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Abstract

We advocate a novel approach to grid computing that
is based on a combination of “classic” operating system
level virtual machines (VMs) and middleware mechanisms
to manage VMs in a distributed environment. The abstrac-
tion is that of dynamically instantiated and mobile VMs that
are a combination of traditional OS processes (the VMmon-
itors) and files (the VM state). We give qualitative argu-
ments that justify our approach in terms of security, iso-
lation, customization, legacy support and resource control,
and we show quantitative results that demonstrate the feasi-
bility of our approach from a performance perspective. Fi-
nally, we describe the middleware challenges implied by the
approach and an architecture for grid computing using vir-
tual machines.

1. Introduction

The fundamental goal of grid computing [17] is to
seamlessly multiplex distributed computational resources
of providers among users across wide area networks. In
traditional computing environments, resources are multi-
plexed using the mechanisms found in typical operating
systems. For instance, user accounts and time-sharing en-
able the multiplexing of processors, virtual memory enables
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the multiplexing of main memory, and file systems multi-
plex disk storage. These and other traditional multiplexing
mechanisms assume that trust and accountability are estab-
lished by a centralized administration entity. In contrast,
multiplexing in a grid environment must span independent
administrative domains, and cannot rely on a central author-
ity.
The level of abstraction upon which current grid mid-

dleware solutions are implemented is that of an operating
system user. This approach suffers from the limitations of
traditional user account models in crossing administrative
domain boundaries [20]. In practice, multiplexing at this
level of abstraction makes it difficult to implement the secu-
rity mechanisms that are necessary to protect the integrity of
grid resources from untrusted, legacy codes run on general-
purpose operating systems by untrusted users [6]. It also
greatly complicates the management of accounts and file
systems that are not suited for wide-area environments [14].
Unfortunately, most applications need precisely these ser-
vices.
We propose to fundamentally change the way grid com-

puting is performed by raising the level of abstraction from
that of the operating system user to that of the operating
system virtual machine or VM [24]. This addresses three
fundamental issues: support for legacy applications, secu-
rity against untrusted code and users, and computation de-
ployment independently of site administration.
Virtual machines present the image of a dedicated raw

machine to each user. This abstraction is very powerful
for grid computing because users then become strongly de-
coupled from a) the system software of the underlying re-
source, and b) other users sharing the resource. In terms of
security, VMs ensure that an untrusted user or application
can only compromise their own operating system within a
virtual machine, not the computational resource (nor other



VMs). In terms of administration, virtual machines allow
the configuration of an entire operating system to be inde-
pendent from that of the computational resource; it is pos-
sible to completely represent a VM “guest” machine by its
virtual state (e.g. stored in a conventional file) and instan-
tiate it in any VM “host”, independently of the location or
the software configuration of the host. Furthermore, we can
migrate running VMs to appropriate resources.
In the following, we begin by laying out the case for

grid computing on virtual machines (Section 2), summa-
rizing their advantages and quantifying the performance
overhead of an existing VM technology for computation-
intensive benchmarks. Next, we describe the middleware
challenges of our approach and explain howwe are address-
ing them (Section 3). This is followed by a brief discus-
sion of the grid computing architecture that we are design-
ing (Section 4), related work (Section 5), and conclusions
(Section 6).

2. Why Grid Computing with Classic VMs?

The high-level answer to this question is that classic vir-
tual machines provide a new abstraction layer, with low
overhead, that offers functionality that greatly simplifies ad-
dressing many of the issues of grid computing.

2.1. Definitions

Amodern operating system uses multiprogramming, vir-
tual memory, and file systems to share CPU, memory, and
disk resources among multiple processes and users. Each
process accesses the physical resources indirectly, through
abstractions provided by the operating system. Contempo-
raneous to the development of these mechanisms was that of
another resource-sharing approach, virtual machines [24].
A virtual machine presents the view of a duplicate of the un-
derlying physical machine to the software that runs within
it, allowing multiple operating systems to run concurrently
and multiplex resources of a computer — processor, mem-
ory, disk, network.
Virtual machines can be divided into two main cate-

gories [29]: those that virtualize a complete instruction
set architecture (ISA-VMs) including both user and system
instructions, and those that support an application binary
interface (ABI-VMs) with virtualization of system calls.
Same-ISA virtual machines typically achieve better perfor-
mance than different-ISA VMs since they support native in-
struction execution without requiring binary modifications
or run-time translations. An important class of virtual ma-
chines (“classic” VMs) consists of ISA-VMs that support
same-ISA execution of entire operating systems (e.g. the
commercial products from the IBM S/390 series [18] and
VMware [30], and the open-source project plex86 [22]).

