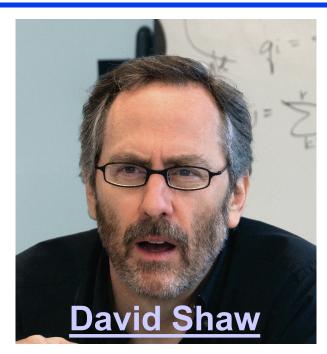
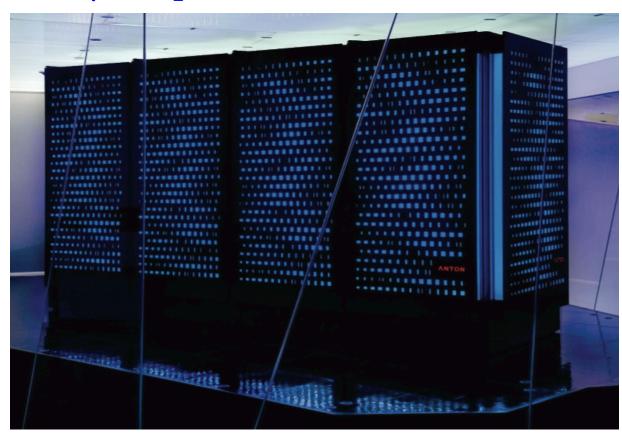
Molecular-Dynamics Machines

Aiichiro Nakano


Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Biological Sciences
University of Southern California

Email: anakano@usc.edu



Anton: Computational Microscope

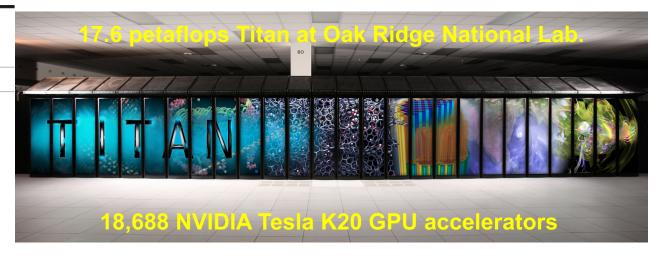
"... make all these discoveries because they were looking at the world in a different way."

16 μs/day simulation on 512 nodes (5 μs/step execution time)

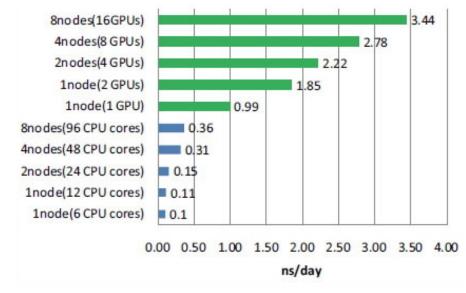
D E Shaw Research

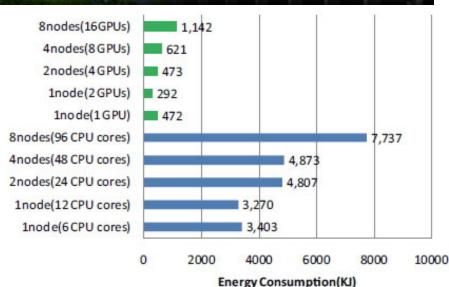
"... there's still a lot of juicy, low-hanging fruit in this (molecular simulation) area ..."

"A conversation with David E. Shaw," CACM 52(10), 49 ('09)

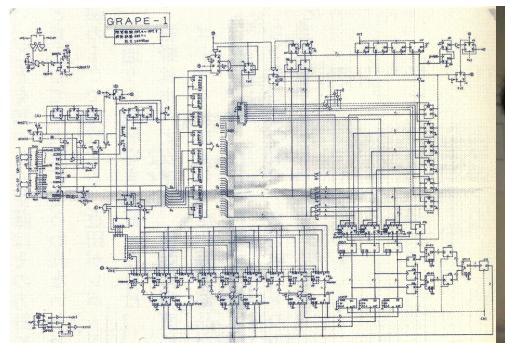

MD on GPU Clusters

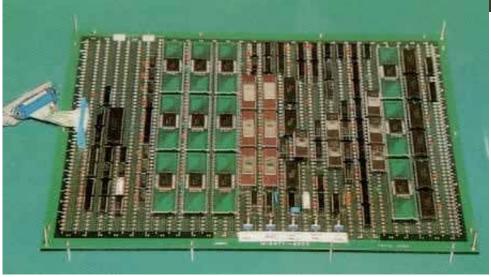
GPU acceleration and other computer performance increases will offer critical benefits to biomedical science.


