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Abstract—An extremely scalable linear-algebraic algorithm
was developed for quantum material simulation (electronicstate
calculation) with 108 atoms or 100-nm-scale materials. The
mathematical foundation is generalized shifted linear equations
((zB −A)x = b), instead of conventional generalized eigenvalue
equations. The method has a highly parallelizable mathematical
structure. The benchmark shows an extreme strong scaling and
a qualified time-to-solution on the full system of the K computer.
The method was demonstrated in a real material research for
ultra-flexible (organic) devices, key devices of next-generation
Internet-of-Things (IoT) products. The present paper shows that
an innovative scalable algorithm for a real research can appear
by the co-design among application, algorithm and architecture.

Index Terms—Parallel algorithms, Scalability, Large-scale elec-
tronic state calculation, Generalized shifted linear equations,
Krylov subspace, Organic semiconductors, Ultra-flexible device
material, Condensed organic polymers.

I. I NTRODUCTION

Large-scale quantum material simulation (electronic state
calculation) is a major field of computational science and
engineering. Calculations for one-hundred-million (108) atoms
or 100-nano-meter(nm)-scale systems have a strong need for
innovative industrial products but are far beyond the computa-
tional limit of the present standard methods. The present paper
reports that a novel linear algebraic algorithm [1], [2], [3],
[4], [5], [6] shows an extreme strong scaling and a qualified
time-to-solution on the full system on the K computer with
108 atoms or 100-nm-scale systems. The algorithm was im-
plemented in our code ELSES (=Extra-Large-Scale Electronic
Structure calculation; http://www.elses.jp/). The method was
demonstrated with condensed polymer systems that appears
in an academic-industrial collaboration research for next-
generation Internet-of-Things (IoT) devices.

The present paper is organized as follows; The background
or the algorithm is presented in Sec. II or Sec. III, respectively.
The benchmark and their analysis are given in Sec. IV. The
application in real research is given in Sec. V. The conclusion
is given in Sec. VI.

II. BACKGROUND

A. Large-scale eigenvalue problem and its difficulty

A mathematical foundation of electronic state calculations
is a generalized eigenvalue problem of

Ayk = λkByk. (1)

The matricesA and B are Hamiltonian and the overlap
matrices, respectively. These matrices areM ×M Hermitian
matrices andB is positive definite. In this paper, these matrices
are real-symmetric. An eigenvalue (λk) or eigenvector (yk)
represents the energy or quantum wavefunctionφk(r) of one
electron, respectively. In typical cases, the matrix sizeM is
proportional to the number of atomsN (M ∝ N ).

Direct eigenvalue solvers consumeO(M3) operation costs
and their practical limit is the matrix size ofM = 106

for the current supercomputers. Recently, a million dimen-
sional eigenvalue problem, the largest problem as far as we
know, was solved by an optimally hybrid solver (EigenKer-
nel; https://github.com/eigenkernel/) [5] with the two modern
solvers of ELPA [7] and EigenExa [8]. The ELPA routine
was used for the reducing procedure from the generalized
eigenvalue problem into the standard one, while the EigenExa
routine was used so as to solve the reduced standard problem.
The elapsed time on the K computer isTelaps = 9, 939 sec
with nnode = 41, 472 nodes andTelaps = 5, 516 sec on the
full system (withnnode = 82, 944 nodes).