A classic virtual machine abstraction allows for great
flexibility in supporting multiple operating systems and is
the focus of this paper. Nonetheless, the arguments for
grid computing on virtual machines and proposed middle-
ware approaches can be generalized to other virtualization
techniques — for example, ABI-VMs such as User-mode
Linux [9].

2.2. Advantages

Unlike conventional operating systems, classic VMs al-
low dynamic multiplexing of users onto physical resources
at the granularity of a single user per operating system ses-
sion, thereby supporting per-user VM configuration and iso-
lation from other users sharing the same physical resource.
In the remainder of this section we focus on a scenario
where each dynamic instance of a classic VM is dedicated
to a single logical user. 1

Security and isolation: The ability to share resources is
a basic requirement for the deployment of grids; the in-
tegrity and security of shared resources is therefore a prime
concern. A security model where resource providers trust
the integrity of user codes restricts the application of grids
to cases where mutual trust can be established between
providers and users. If users are to submit jobs to compu-
tational grids without such trust relationship, the integrity
of a computation may be compromised by a malicious re-
source [33], and, conversely, the integrity of the resource
may be compromised by a malicious user [6].
Classic VMs achieve stronger software security than a

conventional multiprogrammed operating system approach
if redundant and independent mechanisms are implemented
across the virtual machine monitor (VMM) and the oper-
ating system [23]. In a scenario where grid users have ac-
cess to classic VMs, it is more difficult for a malicious user
to compromise the resource (and/or other users sharing the
resource) than in conventional multiprogrammed OSes, be-
cause they must be able to break two levels of security: the
VMM and the OS.

Customization: Virtual machines can be highly cus-
tomized without requiring system restarts. It is possible to
specify virtual hardware parameters, such as memory and
disk sizes, as well as system software parameters, such as
operating system version and kernel configuration. Further-
more, multiple independent OSes can co-exist in the same
server hardware. In a grid environment it becomes possible
to offer virtual machines that satisfy individual user require-
ments from a pool of standard (physical) machines.

1As depicted in Figure 3, it is possible to map a logical user to a single
physical user, as well as to use grid middleware to multiplex a logical user
across several physical users or applications, such as in PUNCH [21].



Legacy support: Virtual machines support compatibility
at the level of binary code: no re-compilation or dynamic
re-linking is necessary to port a legacy application to a VM.
Furthermore, the legacy support provided by classic VMs is
not restricted to applications: entire legacy environments—
virtual hardware, the operating system, and applications—
are possible.

Administrator privileges: In typical shared multipro-
grammed systems, sensitive system operations are reserved
to a privileged user—the system administrator. These op-
erations are restricted to a trusted entity because they can
compromise the integrity of the resource and/or of other
users. In many situations, however, the need to protect sys-
tem integrity forces a conservative approach in determining
which operations are privileged, at the expense of possibly
limiting forms of legitimate usage of the system. For ex-
ample, the “mount” command is typically privileged, thus
not accessible by common users. This prevents malicious
users from gaining unauthorized access to local resources,
but also disallows legitimate-use cases: e.g. a user who
wishes to access remote data from an NFS partition setup
at his or her computer at home.
When classic VMs are deployed under the assumption

that each (logical) user has a dedicated machine, these re-
quirements can be relaxed. The integrity of the resource
underlying the OS (i.e. the virtual machine) is indepen-
dent from the integrity of the multiplexed computer (i.e. the
physical machine). Further, there are no users sharing the
virtual machine. If necessary it is then possible to grant
“root” privileges to untrusted grid applications because the
actions of malicious users are confined to their VMs.

