Supplementary Derivations for the Lanczos-Algorithm Lecture

Spectral representation

The eigenvalues and eigenvectors satisfy
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where 6,,= 1 (a=p); 0 (a=p) . Define an orthogonal matrix Q such that its o-th

M (2),

@ je., Q=[q"q"”---q"], and a diagonal matrix A such that

column is the a-th eigenvector q
Ay, =240, . and Eq. (1) is reduced to a matrix equation,
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From the orthonormality of the eigenvector set,
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where Q’ is the transpose of Q. Therefore,
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where the identity matrix is defined as I, =4,,. Multiplying Q' from the left, then, Eq. (2)

becomes
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Variational principle: The best approximation to q"”

the smallest.

is whatever the vector that makes p(x; A)
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Once q" is found, the best approximation to q® is whatever the vector {xIx*q" =0} that

makes p(x; A) the smallest, and so on.
Gram-Schmidt orthogonalization

For a set of un-orthonormalized vectors {s,,...,s, }, suppose that the first i—1 vectors have been
orthonormalized to form {q;,...,q, ,} , and consider
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i.e., the modified vector is orthogonal to all the low-lying vectors ;.
Lanczos recursion formula

From the tridiagonality,
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Lanczos algorithm (last step)
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