The large-scale problem of Eq. (1) has a potential difficulty,
because an explicit orthogonalization procedure is required
with O(N3) operation costs, so as to satisfy the orthogonality
relation of yT

k Byl = δkl. The above potential difficulty
appears commonly among the large-scale electronic state
calculations. A calculation code withO(N3) operation costs
is RSDFT [9], the winner of Gordon Bell Prize in 2011. The
method is based on first principles and real-space mesh grid
and was used with up toN = 105 atoms on the K computer.
Although the above paper is a fascinating progress, the present
target is far beyond the computational limit.

http://arxiv.org/abs/1609.08377v3
http://www.elses.jp/
https://github.com/eigenkernel/


B. A novel concept for large-scale calculations

A novel concept for large-scale calculations was proposed
by Walter Kohn, a winner of the Nobel Prize in Chemistry
at 1998. His paper in 1996 shows that the above potential
difficulty in electronic state calculation can be avoided, when
the theory is not based on an eigenvalue problem and the
formulation is free from the orthogonalization procedure [10].
The concept realizes ‘order-N ’ methods [1], [11], [12], [13],
[14], in which the computational cost isO(N) or proportional
to the number of atomsN .

Here the concept [10] is briefly explained. The theory
focuses on a physical quantity defined as

〈X〉 ≡
∑

k

f(λk)y
T
k Xyk, (2)

with a given sparse real-symmetric matrixX . Equation (2) is
found in elementary textbooks of electronic state calculations.
The function of f(λ) is a weight function, called Fermi
function, and is defined as

f(λ) ≡

{

1 + exp(
λ − µ

τ
)

}−1

. (3)

The weight function is a ‘smoothed’ step function with a
smoothing parameterτ(> 0), because the Heaviside step
function will appear in the limiting case ofτ → +0 (f(λ) =
1(λ < µ) and f(λ) = 0(λ > µ)). The smoothing parameter
τ indicates the temperature of electrons. The parameterµ is
the chemical potential and the value should be determined, so
as to reproduce the number of electrons in the material. The
case inX = A, for example, gives the electronic energy

〈A〉 ≡
∑

k

f(λk)λk. (4)

A quantity in Eq.(2) is transformed into the trace form of

〈X〉 = Tr[ρX ] =
∑

i,j

ρjiXij (5)

with the density matrix

ρ ≡
∑

k

f(εk)yk y
T
k . (6)

The order-N property can appear, since the matrixX is
sparse; A density matrix elementρji is not required when
Xij = 0, because the elementρji does not contribute to
the physical quantity of Eq. (5), even if its value is nonzero
(ρji 6= 0). Consequently, the number of the required density
matrix elementsρji is O(N). The above fact is called ‘quan-
tum locality’ or ‘nearsightedness principle’ [10].

The above formulation has a highly parallelizable math-
ematical structure and the original problem is decomposed
mathematically into parallel subproblems. The trace in Eq.(5)
can be decomposed as

〈X〉 = Tr[ρX ] =

M
∑

j

eTj ρXej, (7)

with the j-th unit vector ofej ≡ (0, 0, 0, ..., 1j, 0, 0, ..., 0)
T.

Here the quantity ofeTj ρXej is called ‘projected physical
quantity’, because the quantity is defined by the projection
onto the vector ofej . The essence of the parallelism is the fact
that the projected physical quantity ofeTj ρXej is calculated
almost independently among different indices ofj.

An important application is quantum molecular dynamics
simulation, in which an electron is treated as a quantum
mechanical wave, while an atom (a nucleus) is treated as a
classical particle in Newtonian equation of motion

MI
d2RI

dt2
= FI . (8)

Here,MI andRI are the mass and the position of theI-th
atom andFI is the force on theI-th atom. Other variables,
such as the electronic charge on each atom{qI}I , can be
also calculated. The force and charge on each atom can be
calculated in the trace form of Eq. (5).

