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Overview

e Renormalization Group Overview

e Information Theoretic Preliminaries
e Real Space Mutual Information

e Better ways to do this?

e The ML and Physics Friendship
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Renormalization Group

e Example: Block Spin Renormalization Group
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Renormalization Group

e Describe system in terms of block variables (ex: average
spin of the block)

e Use the ‘'same form’ for the Hamiltonian, except defined
over blocks, with different values for the parameters (ex:
coupling strength)

e Change in parameters after renormalization defines a RG
Flow

e Limit of flow often leads to fixed point characterizations (ex:
Ising ferromagnetic/ paramagnetic)
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Another Perspective

o Sufficient Statistic: A statistic (function) of the data that
contains all of the information with respect to some model
(ex: mean/ variance with Gaussians)

e (Can think of RG as a (lossy) compression, for some course
graining operation R, data X, and measure of ‘macro scale
properties’ Y, want:

R'"'=RoRoRoRO...
I(Y: X)=1I(Y : R" o X)
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Super Quick Info Theory Definitions

e (Shannon) Entropy

e Measure of uncertainty in a random variable, how ‘spread out’ is the
distribution?

H(X) = Z p(x)log p(x Discrete
zeX
— — / p(g;) logp(;[;) Continuous
zeX

e Mutual Information

e Measure of similarity between two random variables, reduction in
uncertainty when we know another variable

p(z,7)
)= 3 > ple)los s

yeY zeX
= H(X) - H(X|Y)
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Learning Relevant Degrees of Freedom?

e For a given model, RG procedure is often explicitly defined (
what are the fast/ slow degrees of freedom, what is the
course graining procedure, how many steps to take, what is

the relevant macro scale property?)

e What if we wanted to learn the relevant degrees of freedom
and course graining automatically in a data driven way?
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Mutual information, neural networks and the
renormalization group

Maciej Koch-Janusz®™* and Zohar Ringel?

Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic
scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormal-
ization group (RG) procedure, which systematically retains ‘slow’ degrees of freedom and integrates out the rest. However,
the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of
identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system.
We introduce an artificial neural network based on a model-independent, information-theoretic characterization of areal-space
RG procedure, which performs this task. We apply the algorithm to classical I physics probl in one and two dimen-
sions. We demonstrate RG flow and extract the Ising critical exponent Our results demonstrate that machine-learning tech-

niques can extract abstract physical pts and q

an integral part of theory- and model-building.

due to groundbreaking advances in automated translation,

image and speech recognition’, game-playing’ and achiev-
ing super-human performance in tasks in which humans excelled
while more traditional algorithmic approaches struggled’. The
applications of those techniques in physics are very recent, initially
leveraging the trademark prowess of machine learning in classifica-
tion and pattern recognition and applying them to classify phases
of matter, study amorphous materials”"’, or exploiting the neural
networks’ potential as efficient nonlinear approximators of arbitrary
functions'"" to introduce a new numerical simulation method for
quantum systems'*'*. However, the exciting possibility of employing
machine learning not as a numerical simulator, or a hypothesis tester,
but as an integral part of the physical reasoning process is still largely
unexplored and, given the staggering pace of progress in the field of
artificial intelligence, of fundamental importance and promise.

The renormalization group (RG) approach has been one of the
conceptually most profound tools of theoretical physics since its
inception. It underlies the seminal work on critical phenomena”,
and the discovery of asymptotic freedom in quantum chromody-
namics'®, and of the Kosterlitz-Thouless phase transition'"**. The
RG is not a monolith, but rather a conceptual framework compris-
ing different techniques: real-space RG", functional RG*" and den-
sity matrix RG*, among others. While all of those schemes differ
quite substantially in their details, style and applicability, there is
an underlying physical intuition that encompasses all of them—the
essence of RG lies in identifying the ‘relevant’ degrees of freedom
and integrating out the ‘irrelevant’ ones iteratively, thereby arriving
at a universal, low-energy effective theory. However potent the RG
idea, those relevant degrees of freedom need to be identified first*>*.
This is often a challenging conceptual step, particularly for strongly

I\/\ achine learning has been captivating public attention lately

a Boltzmann distribution; no further knowledge about the micro-
scopic details of the system is provided. The internal parameters
of the network, which ultimately encode the degrees of freedom
of interest at each step, are optimized (‘learned; in neural network
parlance) by a training algorithm based on evaluating real-space
mutual information (RSMI) between spatially separated regions.
We validate our approach by studying the Ising and dimer models
of classical statistical physics in two dimensions. We obtain the RG
flow and extract the Ising critical exponent. The robustness of the
RSMI algorithm to physically irrelevant noise is demonstrated.

