Simplified method for calculating the energy of weekly interacting fragments & applications

Discussion on papers by J. Harris & Antonio S. Torralba et al.

CSCI-699, April 16, 2018 Ben Wang

Energy of weakly interacting fragments

J. Harris, Phys. Rev. B 31, 1770(1985)

- **Problem:** Kohn–Sham (K-S) scheme can be difficult: Poisson's equation, total energy.
- **Purpose**: design a new approximate scheme for calculating the interaction energy of two fragments
- Idea: expand the K-S energy expression about the density, and neglect quadratic terms.
- K-S energy expression:

$$E[n(x)] = T_0 + \int dx \, n(x) \left[\frac{1}{2}\phi(x) + V_{ext}(x)\right] + E_{xc} + E_N$$

- Consider two fragments:
- K-S energy of F1 and total:

F1

R

- $E_R = \sum_n a_n \varepsilon_n \int dx \, n(x) \left[\frac{1}{2} \varphi(x) + \mu_{xc}^n(x) \right] + E_{xc}[n] + E_N^R$
- Write: $n(\mathbf{x}) = n_f(\mathbf{x}) + \delta n(\mathbf{x})$ $n_f(\mathbf{x}) = n_1(\mathbf{x}) + n_2(\mathbf{x})$
- Construct a potential:

$$\widetilde{V}(\mathbf{x}) = \phi_f(\mathbf{x}) + \mu_{\mathrm{xc}}^{n_f}(\mathbf{x}) + V_{\mathrm{ext}}(\mathbf{x})$$

• Calculate the difference between true SCF potential and : $\widetilde{V}(\mathbf{x})$

$$\Delta V(\mathbf{x}) = \phi(\mathbf{x}) - \phi_f(\mathbf{x}) + \mu_{\mathrm{xc}}^n(\mathbf{x}) - \mu_{\mathrm{xc}}^{n_f}(\mathbf{x})$$

- Assume $\Delta V(x)$ is small: • Expand E_{xc} : $\sum_{n}^{n} a_{n} \epsilon_{n} = \sum_{n}^{n} a_{n} \widetilde{\epsilon}_{n} + \int d\mathbf{x} n(\mathbf{x}) \Delta V(\mathbf{x}) + O(\Delta V^{2})$ • Expand E_{xc} : $E_{xc}[n] = E_{xc}[n_{f}] + \int d\mathbf{x} \mu_{xc}^{n_{f}}(\mathbf{x}) \delta n(\mathbf{x}) + O(\delta n^{2})$
- Substituting in E_R to have the desired approximation:

$$E_R \simeq \sum_n a_n \widetilde{\epsilon}_n - \int d\mathbf{x} \, n_f(\mathbf{x}) \left[\frac{1}{2} \phi_f(\mathbf{x}) + \mu_{\mathrm{xc}}^{n_f}(\mathbf{x}) \right] \\ + E_{\mathrm{xc}}[n_f] + E_N^R$$

• Final expression:

١

$$E_R \simeq \sum_n a_n \widetilde{\epsilon}_n - \int d\mathbf{x} \, n_f(\mathbf{x}) \left[\frac{1}{2} \phi_f(\mathbf{x}) + \mu_{\mathrm{xc}}^{n_f}(\mathbf{x}) \right] + E_{\mathrm{xc}}[n_f] + E_N^R$$

- Involves only the frozen fragment densities
- Use constructed potential for K-S scheme
- Accuracy? N₂-dimer

	E_b (eV)			R_e (a.u.)			ω_e (meV)		
Dimer	(2.21)	PA	Expt.	(2.21)	PA	Expt.	(2.21)	PA	Expt.
Be ₂	0.49	0.50	~0.1	4.50	4.63	4.66	45	45	28
C_2	8.7	7.19	6.2	2.20	2.36	2.35	246	232	230
N_2	10.7	11.34	9.91	2.03	2.08	2.07	346	296	292
\mathbf{F}_2	3.7	3.32	1.65	2.71	2.62	2.68	120	133	111
Cu ₂	2.9	2.65	2.03	4.10	4.10	4.20	35	41	33

• Results for some homonuclear dimers: E_b , R_e , ω_e

• Best case: Be₂

NSC DFT Exchange-correlation forces for GGA

J. Chem. Theory Comput. 2009, 5, 1499-1505

- **Problem:** save computer efforts with lower precision calculations
- **Purpose:** develop generalized gradient approximation (GGA) NSC forces and implement with linear scaling DFT.
- Idea: Local orbital basis functions based on Harris-Foulkes expression