C. Physical origin of the matrices

The matrices ofA and B are sparse and their physical
origin is found in Ref. [1] and reference therein. In short, the
calculations in the present paper are formulated by a first-
principle-based modeled (transferable tight-binding) theory.
An electronic wavefunctionφk(r) is expressed by an eigen-
vector ofyk ≡ (y1k, y2k, ..., yMk)

T, asφk(r) =
∑

j yjkχj(r)
with the given basis functions of{χj(r)}j called atomic
orbitals. A basis function is localized in real space and its
localization center is the position of one atom. A matrix ele-
ment ofAij or Bij represents the quantum (wave) interaction
of electrons on thei-th and j-th bases. The basis index,i
or j, is the composite indices of the atom indexI or J that
distinguishes the localization center and another index,α or β,
called orbital index that distinguishes the shape of the function
(i ⇔ (I, α), j ⇔ (J, β)). An element of the matricesA andB
can be expressed by the four indices asAIα;Jβ andBIα;Jβ ,
respectively. The matrices are sparse, because the elements
decays quickly (|AIα;Jβ |, |BIα;Jβ | → 0) as the function of
the distance between theI-th andJ-th atoms (rIJ ). In the
present simulation, a cutoff distancercut was introduced so
that a matrix element,AIα;Jβ or BIα;Jβ , is ignored in the
cases ofrIJ > rcut. Among the present benchmarks, the
cutoff distancercut is set to bercut = 5 au (≈ 0.2646nm) for
diamond crystal andrcut = 10 au (≈ 0.5292nm) for condensed
polymers. A longer cutoff distance is used for condensed
polymers, so as to include the interaction between polymers.

The number of orbitals on one atom can be different among
atom species. The simulated materials in the present paper
consists in hydrogen (H) and carbon (C) atoms. One (s-type)
orbital is prepared at each hydrogen (H) atom, and four (s-,
px-, py-, pz-types) atomic orbitals at each carbon (C) atom. A
material withNH hydrogen atoms andNC carbon atoms gives
the matrices ofA andB with the size ofM = NH + 4NC.
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Fig. 1: (a) The ground design of scalable algorithm. (b)
Comparison between the conventional and present method. (c)
Illustration of the highly parallelizable mathematical structure.

III. A LGORITHM

A. Ground design

The ground design of the present scalable algorithm [1] is
shown in Fig. 1(a). The comparison between the conventional
and present methods is summarized in Fig. 1(b). The method
is based not on the eigenvalue problem of Eq. (1) but on the
set of linear equations in the form of

(zB −A)x = b. (9)

Here,z is a complex energy value. The vectorb is an input and
the vectorx is the solution vector. A set of linear equations in
the form of Eq. (9) with different energy values (z = z1, z2, ...)
is called generalized shifted linear equations. The case in
B = I is called shifted linear equations. The use of Eq. (9)
results in the Green’s (propagation) function formalism, since
the solutionx of Eq. (9) is written formally as

x = Gb (10)

with the Green’s functionG ≡ (zB − A)−1. The Green’s
function and the eigenvectors holds the relationship of

G(z) =

M
∑

k

yk y
T
k

z − λk
. (11)

The density matrix is also given by the Green’s function as

ρ =
−1

π

∫

∞

−∞

f(ε) Im[G(ε+ i0)] dε. (12)

The present method has a highly parallelizable mathematical
structure, as illustrated in Fig. 1(c), since the projectedphysical
quantity ofeTj ρXej in Eq. (7) is obtained from the generalized
shifted linear equations of

(zB −A)x(j) = ej . (13)

B. Krylov subspace solver

The generalized shifted linear equations of Eq. (13) are
solved on an iterative Krylov-subspace solver. A Krylov
subspace is defined as the linear space of

Kν(Q; b) ≡ span[b, Qb, Q2b, ..., Qν−1b], (14)

with a given vectorb and a given square matrixQ. An example
is Conjugate Gradient method and the subspace dimension of
ν is the number of iterations. Krylov-subspace methods with
(generalized) shifted linear equations have been investigated in
particular from 2000’s, partially because the strategy is suitable
to parallelism. Since the solver algorithms are mathematical,
they are applicable to many scientific areas, such as, QCD
[15], large-scale electronic state calculation [1], [16],[17],
[18], [19], quantum many-body electron problem [20], nuclear
shell model problem [21], first-principle electronic excitation
problem [22], and first-principle transport calculation [23]. In
the present paper, the multiple Arnoldi solver [1] is used, in
which Eq. (13) is solved within the direct sum of the two
Krylov subspaces of

