CPU implementation as defined in
the previous section, and for the rest of the layers we use the
optimal GPU implementation as defined above.

The CPU and the GPU form a producer–consumer pipeline.
The CPU produces by computing the first θ layers for a given
input image, and queuing the result. The GPU consumes the
data on the queue, taking as input the output of the θth layer,
and yields the final output of the last layer.

This approach can generate huge memory overhead if the
CPU produces data much faster than the GPU can consume.
For that reason, the CPU is not allowed to start working on
the next input until the queue is empty – until the GPU had
picked up and started executing the rest of the network for all

Layer F–maps n337 n537 n726 n926

1 80 Conv 23 Conv 43 Conv 63 Conv 83

2 80 Pool 23 Pool 23 Pool 23 Pool 23
3 80 Conv 33 Conv 53 Conv 73 Conv 93

4 80 Pool 23 Pool 23 Pool 23 Pool 23
5 80 Conv 33 Conv 53 Conv 73 Conv 93

6 80 Pool 23 Pool 23 Conv 73 Pool 93
7 80 Conv 33 Conv 53 Conv 73 Conv 93

8 80 Conv 33 Conv 53 Conv 73 Conv 93

9 80 Conv 33 Conv 53

10 3 Conv 33 Conv 53

TABLE III: ConvNet architectures of the benchmarked networks.

the data on the queue. This essentially limits the queue to a
maximal size of one.

For a given value of θ and a given input size the GPU
will operate on the output of the θth layer producing the final
output. Hence the output of the θth layer has to be stored in
the host RAM, along with memory allocated for the network
output. As both the CPUs and GPUs can do work only when
the queue is empty, the rest of the host RAM is available to
the CPUs.

Finding the optimal implementation through an exhaustive
search resembles the one in the previous section. For each
valid input shape, we loop over all valid values of θ, and for
each such division of the ConvNet, we separately optimize the
first θ CPU-only layers and the rest of the GPU-only layers,
having the memory limitations in mind.

VIII. BENCHMARKS

We expect that algorithm throughput will depend on the
ConvNet architecture. We chose networks that are represen-
tative of the state of the art in dense prediction tasks [31],
[32]. Such architectures use many convolution and pooling
layers to achieve a large field of view. The architectures with
smaller kernels are more typical, but we also include some
with larger kernels. The architectures of all four benchmarked
networks are shown in Table III. A rectified linear (relu)
transfer function is applied after each convolutional layer.
The complexity of the transfer function has little influence
on computation time as it represents only a small fraction of
the overall computation.

The benchmarks are performed on two machines. The first
machine is a 4-way Intel Xeon E7 8890v3 with total of 72
cores (144 hyper–threads), 256GB of RAM and a Titan X
GPU (with 12GB on–board RAM). The second machine is
an Amazon EC2 instance with 32 virtual cores and 244GB
of RAM (r3.8xlarge). The second machine is included as it is
more readily available.

A. CPU–only and GPU–only results
The highest throughput for both the CPU–only and the

GPU–only inference was obtained when all the max–pooling
layers are replaced with MPF layers, and when the input
batch size is one (S = 1). Additionally, higher throughput
is achieved for larger input sizes.

The fact that MPF layers outperform max-pooling layers
is not surprising; it has been shown that using MPF layers

862

Input size

T
h
ro

u
g
h
p
u
t
(M

V
o
x/

s)

0

0.2

0.4

0.6

0.8

CPU (72 cores) CPU (16 cores) GPU

0

0.05

0.1

0.15

0.2

200 400 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

200 400 600
0

0.05

0.1

0.15

0.2

0.25

n337 n537

n726 n926

Fig. 6: Maximal throughput achieved vs input image size using GPU–
only and CPU–only primitives.

reduces the operation counts required for computing a single
output pixel [12], [13]. With limited amount of memory,
the value S = 1 allows for larger input images, and thus
more computational reuse. On the other side, when FFT–based
convolution is used, both increased image size and increase in
S reduces the computational cost [18], [19]. The fact that the
throughput is highest when S = 1 for our networks makes
sense as we get benefits from both the large input image and
the reuse of kernel FFTs in latter layers. This is because MPF
layers effectively increase the batch size of all subsequent
layers (Table I).

Fig. 6 shows the throughput achieved on the four bench-
marked networks (Table III) with the batch size S = 1, and
different image sizes. Generally, when the same primitives
are used, the throughput increases with the size of the input
image. The throughput suddenly drops when the input image
size doesn’t allow for faster primitives due to the memory
requirements, so less efficient ones have to be used.

It turns out that the optimal choice for primitives for the
CPU is always the same regardless of the network choice. In
all cases the first (convolutional) layer was optimized to data–
parallel FFT–based algorithm, and the rest of the convolutional
layers used the task–based algorithm. This is expected because
of the much higher cache locality of our FFT implementations
compared to direct convolution, which plays an important role
on the CPU with very fast cache access and relatively slow
RAM access.

The optimal use of primitives for the GPU have higher de-
pendence on the ConvNet’s architecture. The optimal choice of
primitives for each network, as well as the optimal input image
sizes are given in Table IV. Interestingly, the implementation
for the first layer of all networks is the slower version of
the cuDNN’s primitive. Even though the primitive is slower,
it is able to process larger images, as it has lower memory
requirements. There is a trade–off between the layer speed,
and the maximal size of the input that a layer can process.
In this case it was more beneficial to be able to process
larger inputs. As expected, the cuDNN’s direct convolution

n337 n537 n726 n926

Input size 2353 2173 2433 2533

Layer 1 CuDNN1 CuDNN1 CuDNN1 CuDNN1
Layer 2 MPF MPF MPF MPF
Layer 3 CuDNN1 FFT FFT CuDNN1
Layer 4 MPF MPF MPF MPF
Layer 5 CuDNN2 FFT FFT FFT
Layer 6 MPF MPF FFT FFT
Layer 7 CuDNN2 CuDNN2 FFT FFT
Layer 8 CuDNN2 CuDNN2 FFT FFT
Layer 9 CuDNN2 CuDNN2

Layer 10 CuDNN2 CuDNN2

TABLE IV: Optimal choice for different layers.

Memory Consumed (GB)

T
h
ro

u
g
h
p
u
t
(M

V
o
x/

s)

0

0.2

0.4

0.6

0.8

1

1.2

CPU (72 cores) GPU+Host RAM CPU+GPU GPU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

n337 n537

n726 n926

Fig. 7: Maximal throughput achieved vs memory consumption using
GPU–only, CPU–only, CPU + host RAM and CPU–GPU implemen-
tations for different image sizes.

primitives outperform our FFT–based ones for small kernel
sizes. As expected the FFT–based primitives are more efficient
for larger kernels and larger images sizes.

B. GPU + host RAM and CPU–GPU results

On Fig. 7 we show the results of the exhaustive search (with
S = 1) for the highest throughput on the four benchmarked
networks (Table III) using the GPU + host RAM and CPU-
GPU inference, alongside the CPU and GPU only one. Instead
of showing the input image size on the x axis, we decide
to show the memory required by the implementation. The
memory consumed is calculated as max{MCPU ,MGPU}.
This allows us to estimate the throughput on systems with
similar CPU/GPU performances but less available memory.

We observe that the GPU+host RAM can greatly improve
the throughput for kernel sizes of 53 and larger. This is
reasonable, as for very small kernels, the PCI-E transfer time
dominates over the time spend doing computation on the GPU.
However, as the image size increases, so does the granularity
of the sub–layers for the GPU+host RAM primitives. This
requires more transfers to and from the GPU increasing the
transfer overhead, and yielding lower throughput.

Our CPU-GPU approach yields the highest throughput
which is higher than the CPU–only and GPU–only combined.

863

Network Baseline (cuDNN) Caffe ELEKTRONN ZNN GPU-Only CPU-Only GPU + host RAM GPU-CPU

n337 22, 934.8 1.348 122, 668 34, 334.8 671, 782 262, 131 727, 103 1, 059, 910
n537 1, 048.68 – – 9, 494.5 29, 352.1 194, 683 147, 965 334, 163
n726 13, 520.4 – 6, 122 31, 354.8 97, 257.2 300, 312 148, 194 470, 166
n926 2, 667.86 – – 20, 908.6 35, 051.3 249, 190 104, 946 375, 295

TABLE V: Comparisons to other methods.

This is expected as the combined approach allows for larger in-
put sizes, while utilizing all available computational resources.

IX. COMPARISON TO OTHER ALGORITHMS

We compare our 4 approaches (GPU–only, CPU–only, GPU
+ host RAM and GPU–CPU) with other publicly available
implementations and show the results in the Table V. All
benchmarks are performed on the same hardware, the 4–way
Intel Xeon E7-8890 v3 machine with 256GB of RAM and a
Titan X GPU.

The results of our approaches are based on the optimizations
described in the previous sections. For the other approaches,
we varied the input sizes and measured the throughput, we
reported the highest value of throughput obtained, which was
always correlated with the size of the input we were able to
process.

The baseline (cuDNN) approach consists of calling the
cuDNN [33] primitives for convolution and max–pooling.
Unlike other approaches, this is not a general framework –
it requires the user to write some code for calling into the
low level cuDNN primitives. We expect that a user with
minimal programming experience could implement the above.
Our implementation was done in C++, however one could
use cuDNN bindings for other languages. We expect that
frameworks that support cuDNN primitives, such as Caffe [34]
or Theano [35] should achieve similar throughput.

Caffe [34] is another GPU ConvNet framework. We bench-
marked a non–official fork that implements sliding window
ConvNets using “strided kernels” [15]. The implementation is
also optimized for training and seems to have a huge memory
overhead as we were only able to run the smallest of the
networks.

ELEKTRONN [21] was the only competitor that provides
inference optimization for 3D sliding window ConvNets using
MPF. The package also uses cuDNN convolutional primitives.
However, it was able only to process two of our four networks.

ZNN [16] is a framework optimized for training sliding
window 3D ConvNets on multi–core and many–core CPUs
using “max–filtering” followed by FFT–based “sparse convo-
lution”. ZNN was the best competitor for networks with filters
of 5× 5× 5 or larger.

Our CPU-only, GPU-only, GPU + host RAM, and CPU-
GPU implementations outperform all competitors. For the
smallest ConvNet architecture, 237 with the kernel sizes of
33, the next best competitor was ELEKTRONN with approxi-
mately a tenth of the speed of our CPU–GPU approach. For all
the other ConvNets, the next best competitor was ZNN with
approximately 15× smaller throughput.

X. CONCLUSIONS

Our system, ZNNi, achieves high throughput by providing
novel CPU and GPU primitives for convolutional and pooling
layers, which are designed to minimize memory overhead.
Low memory footprint is important as processing a larger
image tends to increase throughput, because fractionally less
computation is wasted on the borders of the image. In our
system, the optimal choice of primitives as well as the optimal
input size is empirically determined. Our empirical results
(Table IV) show that an apparently slower algorithm may end
up having higher throughput if it can process a larger image
within the constraint of the available RAM.

As expected, our CPU-GPU approach achieves the greatest
throughput, which is higher than the CPU–only and GPU–
only combined. The achieved throughput of ConvNets that
are representative of state of the art in dense prediction is
10× or more than other publicly available implementations of
sliding window 3D ConvNets. All of our code has been made
available as open source project (https://github.com/seung-lab/
ZNNi-release).

Our analysis was based solely on throughput (number of
output voxels per unit time) as the performance metric. A
related metric is energy consumed per voxel. For a given CPU
or GPU, maximizing throughput is equivalent to minimizing
energy consumption, assuming that the power consumption is
roughly constant in time. An interesting implication of our
work is that in some situations the most economical way of
increasing inference throughput may be to increase host RAM
rather adding more GPUs or CPUs.

ACKNOWLEDGMENTS

We thank Kai Li and Nir Shavit for helpful discussions.
We are grateful to Intel Corporation for providing the 4-
way Intel Xeon E7-8890 v3 machine, and for supporting the
Intel Parallel Computing Center at Princeton University. We
acknowledge support from IARPA (D16PC00005), the Math-
ers Foundation, NIH/NINDS, and the U.S. Army Research
Office (W911NF-12-1-0594). Kisuk Lee was supported by a
Samsung Scholarship.

REFERENCES

[1] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Tenth International Work-
shop on Frontiers in Handwriting Recognition. Suvisoft, 2006.

[2] D. Scherer, H. Schulz, and S. Behnke, “Accelerating large-scale con-
volutional neural networks with parallel graphics multiprocessors,” in
Artificial Neural Networks–ICANN 2010. Springer, 2010, pp. 82–91.

[3] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability
of gpu-based convolutional neural networks,” in 2010 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing.
IEEE, 2010, pp. 317–324.

864

[4] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in IJCAI Proceedings-International Joint Confer-
ence on Artificial Intelligence, vol. 22, no. 1, 2011, p. 1237.