Resource control: Some of the resources used by a clas-
sic VM (e.g. memory and disk sizes) can be customized dy-
namically at instantiation time. It is also possible to imple-
ment mechanisms to limit the amount of resources utilized
by a VM at run-time by implementing scheduling policies
at the level of the virtual machine monitor.
Unlike typical multi-programming environments, where

resource control mechanisms are applied on a per-process
basis, classic VMs allow complementary resource control at
a coarser granularity—that of the collection of resources ac-
cessed by a user. Furthermore, resource control policies can
be established dynamically. Dynamic resource control is
important in a grid environment for two key reasons. First, it
allows a provider to limit the impact that a remote user may
have on resources available for a local user (e.g. in a desk-
top executing interactive applications). Second, it enables
a provider to account for the usage of a resource (e.g. in
a CPU-server environment). Resource control mechanisms
based on classic VMs are particularly important in a grid
environment since, unlike Java-oriented solutions [31], they

can be applied to legacy application binaries. Section 3.2
elaborates on resource management issues that arise in in
this scenario.

Site-independence: Classic VMs allow computation to
be decoupled from idiosyncrasies of the site that hosts a
physical machine. A VM guest presents a consistent run-
time software environment—regardless of the software con-
figuration of the VM host. This capability is very important
in a grid environment: combined with the strong security
and isolation properties of classic VMs, it enables cross-
domain scheduling of entire computation environments (in-
cluding OS, processes, and memory/disk contents of a VM
guest) in a manner that is decoupled from site-specific ad-
ministration policies implemented in the VM hosts.
A virtual machine can be instantiated on any resources

that are sufficiently powerful to support it because it is not
tied to particular physical resources. Furthermore, a running
virtual machine can be suspended and resumed, providing a
mechanism to migrate a running machine from resource to
resource.

2.3. Performance considerations

The advantages of virtual machines are for naught if they
can not deliver sufficient performance. Virtual machine
monitors incur performance overheads when applications
within a VM execute privileged instructions that must be
trapped and emulated. These are typically issued by kernel
code of “guest” VMs during system calls, virtual memory
handling, context switches and I/O. User-level code within
VMMs runs directly on hardware without translation over-
heads.
The overall overhead incurred by VMs thus depends on

system characteristics, including the processor’s ISA, the
VMM architecture and implementation, and the type of
workload running in the system. A comprehensive quan-
titative analysis of all possible usage scenarios of VMs is
beyond the scope of this paper; the analysis of this section
focuses on the performance of a VM instance for compute-
intensive scientific applications. This application domain
is very important in computational grids that support user
communities such as computer architecture and solid-state
device simulations [19]. In other application domains,
where system and I/O activity is more frequent, the perfor-
mance impact of a VMM can be higher. However, previous
experience with successful VMM architectures has shown
that such overheads can be made smaller with implemen-
tation optimizations. For instance, the impact of network
virtualization in transmit throughput can be reduced via op-
timizations techniques applied to the VMM [30]; IBM’s line
of virtual machines has evolved to implement performance-
enhancing techniques such as VM assists and in-memory



Application Resource User time Sys time User+sys Overhead
Physical 16395s 19s 16414s N/A

SPECseis VM, local disk 16557s 60s 16617s 1.2%
VM, PVFS 16601s 149s 16750s 2.0%
Physical 9304s 3s 9307s N/A

SPECclimate VM, local disk 9679s 5s 9679s 4.0%
VM, PVFS 9695s 7s 9702s 4.2%

Table 1. Macrobenchmark results. User, system and total times are reported for three scenarios: physical machine, VM with state
in local disk, VM with state accessed via NFS-based grid virtual file system (PVFS). Overheads are calculated using execution times
and the physical machine as reference. In the PVFS scenario, the physical and data servers are located at Northwestern University,
while the image server is located at the University of Florida.