- **GGA**: $E_{xc} = E_{xc}[n(r), \nabla n(r)] = \int dr f_{xc}(n(r), \nabla n(r))$
- Linear-Scaling DFT:
 - electronic structure is local
 - solve for density matrix:

$$\rho(\mathbf{r},\mathbf{r}') = \sum_{i\alpha j\beta} \phi_{i\alpha}(\mathbf{r}) K_{i\alpha j\beta} \phi_{j\beta}(\mathbf{r}')$$

- Support function:
 - $\phi_{i\alpha}(r)$ is local orbital basis

- The total energy: $E_{\text{Tot}} = E_{\text{kin}} + E_{\text{ps}} + E_{\text{Har}} + E_{\text{XC}} + E_{\text{c}}$
- Charge density & K-S eigenstates:

$$n(r) = 2\sum_{n} f_{n} |\psi_{n}(r)|^{2}, \psi_{n}(r) = \sum_{i\alpha} u_{i\alpha}^{n} \phi_{i\alpha}(r)$$

- Fixed charge density: $n^{in}(r) = \sum_i \eta_i(|r R_i|)$,
- $\delta n = n(r) n^{in}(r)$
- NSC force:

$$\mathbf{F}_{i}^{\mathbf{NSC}} = -\int d\mathbf{r} [\delta V_{\mathrm{Har}}(\mathbf{r}) \nabla_{i} n^{\mathrm{in}}(\mathbf{r}) + \delta n(\mathbf{r}) \nabla_{i} V_{\mathrm{XC}}(\mathbf{r})]$$

• The exchange-correlation potential using GGA functional:

$$W_{\rm xc}(\mathbf{r}) = \frac{\delta E_{\rm xc}}{\delta n(\mathbf{r})} = \frac{\partial f_{\rm xc}}{\partial n(\mathbf{r})} - \nabla \cdot \frac{\partial f_{\rm xc}}{\partial \mathbf{g}(\mathbf{r})}$$

- Approximate GGA XC energy by: $E_{xc}[\{n_l\}] = \omega \sum_{l} f_{xc}(n_l, \mathbf{g}_l)$
- White-Bird (1994) approach: the derivatives on the minimal grid are linear transformations on the same grid.

$$\mathbf{g}_{l} = \frac{1}{N} \sum_{m,l'} i \mathbf{G}_{m} n_{l'} e^{i \mathbf{G}_{m} \cdot (\mathbf{r}_{l} - \mathbf{r}_{l'})}$$

• NSC force:

$$\mathbf{F}_{i}^{\mathrm{NSC,xc}} = -\omega \sum_{l} \delta n_{l} \nabla_{i} V_{\mathrm{xc},l}$$

• Implementation: the kernel only depends on the magnitude of gradient

$$\frac{\partial^2 f_{\rm xc}}{\partial n_l \partial \mathbf{g}_l} = \frac{\partial^2 f_{\rm xc}}{\partial n_l \partial |\mathbf{g}_l|} \frac{\mathbf{g}_l}{|\mathbf{g}_l|}$$

- Test of NSC DFT on:
 - A: self-consistently relaxed structure of Glycine
 - B, C: Amide-terminated deca-alanine
- Two methods:
 - A: NSC first, then SCF
 - B: complete SCF
- Conjugate gradient algorithm for structural relaxations

• Comparasion of Relaxations with and without NSC pre-relaxation:

		meth	od A	method B		
		step 1 (NSC)	step 2 (SCF)	total 1 + 2	only SCF	
glycine ^b	CG steps	32	16	48	21	
07	functional evaluations	116	733	849	805	
	total energy (Ha)	-56.625449	-56.475861		-56.475870	
penta-alanine ^c	CG steps	105	23	128	53	
	functional evaluations	373	1180	1553	2961	
	total energy (Ha)	-242.121314	-241.541173		-241.541182	
deca-alanine ^d	CG steps	73	28	101	75	
	functional evaluations	299	1081	1380	3036	
	total energy (Ha)	-474.779129	-473.372474		-473.372670	

• **Conclusion:** the NSC pre-relaxation can save energy computions significantly.

Appendix

• The final expression for the NSC exchange correlation force is: