Supplementary Derivations for the Lanczos-Algorithm Lecture

Spectral representation

The eigenvalues and eigenvectors satisfy

$$\sum_{j=1}^{n} A_{ij} q_{j}^{(\alpha)} = \lambda_{\alpha} q_{i}^{(\alpha)} = \sum_{\beta=1}^{n} q_{i}^{(\alpha)} \left(\lambda_{\beta} \delta_{\beta \alpha} \right), \tag{1}$$

where $\delta_{\beta\alpha} = 1$ ($\alpha = \beta$); 0 ($\alpha \neq \beta$). Define an orthogonal matrix **Q** such that its α -th column is the α -th eigenvector $\mathbf{q}^{(\alpha)}$, i.e., $\mathbf{Q} = [\mathbf{q}^{(1)}\mathbf{q}^{(2)}\cdots\mathbf{q}^{(n)}]$, and a diagonal matrix Λ such that $\Lambda_{\beta\alpha} = \lambda_{\beta}\delta_{\beta\alpha}$, and Eq. (1) is reduced to a matrix equation,

$$\mathbf{A}\mathbf{Q} = \mathbf{Q}\boldsymbol{\Lambda} \,. \tag{2}$$

From the orthonormality of the eigenvector set,

$$\left(\mathbf{Q}^{T}\mathbf{Q}\right)_{\alpha\beta} = \sum_{i=1}^{n} Q_{i\alpha} Q_{i\beta} = \sum_{i=1}^{n} q_{i}^{(\alpha)} q_{i}^{(\beta)} = \mathbf{q}^{(\alpha)} \bullet \mathbf{q}^{(\beta)} = \delta_{\alpha\beta} , \qquad (3)$$

where \mathbf{Q}^{T} is the transpose of \mathbf{Q} . Therefore,

$$\mathbf{Q}^T \mathbf{Q} = \mathbf{I} \,, \tag{4}$$

where the identity matrix is defined as $\mathbf{I}_{\alpha\beta} = \delta_{\alpha\beta}$. Multiplying \mathbf{Q}^T from the left, then, Eq. (2) becomes

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \boldsymbol{\Lambda} \ . \tag{5}$$

Variational principle: The best approximation to $q^{(1)}$ is whatever the vector that makes $\rho(\mathbf{x}; \mathbf{A})$ the smallest.

Once $\mathbf{q}^{(1)}$ is found, the best approximation to $\mathbf{q}^{(2)}$ is whatever the vector $\{\mathbf{x} \mid \mathbf{x} \cdot \mathbf{q}^{(1)} = 0\}$ that makes $\rho(\mathbf{x}; \mathbf{A})$ the smallest, and so on.

Gram-Schmidt orthogonalization

For a set of un-orthonormalized vectors $\{\mathbf{s}_1,...,\mathbf{s}_n\}$, suppose that the first *i*-1 vectors have been orthonormalized to form $\{\mathbf{q}_1,...,\mathbf{q}_{i-1}\}$, and consider

$$\mathbf{q}_{i}^{\prime} \leftarrow \mathbf{s}_{i} - \sum_{j=1}^{i-1} \mathbf{q}_{j} \left(\mathbf{q}_{j} \bullet \mathbf{s}_{i} \right); \quad \mathbf{q}_{i} \leftarrow \mathbf{q}_{i}^{\prime} / \left| \mathbf{q}^{\prime} \right|_{i}.$$
(6)

Then

$$\mathbf{q}_{j(\prec i)} \bullet \mathbf{q}'_{i} = \mathbf{q}_{j} \bullet \left[\mathbf{s}_{i} - \sum_{k=1}^{i-1} \mathbf{q}_{k} \left(\mathbf{q}_{k} \bullet \mathbf{s}_{i} \right) \right]$$
$$= \mathbf{q}_{j} \bullet \mathbf{s}_{i} - \sum_{k=1}^{i-1} \left(\mathbf{q}_{j} \bullet \mathbf{q}_{k} \right) \left(\mathbf{q}_{k} \bullet \mathbf{s}_{i} \right)$$
$$= \mathbf{q}_{j} \bullet \mathbf{s}_{i} - \sum_{k=1}^{i-1} \delta_{jk} \left(\mathbf{q}_{k} \bullet \mathbf{s}_{i} \right) = 0$$

i.e., the modified vector is orthogonal to all the low-lying vectors \mathbf{q}_i .

Lanczos recursion formula

From the tridiagonality,

$$\mathbf{A}\mathbf{q}_{i} = a\mathbf{q}_{i-1} + b\mathbf{q}_{i} + c\mathbf{q}_{i+1}.$$
(7)

$$\mathbf{q}_{i}^{T} \times (7)$$

$$\mathbf{q}_{i}^{T} \mathbf{A} \mathbf{q}_{i} = b \mathbf{q}_{i}^{T} \mathbf{q}_{i} = b$$

$$\therefore b = \alpha_{i} = \mathbf{q}_{i}^{T} \mathbf{A} \mathbf{q}_{i}$$
(8)

$$\mathbf{q}_{i-1}^T \times (7)$$
$$\mathbf{q}_{i-1}^T \mathbf{A} \mathbf{q}_i = a \mathbf{q}_{i-1}^T \mathbf{q}_{i-1} = a$$
$$\therefore a = \mathbf{q}_{i-1}^T \mathbf{A} \mathbf{q}_i = \mathbf{q}_i^T \mathbf{A} \mathbf{q}_{i-1} (\text{real}) = \beta_{i-1} \quad (i \ge 2)$$

 $\mathbf{q}_{i+1}^T \times (7)$

$$\mathbf{q}_{i+1}^{T} \mathbf{A} \mathbf{q}_{i} = c \mathbf{q}_{i+1}^{T} \mathbf{q}_{i+1} = c$$

$$\therefore c = \mathbf{q}_{i+1}^{T} \mathbf{A} \mathbf{q}_{i} = \beta_{i}$$
(10)

(9)

Lanczos algorithm (last step)

$$\|\mathbf{r}_i\| = \|\beta_i \mathbf{q}_{i+1}\| = \beta_i \|\mathbf{q}_{i+1}\| = \beta_i$$