Figure 1. Microbenchmark results: slowdown of syn-
thetic test task under presence of background load for
twelve different scenarios.

network hyper-sockets that reduce overheads due to proces-
sor and network virtualization.
In this section we report on measurements that show the

execution time overhead to be low for CPU-intensive tasks
(less than 10%, for micro and macro benchmarks). The ex-
perimental data also shows that the costs of instantiating a
dynamic virtual machine instance can be quite low, on the
order of seconds.
Figure 1 summarizes the results of experiments using a

microbenchmark intended to evaluate the degree to which
a VMware-based VM monitor slows down a compute-
intensive task in the presence of background load. The com-
pute node is a dual Pentium III/800MHz node with 1GB
memory running RedHat 7.1. The virtual machine uses
VMware Workstation 3.0a, with 128MB of memory, 2GB
virtual disk and RedHat 7.2. The background load was
produced by host load trace playback [12] of load traces

collected on the Pittsburgh Supercomputing Center’s Al-
pha Cluster. Three types of background load are used:
none, light and heavy. In each case, we look at all four
possible combinations of placing load and test tasks (those
whose slowdown we measure) on the physical machine and
the virtual machine. In the figure, we show the average
slowdown of 1000 samples and the +/- one standard de-
viation. The background load exposes virtualization over-
heads that are nonexistent in the physical machine: first,
“world switches” [30] preempt the VMM when the load
is applied to the physical machine. Second, guest context
switches involve the execution of privileged instructions
that are trapped and emulated by the VMMwhen the load is
applied to the virtual machine. The main takeaway is that,
independently of load, the test tasks see a typical slowdown
of 10% or less when running on the virtual machine case.
The low VM overhead holds true in large applications

as well. Figure 1 shows the results for two macrobench-
marks. We executed the SPEChpc benchmarks SPECseis
and SPECclimate on physical hardware and on a virtual
machine. The benchmarks are compiled with OmniCC
1.4 (front-end) and gcc 2.96 (back-end), and executed in
sequential mode. The compute node is a dual Pentium
III/933MHz node with 512MB memory running RedHat
7.1. The virtual machine uses VMware Workstation 3.0a,
with 128MB of memory, 1GB virtual disk and RedHat
7.1. The execution time of the benchmarks running on a
VMware/x86-based virtual machine is within 4% of the na-
tive execution time. The experiment also shows that the
overhead of running the VM with its disk mounted via an
NFS-based virtual file system layer (PVFS [14]) across a
wide-area network connection is small.
The more quickly we can instantiate a virtual machine,

the more widely this abstraction can be used in grid com-
puting. We have conducted experiments that show the over-
head of dynamically instantiating a VM using existing grid-
based job submission mechanisms. In this experiment the
processor, memory and disk state of the VM are accessible



VM-reboot VM-restore
Persistent Non-persistent Persistent Non-persistent

DiskFS LoopbackNFS DiskFS LoopbackNFS
Mean 273 69.2 74.5 269 12.4 29.2
Std 21 6.9 2.0 17 4.6 7.0
Min 232 64.3 72.8 234 9.6 23.0
Max 304 86.3 79.8 302 24.9 44.2

Table 2. Average, standard deviation, minimum and maximum VM startup times. Virtual machine sessions are instantiated using
globusrun (Globus 2.0 toolkit) within a LAN. Measurements have been taken across 10 samples. Time (in seconds) is measured as
wall-clock execution time from the beginning to the end of the execution of globusrun.

from the host OS as regular files, and the VMM (VMWare)
is instantiated as a regular UNIX process. The guest OS is
Red Hat Linux. Two possible ways of instantiating VMs are
considered:

VM-reboot: the VM’s guest OS is booted upon initialization
VM-restore: the VM’s guest OS is restored to a post-boot
“warm” state.

Orthogonally, two different forms of storing the VM state
files are considered:

Non-persistent: the VM’s disk is non-persistent; the disk is
not explicitly copied upon startup, and modifications are
stored into a diff file. Two forms of access to the disk are
considered:

DiskFS: state is stored in the local disk of the host
LoopbackNFS: state resides in a loopback-mounted
NFS partition of the host, simulating a remote file
system.

Persistent: an explicit copy of a persistent disk is created in
the local disk file system of the host before the VM starts up.

The results of our experiment are shown in Figure 2. The
smallest observed startup latency is 12s; this was achieved
using a non-persistent disk and difference file on the native
file system. The start-up overhead increases to more than 4
minutes if explicit copies of a VM disk need to be gener-
ated, while remaining below 30 seconds if the VM state is
accessed via a low-latency NFS/RPC stack.