BY JAMES C. PHILLIPS AND JOHN E. STONE

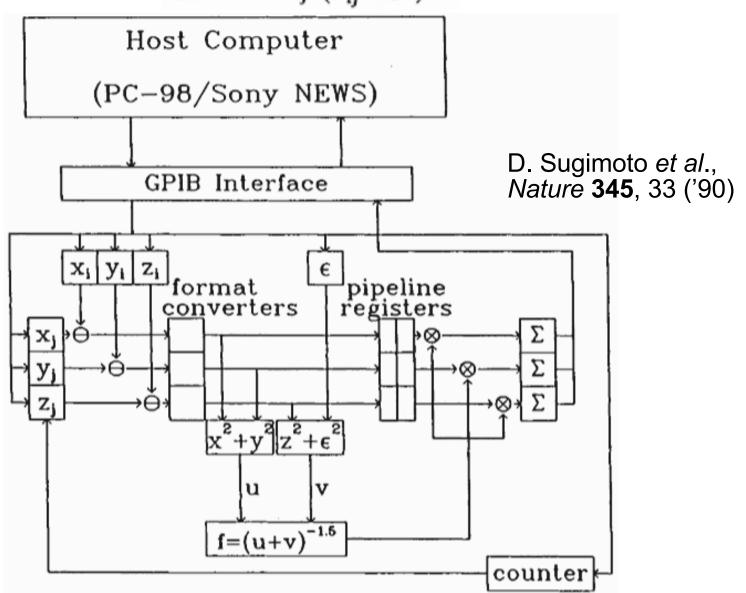

Probing Biomolecular Machines with Graphics Processors

CACM 52(10), 34 ('09)





GRAPE 1 (\$2K, 1989)



Tomoyoshi Ito & comics he authored

- GRAPE (GRAvity PipE) = specialpurpose computers for the gravitational N-body problem built by astrophysicists at Univ. of Tokyo
- GRAPE 1 designed by a 1st-year Ph.D. student (with \$140K/year income)

Gravitational Pipeline

$$\frac{\mathrm{d}^2 \mathbf{x}_i}{\mathrm{d}t^2} = \mathbf{f}_i = \sum_j \frac{m_j (\mathbf{x}_j - \mathbf{x}_i)}{(r_{ij}^2 + \varepsilon^2)^{3/2}}$$

GRAPE & Gordon Bell Prizes

SC2003 Gordon Bell Award Junichiro Makino University of Tokyo

Performance Evaluation and Tuning of GRAPE-6--Towards 40 "Real" Tflops

2003 Gordon Bell Prize, Special Achievement

Performance Evaluation and Tuning of GRAPE-6—Towards 40 'Real' Tflop/s

Junichiro Makino, Hiroshi Daisaka, Eiichiro Kokubo, Toshiyuki Fukushige

SE 2001 GORDON BELL PRIZE

Junichiro Makino Winner, Peak Performance

A 11.55 Thops Simulation of Black Holes in a Galactic Center on GRAPE-6

2001 Gordon Bell Prize, Winner, Peak Performance

A 11.55 Tflops simulation of black holes in a galactic center on GRAPE-6

Junichiro Makino, Toshiyuki Fukushige

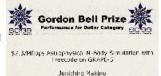
902000 GORDON BELL PRIZE

Junichiro Makino

Winner, Peak Performance Category A 1.348 Weyn visualistics of Mind Aske in a greater content on SPAPE 6 2000 Gordon Bell Prize, Winner, Peak Performance Category A 1.349 Tflops simulation of black holes in a galactic center on GRAPE-6

Junichiro Makino, Toshiyuki Fukushige, Masaki Koga

J. Makino


& Grape 6 (2001)

