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(Ab Initio) Molecular Dynamics

Time: =0 for Matom system
{r;(t)}: Coordinates  {wv,(t)}: Velocities

Repeat

v

Density Functional
Theory O(N?)

Potential Energy: V[{r.(t)}]

¥

oV [{r(t)}]
or(t)

Atomic Force: F;(t) = -

Empirical Potential
O(N) or O(MogN)
|

v

Coordinates and velocities after t + At,
{r,(t +At)} {v,(t+At)}

differentiating them. dzri ( t)
= F;(t)

T g

which are obtained by solving Newton’s equation of motion by numerically




[Empirical potential]

represents interatomic potential V with some kind of function.

— Significant reduction in calculation cost

e.g. Rare gas elements (He, Ne, Ar, Kr, Xe, Rn)
Only van der Waals interaction is working between atoms.

e.g. Lennard-Jones potential V (r-,-)
12 6
V (r;) = 4¢ < | |2 1 & = Binding energy
"ij Fij | Iy =Binding distance
—_— |
Repulsive ~ Attractive _||
term term a — 21/6
0 |I rO - 2 o
. |II I --'-'-_'___
Fit the two parameters of o and ¢ on the basis of e AN

first principles calculation (or experimental values).



[Empirical potential] Y

For repulsive term, Lennard-Jones potential: () '2
: : i
Buckingham potential: Aexp(-Bry)
e.g.
|  Although the functional form was fixed, it must be
changed according to the situation.
- ' vV AT) ([ 99—
12 6 l
V(r;) =4¢ [i] — [Ej | & = Binding energy
ij
ij ij | Iy =Binding distance
Repulsive Attractive :lll
term term ; I".I r,= 21/_6_0.
Fit the two parameters of ¢ and ¢ on the basis of e AN

first principles calculation (or experimental values).



Artificial Neural Network potential: ANN potential \(

It is "'artificial' because it modeled the neural tissue (neural network) of living organisms.

Feedforward Neural Network

Information transmission direction

Hidden Layer 1, 2 _ .
ONode (or Perceptron) % Y e.g. Potential energy VPredict({x?1

{(wi"}: weights
N @ Output
@lInput ":A\’I/ Layer 3 @Cost function £

Layer O e.g. Sum of square errors
{x?} 54 o ' AtomTi‘ZaSitr;incgt res
AR , 1 et .
Atomic / - 12} c = E (VIPredlct _ VIReference)2
i wW; 1
coordinates {Wm}{x}}l i {x7} Calculated by
ij .
$ T Ab initio MD

®Using back-propagation method, we can calculate weight gradients {;f }
l . o€ *
®Update {w{"} using {8_wa}
@ Repeat D-® until the cost function £ is minimized.



input layer

Merits using ANN potential

: output layer

@ Universal approximation theorem
ANN can approximate arbitrary functions if it has at least one hidden layer.
It is not necessary to limit the functional form like the LJ potential.
= High accuracy

@ Dimensional compression of information
By increasing the number of hidden layers, it is possible to remarkably reduce the information
having the exponential dimension to the polynomial dimension like the tensor network.

= Low calculation cost -
/ Acceleration \

Ab Initio  EEEE)  ANN

For MD simulation, it is possible to calculate the physical quantity that requires a long
time to converge (e.g. Free energy) with the precision of Ab initio calculation.

Combined with LDC-DFT, MD simulation for protein (consists of over 10,000 atoms)
kwith ab initio accuracy is possible. /




_ N. Artrith, et al., Comp. Mat. Sci. 114, 135 (2016).
Atomic Energy NETwork (aenet) package

Interatomic potential generation software using ANN provided by Nongnuch Artrith et al. (UC
Berkley) (GNU GPL, fortran95/2003 Flat MPI)

N. Artrith, et al., Comp. Mat. Sci. 114, 135 (2016).

(i) Here, the interatomic potential energy V of the N atom system is defined as the sum of the energy
contribution {¢; } from each atom.