3. Middleware challenges

Virtual machines provide a powerful new layer of ab-
straction in distributed computing environments. Since vir-
tual machine monitors are readily available, it is certainly
possible to deploy VMs as static computing units with ex-
isting grid middleware running within them. However, this
new abstraction layer is only fully exploited when VMs are
instantiated and managed dynamically. This section out-
lines the challenges and possible techniques to enable a dy-
namic virtual computing model and its integration with ex-
isting grid middleware solutions.

3.1. Data management

Data management is a key technology for VM-based grid
computing, enabling administrative decoupling of compu-
tation providers and users. Data management involves: the
transfer of VM images so that a user’s virtual machine can
be instantiated anywhere and migrated when necessary, and
support for location-independent access to user files. With
appropriate data management support, computation, state,
and user data can reside in different domains.
The components of a virtual machine session are dis-

tributed across three different logical entities: image
servers, which provide the capability of archiving static VM
states; computation servers (or VM hosts), which provide
the capability of instantiating dynamic VM images (or VM
guests); and data servers, which provide the capability of
storing user data. In this scenario, VM state information
needs to be transferred from an image server to a VM host
(where it is instantiated), and from a data server to the VM
guest (where it is processed) as in Figure 2.

High performance data transfers: Fast and simple ac-
cess to images and user data is critical. Current grid so-
lutions, such as Globus [4, 1] and PBS [3] typically em-
ploy file-staging techniques to transfer files between user
accounts in the absence of a common file system. File stag-
ing approaches require the user to specify the files to be
transferred, transfer whole files when they are opened, and
pose application programming challenges. Data manage-
ment solutions that support on-demand transfer have also
been deployed within Condor [32] and Legion [37].
Within the context of the PUNCH virtual file system

(PVFS), previous work has shown that a data management
model supporting simple on-demand data transfers without
requiring dynamically-linked libraries or changes to native
OS file system clients and servers can be achieved by way
of two mechanisms: logical user accounts [20] and a virtual
file system [14]. PVFS supports on-demand block trans-
fers with performance within 1% of the underlying NFS
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Figure 2. VM image and data management via virtual file
systems. Users A and B are multiplexed onto the server V
via two instances of Red Hat 7.2 virtual machines. Client-
side VFS proxies at the host V cache VM state from image
servers (e.g. server I), while proxies within virtual machines
cache user blocks from a data server D.

file system [14]. Virtual machines naturally support a log-
ical user account abstraction because dedicated VM guests
can be assigned on a per-user basis, and the user identities
within a VM guest are completely decoupled from the iden-
tities of its VM host. Furthermore, virtual machines provide
an environment where legacy applications and OSes can be
deployed—including services such as virtual file systems.
In other words, VMs provide a layer of abstraction that sup-
ports logical users and virtual file systems (Figure 2). We
can thus use these mechanisms for high performance access
to images and user data.

Image management: The state associated with a static
VM image is usually larger than the working set that is as-
sociated with a dynamic VM instance. The transfer of entire
VM states can lead to unnecessary traffic due to the copy-
ing of unused data [27]. On-demand transfers are therefore
desirable. In addition, in the common case, large parts of
VM images can shared by multiple readers (e.g. a master
static Linux virtual system disk can be shared by multiple
dynamic instances, as in Figure 2). Read-only sharing pat-
terns can be exploited by proxy-based virtual file systems,
for example by implementing a proxy-controlled disk cache
that acts as a second-level cache to the kernel’s file buffers.

User and application data management: Several tech-
niques exist for the transfer of user and application data.
We are investigating the proxy-based virtual file system ap-
proach for efficient, location-transparent, on-demand access
to user and application data. Unlike images, however, file
system sessions for data management can be initiated within
a VM guest (Figure 2).

Virtual machine migration: Combining image manage-
ment, user and application data management, and check-
pointing, a VM-based grid deployment can support the
seamless migration of entire computing environments to
different virtualized compute servers while keeping remote
data connections active.

3.2. Resource management

Virtual machines provide a powerful new layer of ab-
straction in distributed computing environments, one that
creates new opportunities and challenges for scheduling and
resource management. Intriguingly, this is true both from
the perspective of resources “looking up” at applications
and applications “looking down” at resources.

Resource perspective: From the perspective of computa-
tional and communications resources “looking up” at appli-
cations, virtual machines provide a mechanism for carefully
controlling how and when the resources are used. This is
important because resource owners are far more likely to
allow others to use the resources, or sell access to them, if
they have such control. While there are other mechanisms
for providing such fine-grain control, they impose partic-
ular systems software interfaces or computational mod-
els [28, 5, 26] on the user. Virtual machines, on the other
hand, are straightforward—the user gets a ”raw” machine
on which he/she can run whatever he pleases. The resource
owner in turn sees a single entity to schedule onto his/her
resources. How do we schedule a virtual machine onto the
actual physical resources in order to meet the owner’s con-
straints?
Our approach to the complex and varying constraints of

resource owners is to use a specialized language for spec-
ifying the constraints, and to use a toolchain for enforc-
ing constraints specified in the language when scheduling
virtual machines on the host operating system. For exam-
ple, the resource owner’s constraints and the constraints of
the virtual machines that the users require could be com-
piled the into a real-time schedule, mapping each virtual
machine into one or more periodic real-time tasks on the
underlying host operating system. The complete real-time
schedule is such that the owner’s constraints are not vio-
lated. Kernel-level scheduler extensions [35] or user-level
real-time mechanisms [25] could be used to implement the
schedule. Another possibility is to compile into proportions
for a proportional share scheduler, such as a lottery sched-
uler [34] or via weighted fair queueing [8]. For a course-
grain schedule, we could even modulate the priority of vir-
tual machine processes under the regular linux scheduler,
using SIGSTOP/SIGCONT signal delivery.



Application perspective: To achieve appropriate perfor-
mance on distributed computing environments, applications
typically have to adapt to the static and dynamic properties
of the available resources. Virtual machines make this pro-
cess simpler in some respects by allowing the application
to bring its preferred execution environment along with it.
However, complexity is introduced in other respects. First,
virtual machines are themselves a new resource, increas-
ing the pool of resources to be considered. Second, virtual
machines represent collections of shares in the underlying
physical resources. To predict its performance on a partic-
ular virtual machine or group of virtual machines, the ap-
plication must understand the mapping and scheduling of
virtual resources onto the underlying physical resources, or
there must be some service that does this for it.
For static properties of virtual resources, we are currently

extending an existing relational database approach for cap-
turing and querying the static properties of resources with
a computational grid [10]. The basic idea is that applica-
tions can best discover a collection of appropriate resources
by posing a relational query including joins. In our model,
such queries are non-deterministic and return partial results
in a bounded amount of time. We are extending the model
to include virtual machines. Virtual machines would reg-
ister when instantiated. Hosts would advertise what kinds
and howmany virtual machines they were willing to instan-
tiate (virtual machine futures). The service would also con-
tain information about how the virtual machines are sched-
uled to the underlying hardware, information derived from
the constraints-to-schedule compilation process described
above. Applications would be able to query over virtual
machines or virtual machine futures.
Applications typically must also adapt to dynamic

changes in resource supply. The RPS system [11] is de-
signed to help this form of adaptation. Fed by a stream-
ing time-series produced by a resource sensor, it provides
time-series and application-level performance predictions
on which basis applications can make adaptation decisions.
Currently, RPS includes sensors for Unix host load, net-
work bandwidth along flows in the network, Windows per-
formance counters, and can be extended to include sensors
that are appropriate for VM environments.

3.3. Virtual networking

While a virtual machine monitor such as VMWare can
create a virtual machine, that machine must be able to con-
nect to a network accessible by a computational grid. Un-
like a process running on the underlying physical machine,
the virtual machine appears to the network to be one or more
new network interface cards. The integration of a dynami-
cally created VM to the network is dependent upon the poli-
cies implemented in the site hosts the (physical) VM server.

With respect to these policies, two scenarios can arise.