Lν(A,B; ej) ≡ Kν/2(A; ej)⊕Kν/2(A;B
−1ej) (15)

with an even number ofν. The numberν is typically, ν =
30− 300 and the calculations in the present paper was carried
out with ν = 30 as in the previous one [1]. The second term in
the right hand side of Eq. (15) appears so as to satisfy several
conservation laws [1]. A reduced (small)ν × ν eigenvalue
equation is solved and the solution vector is given by

x(j) := G(j)(z)ej (16)

with

G(j)(z) ≡
ν
∑

m

v
(j)
m v

(j)T
m

z − ε
(j)
m

. (17)

Here ε
(j)
m and v

(j)
m is an eigenvalue and eigenvector of the

reduced equation(m = 1, 2, ....ν). When the Green’s function
of G in Eq. (12) is replaced byG(j)(z) in Eq. (17), the
projected physical quantity with the index ofj is given by

eTj ρXej :=
−1

π

∫

∞

−∞

f(ε) Im[eTj G
(j)(ε+i0)Xej] dε

=

ν
∑

m

f(ε(j)m )eTj v
(j)
m v(j)T

m Xej. (18)

An advantage of the method is that the energy integration is
carried out analytically as in Eq.(18). Equation (18) will be



exact, if the subspace dimension ofν increases to the original
matrix dimension (ν = M ). As an additional technique in
large-scale calculations, the real-space projection technique [1]
was also used. The radius of the spherical region is determined
with an input integer parameterκ, so that the region contains
κ atoms or more. The same technique is used also for the
overlap matrixB. The value ofκ is set toκ = 100 in the
present paper as in the previous one [1]. As results, numerical
problems in the form of Eq. (13) are solved with the matrix
size of, typically,M ′ = 200− 400 in the present paper.

C. Implementation

The code is written in Fortran 90 with the MPI/OpenMP hy-
brid parallelism. According to the parallel scheme in Fig. 1(c),
the projected physical quantity ofeTj ρXej is calculated
as single-thread or single-core calculations. As explained in
Sec. II-C, the basis indexj is a composite suffix of the atom
index J and the orbital indexβ (j ⇔ (J, β)) In the code,
the loop for the basis indexj is implemented as the double
loop that consists of the outer loop for the atom indexJ
and the inner loop for the orbital indexβ. Since the outer
loop is parallelized both in MPI and OpenMP parallelism, a
meaningful parallel computation is possible, when the number
of atoms is larger than that of cores(N > ncore). Several
matrix elements ofA,B are generated redundantly among
nodes, so as to save inter-node communications. The pure MPI
parallelism is possible but consumes larger memory costs.

The communication among nodes is required,only whena
summation is performed in the trace form of Eq. (7), as shown
in Fig. 1(c) [1]. The summation is carried out hierarchically;
First, the summation is carried out on each node by OpenMP
directives and then the summation is carried out between nodes
by MPI_Allreduce().

IV. B ENCHMARK

A. Purpose and condition

The benchmarks were carried out so as to show an extreme
strong scaling and a time-to-solution qualified for a real
research. Our target value of the qualified time-to-solution
is Telaps = 102s for the elapsed time per step in a quan-
tum molecular dynamics simulation, because a dynamical
simulation of nstep = 103 steps can be executed within
one day (Telapsnstep = 105s ≈ one day). The calcula-
tions were carried out on the K computer which consists of
82,944 compute nodes and achieved the peak performance of
11.28PFLOPS. Each CPU has eight cores and the interconnec-
tion between nodes is named ‘Tofu’ which constructs physical
six-dimensional mesh/torus network topology. We used the
MPI_Allreduce() optimized on the K computer [24].