[5] M. Meeker, “Internet trends 2014,” http://www.kpcb.com/blog/
2014-internet-trends, 2014 (accessed April 9, 2016).

[6] “Youtube changes at a rate of 33% a year.”
[7] J. W. Lichtman, H. Pfister, and N. Shavit, “The big data challenges of

connectomics,” Nature neuroscience, vol. 17, no. 11, pp. 1448–1454,
2014.

[8] O. Matan, C. J. Burges, Y. LeCun, and J. S. Denker, “Multi-digit
recognition using a space displacement neural network,” in NIPS.
Citeseer, 1991, pp. 488–495.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[10] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman,
M. N. Helmstaedter, W. Denk, and H. S. Seung, “Supervised learning
of image restoration with convolutional networks,” in Computer Vision,
2007. ICCV 2007. IEEE 11th International Conference on. IEEE, 2007,
pp. 1–8.

[11] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano,
“Toward automatic phenotyping of developing embryos from videos,”
Image Processing, IEEE Transactions on, vol. 14, no. 9, pp. 1360–1371,
2005.

[12] A. Giusti, D. C. Cireşan, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber, “Fast image scanning with deep max-pooling convolutional neural
networks,” arXiv preprint arXiv:1302.1700, 2013.

[13] J. Masci, A. Giusti, D. Ciresan, G. Fricout, and J. Schmidhuber,
“A fast learning algorithm for image segmentation with max-pooling
convolutional networks,” in Image Processing (ICIP), 2013 20th IEEE
International Conference on. IEEE, 2013, pp. 2713–2717.

[14] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[15] F. Tschopp, “Efficient convolutional neural networks for pixelwise
classification on heterogeneous hardware systems,” arXiv preprint
arXiv:1509.03371, 2015.

[16] A. Zlateski, K. Lee, and H. S. Seung, “Znn-a fast and scalable algorithm
for training 3d convolutional networks on multi-core and many-core
shared memory machines,” arXiv preprint arXiv:1510.06706, 2015.

[17] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

[18] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” in International Conference on Learning Repre-
sentations (ICLR2014). CBLS, April 2014.

[19] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A gpu performance
evaluation,” arXiv preprint arXiv:1412.7580, 2014.

[20] S. Hadjis, F. Abuzaid, C. Zhang, and C. R. C. con Troll, “Shallow ideas
to speed up deep learning,” in Workshop on Data analytics in the Cloud
(DanaC), 2015.

[21] M. P. I. F. M. Research. (2015) ELEKTRONN a neural network toolkit.
[Online]. Available: http://elektronn.org/

[22] H. V. Sorensen and C. S. Burrus, “Efficient computation of the dft with
only a subset of input or output points,” IEEE transactions on signal
processing, vol. 41, no. 3, pp. 1184–1200, 1993.

[23] M. Frigo and S. G. Johnson, “Fftw users manual,” Massachusetts
Institute of Technology, 1999.

[24] ——, “Fftw: An adaptive software architecture for the fft,” in Acoustics,
Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE
International Conference on, vol. 3. IEEE, 1998, pp. 1381–1384.

[25] C. Nvidia, “Cufft library,” 2010.
[26] H. S. Warren, Hacker’s delight. Pearson Education, 2013.
[27] N. Bell and J. Hoberock, “Thrust: A 2 6,” GPU Computing Gems Jade

Edition, p. 359, 2011.
[28] J. Jeffers and J. Reinders, High Performance Parallelism Pearls Volume

Two: Multicore and Many-core Programming Approaches. Morgan
Kaufmann, 2015.

[29] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[30] T. Willhalm and N. Popovici, “Putting intel® threading building blocks
to work,” in Proceedings of the 1st international workshop on Multicore
software engineering. ACM, 2008, pp. 3–4.

[31] K. Lee, A. Zlateski, A. Vishwanathan, and H. S. Seung, “Recursive train-
ing of 2d-3d convolutional networks for neuronal boundary detection,”
arXiv preprint arXiv:1508.04843, 2015.

[32] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung,
and W. Denk, “Connectomic reconstruction of the inner plexiform layer
in the mouse retina,” Nature, vol. 500, no. 7461, pp. 168–174, 2013.

[33] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia. ACM, 2014, pp. 675–678.

[35] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a cpu
and gpu math expression compiler,” in Proceedings of the Python for
scientific computing conference (SciPy), vol. 4. Austin, TX, 2010, p. 3.

865