1. The VM host has provisions for IP addresses that can
be given out to dynamic VM instances. For instance, a
CPU farm may provide the capability of instantiating
full-blown virtual back-ends as a service (as in Fig-
ure 3). In this scenario, the VM may obtain an IP ad-
dress dynamically from the host’s network (e.g. via
DHCP), which can then be used by the middleware to
reference the VM for the duration of a session.

2. The VM host does not provide IP addresses to VM in-
stances. In this scenario, network virtualization tech-
niques — similar to VPNs [13] — may be applied
to assign a network identity to the VM at the user’s
(client) site. The simplest approach is to tunnel traf-
fic, at the Ethernet level, between the remote virtual
machine and the local network of the user. In this
way, the remotemachine would appear to be connected
to the local network, where, presumably, it would be
easy for the user to have it assigned an address, etc. If
we can establish a TCP connection to the remote site,
which we must in order to launch the virtual machine
in the first place, we will be able to use it for tunneling.
For example, if we used SSH to start the machine, we
could use the SSH tunneling features. A natural ex-
tension to this simple VPN in which all remote hosts
appear on the local network is to establish an overlay
network among the remote virtual machines [2]. The
overlay network would optimize itself with respect to
the communication between the virtual machines and
the limitations of the various sites on which they run.

3.4. Integration with existing Grid infrastructures

The VM-based mechanisms described in this paper al-
low seamless integration of virtualized end-resources with
existing and future Grid-based services. This integration
can be achieved at the level of grid middleware, and can
leverage mechanisms from open-standard Grid software,
such as the Globus toolkit [16].
This integration is based on the convenient property that

entire VM environments can be regarded as a combination
of traditional OS processes (the VMmonitors) and files (the
VM state). Using this abstraction, traditional information
services (e.g. MDS [15], URGIS [10]) can be used to repre-
sent VMs as Grid resources; resource management services
(e.g. GRAM [7]) can be used to dispatch VM environments;
and data management services (e.g. GASS [4], GridFTP [1]
and Grid virtual file systems [14]) can be used to handle the
transfer of virtual machine state and application data.
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Figure 3. Architecture for a VM-based grid service. In 1-
6, a virtual machine (V4) is dynamically created by middle-
ware front-end F on behalf of user X. This VM is dedicated
to a single user. In another scenario, virtual machines V1,
V2 are instantiated on P2 on behalf of a service provider S,
and are multiplexed across users A, B, C and applications
provided by S. The logical user account abstraction decou-
ples access to physical resources (middleware) from access
to virtual resources (end-users and services).

4. Architecture

In the following we lay out an initial software architec-
ture for virtual machine grid computing by describing the
life cycle of a VM within it.
In this architecture, the nodes of a virtual computational

grid support, in addition to virtual machine monitors, a set
of tools that limit the share of resources that the virtual ma-
chines are permitted to use, grid middleware such as Globus
(and SSH) for instantiating machines, and resource moni-
toring software such as RPS. Virtual machine instances or
the capability for instantiating virtual machines (VM fu-
tures) are advertised via a grid information service such as
Globus MDS or URGIS. Virtual file systems give all nodes
access to currently stored VM images. User accounts, im-
plemented as Globus accounts or SSH keys, allow users
only to instantiate and store virtual machines.
In the discussion to follow, we consider a generic sce-

nario where the components of a virtual grid session —
physical server, virtual machine O/S image server, appli-
cation image server, and user data server — are distributed
across nodes of a grid. The steps taken by the VM-based
grid architecture to establish a virtual machine session for a
user are as follows (refer to Figure 3):

1. A user X (or grid middleware F on their behalf) first

consults an information service, querying for a VM fu-
ture (a physical machine able to instantiate a dynamic
VM) P that meets their needs.

2. If necessary, X also consults an information service to
query for a VM image server I with a base O/S instal-
lation that meets their application needs. Alternatively,
users may provide VM images of their own (e.g. a cus-
tomized O/S installation).

3. The middleware then establishes a data session be-
tween the physical server P and the image server I
to allow for the instantiation of a dynamic VM. This
data connection can be established via explicit trans-
fers (e.g. GridFTP) or via implicit, on-demand trans-
fers (e.g. a grid virtual file system, Figure 2).