The calculations were executed in double precision with
the MPI/OpenMP hybrid parallelism. The number of the MPI
processes is set to that of the compute nodes and the number
of the OpenMP threads is set to be eight, the number of cores
per compute node. The jobs were executed by specifying the
three-dimensional node geometry on the K computer(nnode ≡

n
(x)
node× n

(y)
node×n

(z)
node) for optimal performance or minimum

hop count. The number of used nodes (node geometry) is listed
below;nnode = 2, 592(= 12×12×18), 5, 184(= 12×18×24),
10, 368(= 18× 24× 24), 20, 736(= 24× 27× 32), 41, 472(=
27× 32× 48), and82, 944(= 32× 48× 54, the full system).

The benchmark were carried out for disordered materi-
als that appears in real research of ultra-flexible devices.
Condensed polymer systems of poly-(phenylene-ethynylene)
(PPE) were simulated. The three systems are called ‘P100’,
‘P10’ and ‘P1’ and containN=101,606,400 (≈ 108 or 100M),
N=10,137,600 (≈ 10M) and N=1,228,800 (≈1M) atoms,
respectively. The periodic boundary condition is imposed.The
size of the periodic simulation box is 134 nm× 134 nm× 209
nm for the ‘P100’ system. The simulations were carried out
also for the ideal diamond solid called ‘D100’ that contains
N = 106, 168, 320 (≈ 108 or 100M) atoms in the ideal
periodicity, so as to discuss the influence of the presence or
absence of structural disorder.

Technical details are explained. The initial atomic
structures for the polymer systems were generated in
classical molecular dynamics simulations by GROMACS
(http://www.gromacs.org/). Classical simulations work faster
but do not treat electronic (quantum) waves responsible for
the device property. The recorded elapsed time was one for a
‘snapshot’ simulation, an electronic state calculation ofthe
given atomic structures, which dominates the elapsed time
in molecular dynamics simulations. A molecular dynamics
simulation can not be carried out withN = 108 atoms,
because the required memory size exceeds the limit of the K
computer (16GB per node). The present snapshot calculation
with N = 108 atoms consumes 9 GB per node and a molecular
dynamics simulation requires a larger memory size, so as to
store additional variables like velocity, force and so on. The
benchmark of molecular dynamics simulation withN = 107

atoms will be discussed in the last paragraph of this section.

B. Result

The measured elapsed time is summarized in Table I. Here
the parallel efficiency ratioα is defined by

α ≡ (Telaps(n0)/Telaps(nnode))/(nnode/n0) (19)

with n0 ≡ 2, 592. For example, the parallel efficiency ratioα
with 108 atoms and the maximum number of nodes (nnode =
82, 944) is α = 0.92 for ‘D100’ andα = 0.75 for ‘P100’.

TABLE I: The measured elapsed timesTelaps (sec) for ideal
diamond solid with108 atoms (‘D100’) and condensed poly-
mer systems with108 atoms (‘P100’), with107 atoms (‘P10’)
and with 106 atoms (‘P1’). The ideal or measured speed-up
ratio is shown inside the parenthesis.

nnode D100 P100 P10 P1
2,592 (1) 1001.4 (1) 741.1 (1) 81.4 (1) 10.3 (1)
5,184 (2) 502.2 (1.99) 378.5 (1.96) 43.7 (1.86) 5.95 (1.73)
10,368 (4) 252.6 (3.96) 195.2 (3.80) 24.3 (3.35) 3.28 (3.14)
20,736 (8) 127.9 (7.83) 103.0 (7.19) 11.4 (7.14) 1.96 (5.26)
41,472 (16) 65.6 (15.3) 57.1 (13.0) 6.32 (12.9) 1.25 (8.23)
82,944 (32) 34.1 (29.4) 30.9 (24.0) 3.60 (22.6) 0.84 (12.2)

http://www.gromacs.org/
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Fig. 2: Strong scaling benchmarks for ideal diamond solid
with 108 atoms (‘D100’) and the condensed polymer systems
with 108 atoms (‘P100’), with107 atoms (‘P10’) and with106

atoms (‘P1’). Dashed lines are drawn for ideal scaling.