The identification of the important degrees of freedom, and the
ability to execute a real-space RG procedure'’, has not only quanti-
tative but also conceptual significance: it allows one to gain insights
into the correct way of thinking about the problem at hand, raising
the prospect that machine-learning techniques may augment the
scientific inquiry in a fundamental fashion.

The RSMI algorithm

Before going into more detail, let us provide a bird’s eye view of our
method and results. We begin by phrasing the problem in probabi-
listic/information-theoretic terms, a language also used in refs**
To this end, we consider a small ‘visible’ spatial area V, which
together with its environment £ forms the system &, and we define
a particular conditional probability distribution P,(H|V), which
describes how the relevant degrees of freedom H (‘dubbed hiddens’)
in V depend on both V and £. We then show that the sought-after
conditional probability distribution is found by an algorithm maxi-
mizing an information-theoretic quantity, the mutual information,
and that this algorithm lends itself to a natural implementation
using artificial neural networks. We describe how RG is practically
performed by coarse-graining with respect to P, (H|V) and iterating
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Real Space Mutual Information

e Algorithm:
o Estimate data marginals using RBM’s and contrastive divergence
training
o Use these data estimates to optimize another RBM between "hidden’
degrees of freedom (a function of some small subset of sites) and
the environment (the remaining sites) through gradient descent
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Restricted Boltzmann Machines

e Hamiltonian (Energy Function) given by:
H({vi}, {h;}) = Y Bihj + Y vidishj + ) aiv;
J ij j

e Boltzmann distribution:

! - U4 (¥
P({Uz}{hj}) — Ee H({vi},{h;})
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Contrastive Divergence

e Speed up sampling from Restricted Boltzmann Machines

e Want P(X), run a Markov Chain to convergence using Gibbs
Sampling
e Gibbs Sampling in RBM's:

e Fix value of hidden, sample marginal probability of a single spin
conditioned on all other spins

e Fix value of observed, sample marginal probability of hidden
conditioned on other hidden

e Repeat many times

e (Contrastive Divergence:
e Initialize Markov Chain close to target distribution, not randomly

o Samples of P(X) not gathered after chain convergence, gathered
after k steps of Gibbs sampling (often k=1)
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Real Space Mutual Information

e Intuition behind I(H:E) as a measure of macro scale

information:
e Hidden variables H should contain information in V that overlaps
with E
o If E contained all the information in V, H would try to copy V
e By restricting the support/ number of variables in H, can ensure that

V can never be fully copied, introducing some potential information
loss each renormalization step
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Possible Issues

e Each renormalization step is computationally expensive
(relies on many Monte Carlo samples to construct data
distribution, and maximizes I(H:E) at every step for some
partition)

e Depending on the information present in the subset V, a
renormalization step may result in undesirable loss of
information about macro scale
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Possible Alternatives

e Shameless plug: Multivariate Mutual Information

e Mutual Information: How much information is shared between two
random variables?

e Multivariate Mutual Information: How much information is shared
between a group of random variables?

e Information among a group of random variables can be
shared in different ways! (Redundantly, Synergistically)
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Redundancy as Macro Scale

e One interpretation of macro scale properties of a system
corresponds to information in a system that is consistently
repeated

e Extracting / preserving redundant information (if present)
would have a similar effect as a large number of
renormalization course graining steps

e There are measures of multivariate mutual information that
are maximized for redundancy (total correlation)

T0(X) = 3~ pla)log 70
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Redundancy as Macro Scale

e There are efficient algorithms (O(n) time !) for extracting

redundancy in a similar fashion as Real Space Mutual
Information

e https://github.com/gregversteeq

e Next step: run it and see if it works!
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Final Note

e Physics helps ML, ML helps Physics?

J Stat Phys (2017) 168:1223-1247 (.)Cmsst,k
DOI 10.1007/510955-017-1836-5

An exact mapping between the Variational Renorn

Pankaj Mehta Physica A391(2012) 62-77

Why Does Deep and Cheap Lear Dept. of Physics, Boston Universi

David J. Schwab
. . De) P s rthwestern Unive
Henry W. Lin! - Max Tegmarkz . David R Dept. of Physics, Northwestern Unive

Deep learning is a broad set of techniques
ically learn relevant features directly from struc af
king results on a diverse set of difficult machine le
recognition, and natural language processing. Despite the

atively little is understood theoretically about why these =
learning and compression. Here, we show that deep learni ELSEVIER journal homepage: www.elsevier.com/locate/physa
most important and successful techniques in theoretical phy .