N
V= Z &:({0a)

(ii) Use Atomic Finger Prints (AF: {o,}) to represent {¢;}.
— Numerical representations of the characteristic local structure around each atom

2 @Hidden Layer 1, 2

N atoms
N

®Input Layer 0 » V = z g({0g})
{o,(around i)} VALY 5

—p




4

N. Artrith, et al., Comp. Mat. Sci. 114, 135 (2016).

Example: H,O

|
[
Define AF set and make ANN for each element. I

@den Layer 1, 2 ANN fOF a H atom

N atoms /

~

@Input Layer 0 N = 3n

{O-a}H atom
—

2n
V= 2 gk,Hatom({Ja})
k

+ z gl,Oatom({Ua})
l

o J

@Input Layer 0

{Ua}o atom

IS _EL0g
—
C%v ANN for a O atom




Atomic Fingerprint (AF: g;) o o

*Behler—Parrinello (BP) method 5 © b

O O

With the ith atom as the center, define functions using distances {R;;} and angles {6, } for
atoms within the cutoff distance R_..

/ [(DRadial AF {o,} = {ng{i,k}}] Adjustable parameters: {1}, {R;}, R, \
r nei ors s\ 2
ik = Zjiighb exp {—le(Rij - Rk) } 'fC(Rij; Rc)

Gaussian function cutoff function

[ Angular AF {o,} = {ng{i,k}} ] Adjustable parameters: {1}, {¢.}, {1}, R,

neighbors

@ = 217k Lks jei (1+ Akcoseijk)qkexp{_nk(Rijz + Ry + Rix*)} - fe(Rij, Re) - fe(Rir, RY) - fe(Rjs @

By setting different parameters, it is possible to express various local structures.
= {0} is a basis set for expressing the local structure.

Neighbor atoms: Ry, Ry <R, (=6 ~8A)

N. Artrith, et al., Comp. Mat. Sci. 114, 135 (2016).



Example: Diatomic molecule

[@DRadial AF {o,} = {GZ}] Adjustable parameters: {1, }, {R3}, R,

L = Z?Sighbors exp {—Uk (Rij = sté)z} fe(Rij, Re)

Gaussian function Feature space of
local structure

PANEL A PANEL B PANEL C
Varying Bonding Gaussian Smoothened Atomic Fingerprint
_Enmﬁ: Radial Distribution Function (AF) -
(a) ; j . Eq.2
Here, define three Radial AFs i . A\ =) I I
. . % ::
with different parameters 7). f -' : Structures

Fa r -

1 a .
Gi1(11),Gi2(12),Gi3(M3) | @) j are very similar!
Ny,
. "Ore)
L.__ I -
) () .
'I]'che sthape of Lhe iausazn re .yJ | It differs greatly
unction can be cnangea. | ...;‘...E from (a) and (b)
P Distare R;; Distane R;; Gaussian Width

V. Botu, et al., Int. J. Quan. Chem. 115, 1074 (2015).

Difference in local structure is discriminated based on AF values with
different parameters.



How to calculate Force

@ @Hidden Layer 1, 2
N atoms
@Output Layer 3 N
Minput Layer 0 » V= € ({Ga})
{G, (around i)} 4 Z
—_— G5/
N
F _ aV . agi ({Ga })
kg = —
/_E aRk i aRk B M, is the number of AFs
Fy p (kth atomp € (x,y,z)) z ag ({G }) aG defined for i th atom.
Go ORyp

Jr

If the calculation cost becomes enlarged for the large number of AFs,
It Is necessary to construct a minimum AF set.