2000 Gordon Bell Prize, Winner, Peak Performance Category (tie with

1.34 Tflops Molecular Dynamic simulation for NaCl with a Special Purpose Computer: MDM

(MD-GRAPE system)

Tetsu Narumi, Ryutaro Susukita, Takahiro Koishi, Kenji Yasuoka, Hideaki Furusawa, Atsushi Kawai, Toshikazu Ebisuzaki

1999 Gordon Bell Prize, Price Performance, First Prize Astrophysical N-body simulation 144 Glops / \$ 1 M on custom-built GRAPE-5 32-processor system

Atsuchi Kawai, Toshiyuki Fushushige, and Junichiro Makino

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	1684.20	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype	38.80
2+	1448.03	National Astronomical Observatory of Japan	GRAPE-DR accelerator Cluster, Infiniband	24.59
2	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80
3	933.06	NCSA	Hybrid Cluster Core i3 2.93Ghz Dual Core, NVIDIA C2050, Infiniband	36.00
4	828.67	RIKEN Advanced Institute for	K computer, SPARC64 VIIIfx 2.0GHz, Tofu	57.96

1996 GORDON BELL PRIZE Winner Dibushi Erhabig ma Yashbar Mahas Desardiy X Tibus

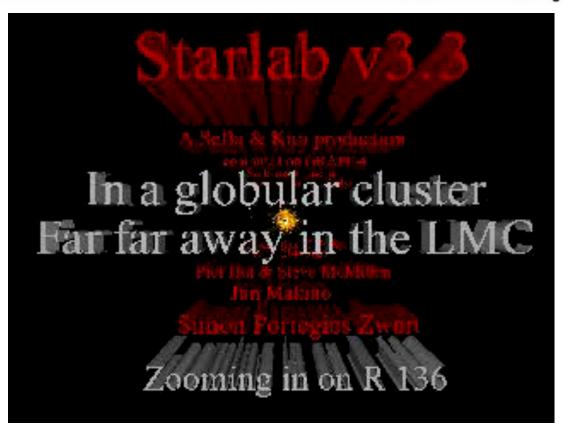
1996 Gordon Bell Prize, Performance, Honorable Mention Simulation of the motion of 780,000 stars 333 Gflops using the Grape-4 machine w/ 1,269 processors

Junichiro Makino, Toshiyuki Fukushige

1995 Gordon Bell Prize, First Place, Special Purpose Machines Simulation of the Motion of 10,000 Stars 112 Gflops using the Grape-4 machine with 288 processors

Astrophysical N-body Simulations on GRAPE-4 Special-Purpose Computer Junichiro Makino, Makoto Taiji

www.green500.org (Nov. '10)


Enabling Science by Hardware

A special-purpose computer for gravitational many-body problems

Daiichiro Sugimoto', Yoshihiro Chikada', Junichiro Makino', Tomoyoshi Ito', Toshikazu Ebisuzaki' & Masayuki Umemura[‡]

NATURE · VOL 345 · 3 MAY 1990

© 1990 Nature Publishing Group

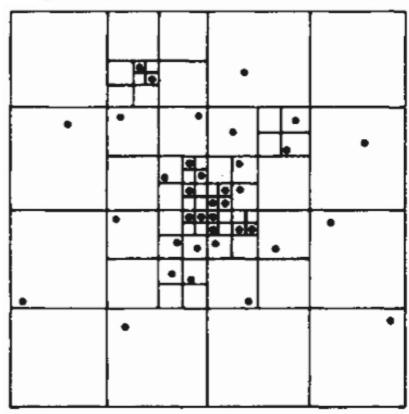
Computer Physics Communications 60 (1990) 187-194