RG is an iterative coars ning scheme that allows for #
operators) as a phys m is examined at different leng
ping from the variational renormalization group, first introg
architectures based on Restricted Boltzmann Machines (RB:
nearest-neighbor Ising Model in one and two-dimensions. O
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© Springer Science+Business Media, LLC 2017 algorithms may be employing a generalized RG-like scheme Information theory and renormalization group flows
A central goal of modern machine learning research  cerned
is to learn and extract important features directly fom  DNNs, S.M. Apenko*

Abstract We show how the success of deep lea
but also on physics: although well-known mathy
works can approximate arbitrary functions wel
can frequently be approximated through “chea
eters than generic ones. We explore how prope

data. Among the most promising and successful tech-  what fol ) ) )
niques for accomplishing this goal are those associated  This 1E Tamm Theory Department, P N Lebedev Physical Institute, Moscow, 119991, Russia
with the emerging sub-discipline of deep learning. Deep  cent of! ITEP, Moscow, 117924, Russia

learning uses multiple layers of representation to learn iy theo
descriptive features directly from training data (1, 2] [11, [12]4
and has been successfully utilized, often achieving record desi

¢ xplore 1 breaking results, in difficult machine learning tasks in-  many le ARTICLE INFO ABSTRACT
as symmetry, locality, compositionality, and pol cluding object labeling [3], speech recognition [4], and  tract rel
tionally simple neural networks. We further argu natural language processing 5] . phenom Article history: We present a possible approach to the study of the renormalization group (RG) flow based
the data is of a certain hierarchical form preval ) ].]“ 'tllm :"’;("L"“"' :‘“I]]‘f"‘ w ““] N *:' ‘)’r ‘I‘Zi‘)’l\;‘\'!':""l:)“- f““"’i;’; Received 7 June 2010 entirely on the information theory. The average information loss under a single step of
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L with units  on to fl which are integrated out, when the slow ones are held fixed. Its positivity results in the
be-  dure, cej ic decrease of the informational entropy under renormalization. This, however,

els that con
in one lay

of multiple layers of “neurons
¢ receiving inputs from wnits in the lay

information theory and discuss the relation to ¢

1410.3831v1 [stat.ML] 14 Oct 2014

“no-flattening theorems” showing when efficief —  low them. Despite their enormous sucy ill un-  increasis ﬁeywmsl{ ) does not necessarily imply the irreversibility of the RG flow, because entropy is an extensive
approximated by shallow ones without efficiene] > :'lt‘fu' what advantages these (li:(‘;)- fnu%ﬁ wer architec- - evant op lri:‘?:;'s‘?b;f;y"o" quantity and explicitly depends on the total number of degrees of freedom, which is
P . X ures possess over shallower architectures with a similar  properf reduced. Only some size-independent additive part of the entropy could possibly provide
cannot be multiplied using fewer than 2" neur0] »<  number of parameters. In particular, it In gol Entropy -Oonly ep . P tropy could P VP!
[ understood theoretically why DNNs are s ization Mutual information thelrequlred Lyapunov function. We also mtmf:luce a mutual information of.fast and slow
. S uncovering features in structured data. proxinfl variables as probably a more adequate quantity to represent the changes in the system
Keywords Artificial neural networks - Deep le One possible explanation for the s " theoreti under renormalization and evaluate it for some simple systems. It is shown that for certain
chitectures is that they can be viewed as an iterative  proxima real space decimation transformations the positivity of the mutual information directly
coarse-graining scheme, where each new high-level layer  renorm; leads to the monotonic growth of the entropy per lattice site along the RG flow and hence
. of the neural network learns increasingly abstract higher-  forming toits irreversibility.
1 Introduction level features from the data [1,10]. The initial layers of  variatio ©2011 Elsevier B.V. All rights reserved.
the the DNN can be thought of as low-level feature de-  iary, or o 8 .
tecters which are then fed into higher layers in the DNN  spin sys

which combine these low-level features into more abstract — ters, A X
higher-level features, providing a useful, and at times re-  the coas 1. Introduction

Renormalization group (RG), which is a powerful instrument for analyzing different strongly coupled systems [1] (see
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