J. Behler, J. Phys.: Condens. Matter, 26, 183001 (2014).
How to make AF set |

DPrepare AFs at equal intervals and highly dense

[Radial AF {0} = {G,-(;xy}]  Adjustable parameters: {n,}, {R;}, Rc

k= Z?:iighbors exp {—Uk (Rij — R;Sé)z} - fe(Riju Re)

(
(b) 3 (c)
— 1=5.00 Bohr — R =2.0 Bohr
1=1.00 Bohr > R =3.0 Bohr
£ n=0.40 Bohr > -~ R =4.0 Bohr
2 0.20 Bohr2 £ R =5.0 Bohr
= a0 Do a R =6.0 Bohr
n n=0.10 Bohr A [\ R =7.0 Bohr
= n=0.06 Bohr " [ | R =8.0 Bohr
. 2 ~ 04 4
© n=0.03 Bohr " &) ] R =9.0 Bohr
n=0.01 Bnhr" o ; R‘fllmlsuhr
1 X
y 0.0 i 4
S 0 2 i

6 8 10 12 14 2 6 ]
R . (Bohr) R (Bohr)
ij i

[Angular AF {0} = {Gg-; 1} 1 Adjustable parameters: {n,}, {{x}, {4}, R
Gic,Lk = 21_(" Znelghbors(l + AkCOSQijk){kexp{—T]k(Rijz + Rikz + R]kz)} . fC(RU’ RC) . ﬁ:(Rik' RC) . fC(R]k! RC)

k#j#i

(a)

— =1

1.5H | (=4 | 1.5
C=16
- \ :_*(»J "
< ~




(@ Reduce the number of AFs by using correlation coefficientS\/x

between AFs.

(1) Check the correlation coefficients r,, between AFs for Training Set.

(i1) Delete one if r,, value between two arbitrary AFs is too high large (> 0.9).

Correlation coefficients r

J. Behler, J. Phys.: Condens. Matter, 26, 183001 (2014).

C .
1

G,

NG?, Gy

-

Delete

~Gy;

~

/

Example

/- Xy \ ﬁn SF2__ Coefficient
1 - 2  9.9999E-01

-1< rxy <1 1 - 2 9.9989E-01

n 1 - 4  9.9942E-01

2: — (s — 7 1 - 5  9.9745E-01

é( i~ 2 —9) 1 - 6  9.8952E-01

r — 1 - 7 9.5888E-01
n 1/2 1 - 8  8.4235E-01

(Z i — ) )(Z(yg ) 1- 9  5.6186E-01

i1 1 - 10 2.4993E-01

1 - 11 9.5718E-01

.. ) 1 - 12  9.5569E-01

0 <r,, <1: Positive correlation 1 - 13 9.5283E-61

_ 1 - 14  9.4746E-01

r., = 0: No correlation 1 - 15  9.3804E-01

1 - 16  9.2379E-01

A<r <0 i i 1 - 17 9.0460E-01
\ 1<r,, <0: Negative correlatloy =1 ot b
1 - 18  7.5719E-01

\1 20 5.7548E-01

¥ o (oI T o L =y = |

It is possible to reduce redundant AFs at once.



Graduation research 2017 by K. Endo (B4, Tanaka-lab)

H,O AF set

/ (6231 atom: 20 AFs (R, = 3.00 A) \
{6430 atom: 92 AFs (R, =6.00 A)

Potential energy V

/--7.336 T w T ‘ T P
’g - Training Set . 4
< o Test Set °
3 &
£ -7.338 / .
z :
216 H,0 system s L A
(648 atoms) 570 - Ty = 0.999 (train)
T=300K, P=1atm = I .
/ Tey = 0.999 (test)
% -7.342
. |
| L |

| | |
-7.342 -7.340 -7.338 -7.336

Predicted Total Energy (Hartree/atom)
[10% acceleration] T Force
Tokyo Univ. Sekirei 64 cores (3 ps) | - Temsgse T -

41+ - Test Set

ANN-MD: 233 seconds
Ab initio-MD: 2,397,600 seconds (28 days)

[Physical values])

Accuracy of potential energy is very good for any materials.
(Na, GaAs, CH,, H,0).
= O Specific heats, ORadial distribution functions

Reference Forces (eV/A)
(@]
T

Ty = 0.711 (train)
Ty = 0.711 (test)

6 PR N I NN NS R |
- ‘6 -4 2 0 2 4 6
On the other hand, the accuracy of the force depends on the materials. Predicted Fosces (V/A)

(Na, GaAs/ CH,, H,0)

= X Thermal conductivity, X Viscosity coefficient




Graduation research 2017 by K. Endo (B4, Tanaka-lab)

Include force in the cost function (on going)
Arxiv:1707.09571

The cost function used in Aenet consists only of potential energy V.