Figure 2 shows the strong scaling property by plotting
the data of Table I. In all the cases, the elapsed timeTelaps

decreases monotonically as the function of the number of used
nodes. The order-N property (Telaps ∝ N ) is also found. For
example, the time of ‘P100’ is ten times larger that of ‘P10’
with nnode = 2, 592. As a rough estimation from Fig. 2,
the target time-to-solution ofTelaps ≈ 102s is fulfilled by
nnode ≈ 2 × 104 and 2 × 103 for the condensed polymer
systems withN = 108 and107 atoms, respectively. The two
cases conclude commonly that the qualified time-to-solution is
fulfilled, when the number of atoms per node is approximately
5 × 102 (N/nnode ≈ 5 × 102). The above statement can be
interpreted as the weak-scaling property.

C. Analysis and discussion

Table II shows the measured communication and barrier
times. In the simulations, we recorded not only the total
elapsed timeTelaps, but also the accumulated MPI communi-
cation timeTcomm and the accumulated barrier timeTbarr on
all nodes. The barrier time includes the time to wait for other
processors. The communication timeTcomm is consumed by
inter-node data communications, while the barrier timeTbarr

appears from a load imbalance among nodes.
Figure 3 plots the data in Tables I and II. Two points are

discussed; (i) The communication time is not serious among
all the cases. (ii) When the cases of ‘D100’ and ‘P100’ are
compared, the ratio of the barrier time is much larger than

TABLE II: Communication timeTcomm and barrier timeTbarr

of the elapsed timeTelaps. See the caption of Table I for
notations. The values are listed asTcomm / Tbarr (sec).

nnode D100 P100 P10 P1
2,592 1.04 / 7.16 1.60 / 28.14 0.382 / 6.69 0.0617 / 2.68
5,184 1.04 / 3.34 1.60 / 20.75 0.378 / 4.86 0.0689 / 1.85
10,368 1.05 / 2.22 1.61 / 14.97 0.384 / 4.34 0.0734 / 1.13
20,736 1.05 / 1.34 1.61 / 9.05 0.218 / 3.31 0.0712 / 0.674
41,472 1.06 / 1.03 1.64 / 6.87 0.215 / 2.18 0.0727 / 0.409
82,944 1.06 / 0.485 1.65 / 5.96 0.218 / 1.28 0.0613 / 0.227
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Fig. 3: Details of the elapsed time. The total elapsed time
Telaps (Tot), the communication timeTcomm (Comm) and the
barrier timeTbarr (Barr) are plotted. See Fig. 2 for notations.

in ‘P100’. In the full system calculation (nnode = 82, 944),
for example, the ratio isTbarr/Telaps ≈ 0.19 in ‘P100’ and is
≈ 0.014 in ‘D100’. We should recall that the ‘D100’ case
is an ideal system without structural disorder and all the
subproblems in Fig. 1(c) are equivalent. On the other hand,
the load imbalance among nodes appears in ‘P100’, because
of the structural disorder. The same conclusion holds on the
‘P10’ and ‘P1’ cases. A method for better load balance is a
future (not urgent) issue of the present code.

To end up this section, two comments are addressed; (I)
The further tuning should be focused mainly on single-core
calculations, since the most routines are executed as single-
core calculations as in Fig.1(c). The profiler reported thatthe
performance is 2.3 % of the peak for the ‘P100’ case with
nnode = 82, 944 in Table I. The severest limitation in the
present calculations is the memory size of the K computer
(16GB per node) and the present code was written in the
memory-saving style, in which the memory cost should be
minimized and the time cost is sometimes sacrificed. Since
the situation can differ among materials and/or architectures,
a possible way is to add another workflow in the time-
saving style. The routines can be classified into those for the
generation of matrix elements and and for the Krylov subspace
solver as in Fig.1(a). The matrix-vector multiplication gives a
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Fig. 4: Details of the elapsed time for the MD simulation
in the ‘P10’ case. The total elapsed timeT (MD)

elaps (Tot(MD)),

the barrier timeT (MD)
barr (Barr(MD), and the communication

time T
(MD)
comm (Comm(MD)) are plotted per MD step in the

same manner of Fig. 3(c). The data for the electronic state
calculation (Tot, Barr, Comm) are also plotted for comparison.

