
1 

Supplementary Derivations for the Lanczos-Algorithm Lecture 
 
Spectral representation 
The eigenvalues and eigenvectors satisfy 
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where !"# = 1 (# = "); 0 (# ! ") .  Define an orthogonal matrix Q such that its α-th 
column is the α-th eigenvector q(α), i.e., Q = [q(1)q(2)!q(n) ] , and a diagonal matrix Λ such that 
!!" = #!$!" , and Eq. (1) is reduced to a matrix equation, 

 AQ =Q! . (2) 

From the orthonormality of the eigenvector set, 
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where QT is the transpose of Q. Therefore, 

 Q
T
Q = I , (4) 

where the identity matrix is defined as I!" = #!" . Multiplying QT from the left, then, Eq. (2) 
becomes 

 Q
T
AQ = ! . (5) 

Variational principle: The best approximation to q(1) is whatever the vector that makes ρ(x; A) 
the smallest. 

Once q(1) is found, the best approximation to q(2) is whatever the vector {x | x•q(1) = 0}  that 
makes ρ(x; A) the smallest, and so on. 
Gram-Schmidt orthogonalization 

For a set of un-orthonormalized vectors {s
1
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} , suppose that the first i−1 vectors have been 

orthonormalized to form {q
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i.e., the modified vector is orthogonal to all the low-lying vectors qj. 
Lanczos recursion formula 
From the tridiagonality, 
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Lanczos algorithm (last step) 
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