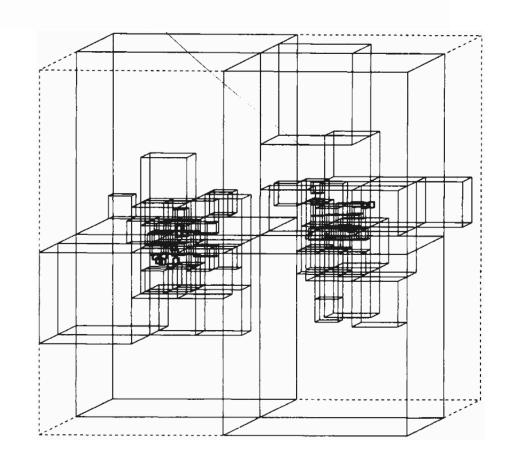
A special-purpose N-body machine GRAPE-1

Tomoyoshi Ito, Junichiro Makino, Toshikazu Ebisuzaki and Daiichiro Sugimoto Department of Earth Science and Astronomy, College of Arts and Sciences, University of Tokyo, Tokyo 153, Japan

CPC homepage

33


Enabling Science by Algorithm


NATURE

NATURE VOL. 324 4 DECEMBER 1986

A hierarchical $O(N \log N)$ force-calculation algorithm

Josh Barnes & Piet Hut

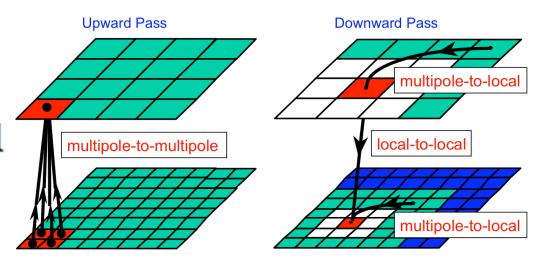
ACM Best Theses: Machine vs. Algorithm

DANNY HILLIS

Doctoral Dissertation Award United States – 1985

CITATION

For his dissertation "The Connection Machine."


Watch: Hillis on Richard Feynman

http://longnow.org/essays/richard-feynman-connection-machine/

LESLIE GREENGARD

Doctoral Dissertation Award United States – 1987

For his dissertation "The Rapid Evaluation of Potential Fields in

See lecture notes at http://cacs.usc.edu/education/cs653.html

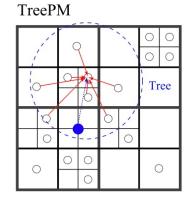
Particle Systems."

More N-body Simulations at SC

42 TFlops Hierarchical N-body Simulations on GPUs with **Applications in both Astrophysics and Turbulence**

Tsuyoshi Hamada Department of Computer and Information Sciences Nagasaki University Nagasaki, Japan hamada@cis.nagasakiu.ac.jp

Tetsu Narumi Department of Computer Science University of Electro-Communications Tokyo, Japan narumi@cs.uec.ac.jp


Rio Yokota Department of Mathematics University of Bristol Bristol, United Kingdom rio.vokota@bristol.ac.uk

Kenji Yasuoka Department of Mechanical Engineering Keio University Yokohama, Japan vasuoka@mech.keio.ac.ip

Keigo Nitadori High-Performance Molecular Simulation Team RIKEN Advanced Science Institute Wako, Japan keigo@riken.jp

Makoto Taiji High-Performance Molecular Simulation Team RIKEN Advanced Science Institute Wako, Japan taiii@riken.ip

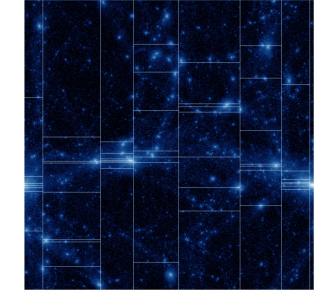
P^3M direct

4.45 Pflops Astrophysical N-Body Simulation on K computer - The Gravitational Trillion-Body Problem

2009 Gordon Bell Prize **Price/Performance Category**

Table 2: Price of the GPU cluster

Elements	Quantity	Price (JPY)	Price (\$)
GPUs	256	12,160,000	\$ 118,345
Host PCs	128	10,716,032	\$ 104,292
Network switch	4	644,800	\$ 6,275
Total		23,520,832	\$ 228,912


Tomoaki Ishiyama Center for Computational Science University of Tsukuba ishiyama@ccs.tsukuba.ac.jp