large fraction of the total elapsed time, as usual in a Krylov-
subspace solver, and a typical fraction is21 % among the
present condensed polymer systems. The result suggests that
the matrix generation part gives a larger fraction. (II) Fig. 4
shows the benchmark of molecular dynamics simulation for
the ‘P10’ case, the possible maximum size (See the first
paragraph of the present section), in the same manner of
Fig. 3(c). For example, the elapsed time per molecular dynam-
ics time step isT (MD)

elaps = 81.8 sec or 6.62 sec innnode =2,592
or 82,944, respectively. For comparison, Fig. 4 also shows
the data in Fig. 3(c), the data with the electronic structure
calculation part. The elapsed time is much smaller than the
target time-to-solution (102s) and the method is qualified well
for a real research. We found, however, that non-negligible
time costs appear in the total elapsed time (T

(MD)
elaps ) among

the cases withnnode > 2 × 104, because of the additional
routine for MD simulation. Now we are tuning the code for
faster MD simulations.

V. A PPLICATION IN REAL MATERIAL RESEARCH

This section is devoted to the application study of the
present method to a condensed polymer system, so as to show
how a real research works well withN = 108 atoms by
distributed computing. As an application study with a smaller
system, a molecular dynamics simulation withN = 105 atoms
was carried out with104 cores and the elapsed time is 10 hours
for 5,000 iteration steps [6]. Such a dynamical simulation is
impractical withN = 108 atoms at the present day and this
section indicates a part of the possible future research.

Here, the condensed organic polymer system of ‘P100’ was
used. The research is motivated by an academic-industrial
collaboration with Sumitomo Chemical Co., Ltd. [1], [3], [4].
Organic material gives the foundation of ultra-flexible (wear-
able) devices, key devices of next-generation IoT products,
such as display, sensor and battery. A recent example is ‘e-
skin’ [25]. The material is ultra-flexible (soft) and disordered

in structure and the thickness of devices is typically103 nm
and 100-nm-scale simulations are crucial.

An important HPC issue is that the distributed data structure
should be preserved throughout the whole research; Since the
simulation data is huge and distributed, we cannot gather them
into one node. Here we will show that the post-simulation data
analysis works well for distributed data.

Figures 5(a)(b) show partial regions of the system and
one can observe that the structure is fairly disordered. The
molecular structure for a polymer unit is shown in Fig. 5(c).
In general, electronic wavefunctions are localized in a dis-
ordered structure. The electrical current can propagate among
polymers that are ‘connected’ locally by characteristic (π-type)
electronic waves. We should investigate, therefore, the network
of connected polymers.

A. Network analysis of electronic wavefunctions

A large-scale post-simulation data analysis was carried out
so as to characterize the propagation of electronic wave in the
disordered structure. A speculated propagation mechanismis
shown schematically in Fig. 5(d). Three polymers are drawn
and atoms are depicted as filled circles. The figures include a
small local network that consists of two polymers connected
by a dashed line. Electron can propagate along connected
polymers. Since the network structure is dynamically changed,
as schematically shown in Fig. 5(d), electron can propagate
through the whole material.