4. Once the data session for image I is established,
the user can negotiate with the physical machine the
startup of a VM instance Vi (e.g. using Globus GRAM
or SSH). The virtual machine Vi may start from a pre-
boot (cold) state, or from a post-boot (warm) state
stored as part of the image. In addition, upon startup,
the VM is assigned an IP address (via DHCP, or by
connecting to a virtual network).

5. Once the VM instance Vi is running and on the net-
work, additional data sessions are established. These
connect the O/S within Vi to application server A and
to the user’s data server D. As previously, these ses-
sions can be realized with explicit or implicit transfers
(Figure 2).

6. The application executes in the virtual machine; if it
is an interactive application, a handle is provided back
to the user (e.g. a login session, or a virtual display
session such as VNC).

In this setup, the user can have the choice of whether to be
presented with a console for the virtual machine (e.g. the
application may be the O/S console itself) or to run with-
out this interface (e.g. for batch tasks). The user, or a grid
scheduler, will have the option to shutdown, hibernate, re-
store, or migrate the virtual machine at any time. In large
part, these processes will use the same mechanisms: effi-
cient transfer of the current image, either to another ma-
chine or to a file, adjustments to the VPN, and continual
connectivity to files via the virtual file system. Infrequently
run virtual machine images will be migrated to tape. The
life cycle of a virtual machine ends when the image is re-
moved from permanent storage.
The data summarized in Figure 1 shows that a setup

with distributed physical, image and data servers is feasi-
ble, from performance and implementation standpoints, for
applications that are CPU-intensive. In this experiment, the
on-demand data session between P and I was established



via NFS-based PVFS proxies [14] across a wide-area net-
work, and the connection between V and D was established
via PVFS across two VMs in a local area network. The
observed execution time overhead is small. This experi-
ment considers a conservative scenario where no locality-
enhancement techniques (other than those implemented by
kernel-level NFS components) are applied. As an enhance-
ment, it is possible to seamlessly integrate proxy-level tech-
niques (such as caching) into the architecture.

5. Related Work

“Classic” VMs have been used as a means of multi-
plexing shared mainframe resources since the early seven-
ties. In the past years, the demands for computation out-
sourcing and resource consolidation has prompted the de-
velopment of VM-based solutions that deliver commodity
OSes from mainframes (e.g. Linux on IBM S/390) and
microprocessor-based hardware (e.g. Linux/Windows on
x86/VMware). We are seeking to leverage classic VMs in a
new context, grid computing.
The Denali project [36] is similar to ours in that it has a

similar objective of providing network-based services based
on VMs. Denali focuses on supporting lightweight VMs,
relying on modifications to the virtual instruction set ex-
posed to the guest OS and thus requiring modifications to
the guest OS. In contrast, we are focusing on heavier weight
VMs and make no OS modifications. User-mode VMs have
been recently proposed for the Linux OS [9]. Although this
approach allows for user isolation, unlike classic VMs it
does not support arbitrary guest OSes. “Computing cap-
sules” that can be dynamically instantiated as computation
caches for arbitrary, legacy applications are being explored
at Stanford [27]. However, this approach does not simul-
taneously multiplex different full-fledged OSes in a single
host.

6. Conclusions

Classic virtual machines support a grid computing ab-
straction where computation becomes decoupled from the
underlying physical resources. In this model, entire com-
puting environments can be represented as data (a large
state) and physical machines can be represented as re-
sources for instantiating data. This abstraction is powerful
because it decouples the administration of computing users
from the administration of resource providers. This simpli-
fies addressing many issues in grid computing and provides
a new layer at which to work.
We have presented a qualitative argument for the use

of virtual machines in grid computing and quantitative re-
sults that demonstrate the feasibility of this idea from a per-
formance perspective. We then illustrated the middleware

challenges that must be overcome to build grid computing
on top of virtual machine monitors and described how we
are addressing those challenges. Finally, we provided a de-
scription of our nascent software architecture and its inte-
gration with existing middleware to support a VM-based
infrastructure for computational grids. The envisioned ar-
chitecture builds upon virtual machines, applications, data
and networks from which necessary resources can be pro-
vided to the services layer.
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