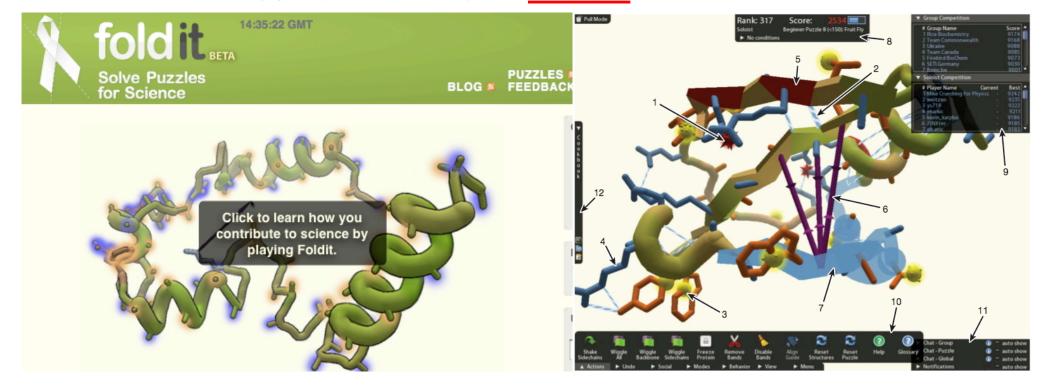
Keigo Nitadori University of Tsukuba keigo@ccs.tsukuba.ac.jp

Junichiro Makino Center for Computational Science Graduate School of Science and Engineering Tokyo Institute of Technology makino@geo.titech.ac.jp

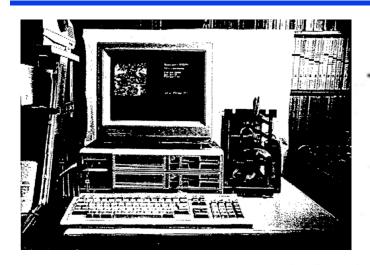
IEEE/ACM supercomputing, SC12

Machine algorithm!

Enabling Science by Online Game

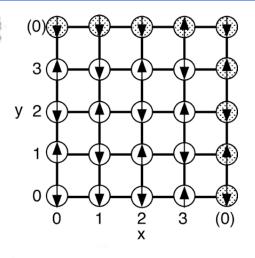

nature

Vol 466 5 August 2010 doi:10.1038/nature09304


LETTERS

Predicting protein structures with a multiplayer online game

Seth Cooper¹, Firas Khatib², Adrien Treuille^{1,3}, Janos Barbero¹, Jeehyung Lee³, Michael Beenen¹, Andrew Leaver-Fay²†, David Baker^{2,4}, Zoran Popović¹ & Foldit players


Ising Machine

1bit の世界の専用計算機

---イジング・マシーン----

泰 地 真弘人 (東京大学教養学部) (1994年3月2日受理)

Ising Machine:

A Special Purpose Computer for 1-bit Worlds

TAIJI Makoto (Received 3 March 1994)

$$V(s^{N}) = -J \sum_{(k,l)} s_{k} s_{l} - H \sum_{k} s_{k}, \quad s_{k} = \pm 1$$

Abstract

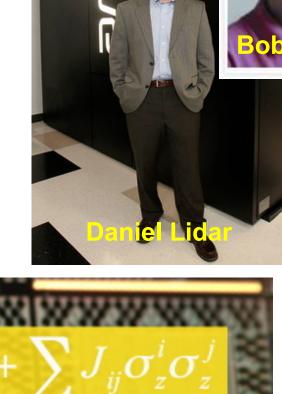
This paper describes the development of special-purpose computer systems for Ising models, "Ising Machine" m-TIS 1 and 2. The first two sections explain Ising models and their Monte Carlo simulations. In section 3 and 4, I describe my motivation to build a special-purpose computer and the development of m-TIS 1. In section 5 and 6, the use of field-programmable gate arrays in a special-purpose computer is discussed. In the last two sections I discuss the potential abilities and future prospects of both Ising machine and a special-purpose computer in general.