The purpose of the analysis is to detect local polymer
networks in which electronic wave can propagate. The analysis
was carried out with the Green’s functionG obtained by the
parallel order-N simulation, as follows; Stage I: The present
parallel simulation gives a ‘connectivity’ matrix ofCIJ

CIJ ≡
∑

α

∑

β

ρIα;JβHJβ;Iα (20)

where I, J are the atom indices. The connectivity matrix
is called integrated crystal orbital Hamiltonian population
(ICOHP) among physics papers [26], [2]. The quantity is a
partial sum of the electronic energy〈H〉 in Eq. (4) (〈H〉 =
∑

IJ CIJ ). Since the matrix elements are calculated always
during the parallel simulation, the elements can be obtained
independently among nodes, without any additional operation
or communication cost. A matrix elementCIJ has a physical
meaning of a local bonding energy between theI-th andJ-th
atoms; If the value of|CIJ | is significantly large, the two
atoms are ‘connected’ by electronic wave. Stage II: Since
every atom belongs to one of polymers, the connectivity matrix
for polymers is defined by

C
(poly)
PQ ≡

∈P
∑

I

∈Q
∑

J

CIJ , (21)

where the summation of
∑

∈P
I , for example, means the sum-

mation among the atoms that belong to theP -th polymer. If
an elementC(poly)

PQ shows a meaningful non-zero value, theP -
th andQ-th polymers are connected by electronic wave. The



Fig. 5: A real material research for a condensed polymer system (PPE) with108-atoms. (a) (b) Visualization of partial regions.
The whole system has the periodic cell lengths of (265nm, 206nm, 239nm). (c) The unit structure of the polymer (PPE). (d)
Schematic figures of a dynamically changed local network of connected polymers. (e) Quantum wave dynamics simulation of
electrons with a local network of three connected polymers.The charge density ofq(r, t) ≡ |Ψ(r, t)|2 is drawn in the upper
(t = 0), middle(t = 50fs) and lower (t = 948fs) panels.

matrix C(poly) is sparse. The dimension ofC(poly) is equal
to the number of polymersN (poly) = 83, 349 and is much
smaller than that ofC (N = 108). Stage III: As a coarse
grained analysis, the eigenvalue equation ofC(poly)z = λz
in the matrix dimension ofN (poly) was solved by the parallel
eigenvalue solver [5]. As results, several eigenvectorsz have
several non-zero elements, which means the presence of small
local networks with several connected polymers.

The network analysis reveals that the condensed polymer
system has small networks that consist of several polymers,
as illustrated in Fig. 5(d).

B. Quantum wave dynamics simulation for device property

Quantum wave (wavepacket) dynamics simulation [6] was
carried out for device property, so as to confirm that the
above network analysis is fruitful or that an electronic wave

can propagate in the small polymer networks detected in the
above analysis. In the wave dynamics simulation, an electronic
waveΨ(r, t), a complex scalar vector, propagates dynamically
under a Schrödinger-type equation ofi∂tΨ = HΨ with
an effective Hamiltonian (matrix)H . See Ref. [6] and the
references therein for details. The atom positions also change
dynamically. Since the normq(r, t) ≡ |Ψ(r, t)|2 is the charge
distribution, its dynamics gives the charge propagation orthe
(non-stationary) electrical current. Figure 5(e) shows a typical
dynamical simulation for approximately 1 ps. The simulation
consumes six hours with 128 nodes. The result shows that the
electronic wave propagates within a polymer first, and later
propagates into other polymers, as expected. The method for
large-scale wave dynamics simulation is under way.



VI. CONCLUSION

A novel linear algebraic algorithm realizes108 atom or
100-nm-scale quantum material simulations with an extreme
scalability and a qualified time-to-solution on the full system
of the K computer. The mathematical foundation is generalized
shifted linear equations, instead of conventional generalized
eigenvalue equations and has a highly parallelizable mathemat-
ical structure. The method was demonstrated in a real material
research for next-generation IoT products. The present paper
shows that an innovative scalable algorithm for a real research
can appear by the co-design among application, algorithm and
architecture.
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