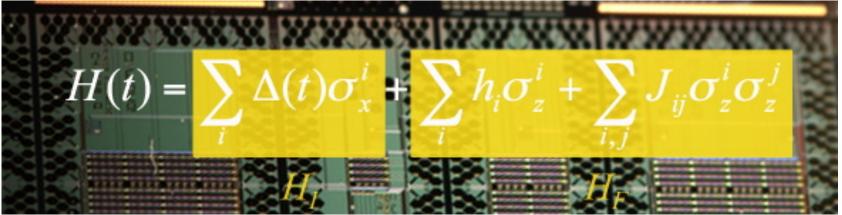
J. Plasma Fusion Res. 70, 332 ('94)

USC Quantum Computation Center

• D-Wave 2X system with 1,098-quantum bits (qubits)

ARTICLE


Received 11 Dec 2012 | Accepted 27 May 2013 | Published 28 Jun 2013


DOI: 10.1038/ncomms3067

Experimental signature of programmable quantum annealing

Sergio Boixo^{1,2,3}, Tameem Albash^{3,4}, Federico M. Spedalieri^{1,3}, Nicholas Chancellor⁴ & Daniel A. Lidar^{2,3,4,5}

Adiabatic quantum optimization

http://www.isi.edu/research_groups/quantum_computing/home

Quantum Chemistry on Quantum Computer

Challenges

- 1. Small number of qubits ($<10^2$) of "nonadiabatic" quantum computer \rightarrow (1) small basis set or (2) divide-&-conquer on QPU?
- 2. Environmental noise & dissipation \rightarrow Variational formalism

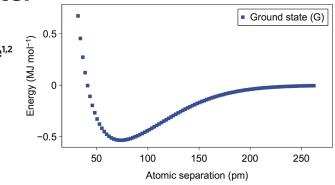
Simulated Quantum Computation of Molecular Energies

Alán Aspuru-Guzik, ** Anthony D. Dutoi, ** Peter J. Love, **

Martin Head-Gordon **

Science 309, 1704 (**)

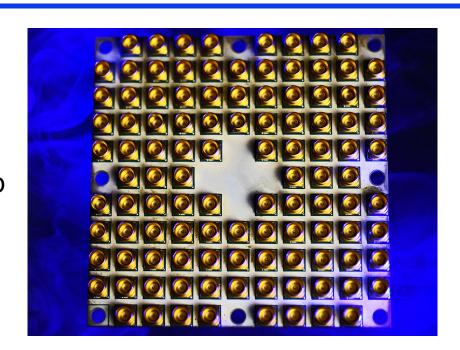
ARTICIFS

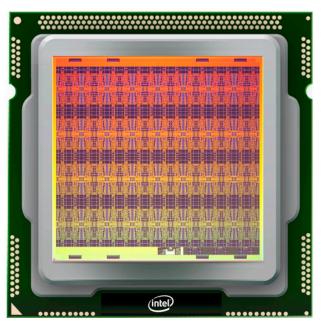

PUBLISHED ONLINE: 10 JANUARY 2010 | DOI: 10.1038/NCHEM.483

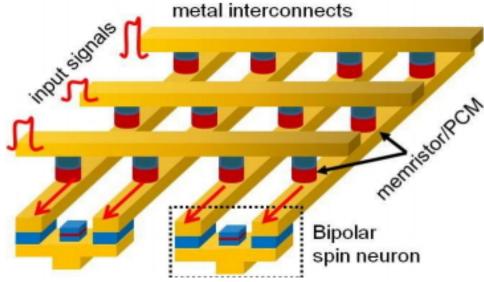
nature chemistry

Towards quantum chemistry on a quantum computer

B. P. Lanyon^{1,2}*, J. D. Whitfield⁴, G. G. Gillett^{1,2}, M. E. Goggin^{1,5}, M. P. Almeida^{1,2}, I. Kassal⁴, J. D. Biamonte^{4†}, M. Mohseni^{4†}, B. J. Powell^{1,3}, M. Barbieri^{1,2†}, A. Aspuru-Guzik⁴* and A. G. White^{1,2}


20-qubit computation of H₂ molecule


Intel's Future Computing


1. Quantum computing

49-qubit chip

2. Neuromorphic computing