Since the force can be obtained from ¢;({G,}), we redefine the cost function as follows.

v o0 (G, D)
ORcg L ORyp

Fk,ﬁ = -

M:Training
Structures [/ N:atoms

M:Training
Structures N:atoms

2
£=3 ) < D a({Ga})—wReferem) +3

I [

\ J | J
| |

Potential Energy term Force term

5 ) - 2
Predict Reference
(F; — Fpi )
i

“We implemented this cost function on aenet, but accuracy of force improved by only a few
percent (in the case of H,0).

- Since the above two terms have different dimensions and different magnitudes of values, it is not
easy to minimize both.

= We are seeking better optimization methods to minimize both terms efficiently (discuss later).



Combine Ab initio with ANN potentials
to speed up MD simulation (on going)

1
For example, many proteins cause chemical reactions over a long time of nanoseconds or more.
= Such a chemical reaction can not be handled by the ab initio MD.

oM ML oM ML (a)

o >

@ Proceed with learning ANN
while performing Ab initio MD simulation.

Time
“—— (@ Switch from ab initio to ANN
| Goniein co-iw-gy when energy and force accuracies of ANN are assured.
i (b)
Initial ' . . e
domain of @ Switch from ANN to ab initio
e when reaching a new atomic configuration which has not been learned.
Out of
sample . L .
@ Switch from ab initio to ANN again
Global Configuration Space when energy and force accuracies of ANN are assured.

V. Botu, et al., Int. J. Quan. Chem. 115, 1074 (2015).




How to determine new atomic configuration using AFs

AFs represents the features of the local structure. |

< _=

Therefore, the interval between the minimum and maximum values of AF with respect to the
training data corresponds to the learned local structures.

In the case of 8 AFs

Maximum

Learned
>

! i ' Predictable local structures

0.0k « 4 ...J
Minimum

Unpredlctable
i 2 1 R 3 6 7 b

Index of Fingerprint v, Boty, etal,, Int. J. Quan. Chem. 115, 1074 (2015).

Scaled Fingerprint
>

When a value of AF deviating from the interval appears, it is judged that a new atomic structure is
appeared.



How to determine new configuration using AFs

1 step 5

A defect
in Al bulk

minimum values of each
AFs in Training Set.

@If a value of AF exceeds

V. Botu, et al., Int. J. Quan. Chem. 115, 1074 (2015).

step

10 step

15 step 20 step

O 'l »
* @ ’ A defect
MoVermefit in Al bulk

S r e

/ | \ 1148 ".',_ "‘--..‘~‘ (a) (b) (c)
(DSave the maximum and ,

rgy (eV)

or falls, switch from ANN-
MD to AIMD.

® Learn the unknown
structure with AIMD and
update ANN potential.

oo > oam
e
Geoeen
sy

@Restart ANN-MD.
1 2 3 4 5 - 7 8 [ 2 3 \ B ¢ 7 8 ] 2 3 : 3 6 7 8
\ / Index of Fingerprint Index of Fingerprint Index of Fingerprint



To python with tensorflow (on going) \(

It is difficult for the present aenet package to implement a framework that switches between
AIMD and ANN - MD.

[Problems]
Online learning is necessary.
Whenever a new atomic structure appears, the ANN potential needs to be updated.

However, the online learning method (steepest descent method) implemented in
present aenet has poor convergence.

- Transfer learning is required.
If you need to increase AF, the number of weights of ANN will be increased. By
freezing the original weights and learning only new weights, we can minimize the

training time.

We are rewriting aenet (fortran) to python code using tensorflow library which can use the latest
online learning methods, transfer learning methods, cost functions, etc.




Summary

[ Merits using ANN potential]

Based on the universal approximation theorem, Artificial Neural Network (ANN) can
approximate arbitrary functions. Therefore, ANN can imitate the complicated ab initio
interatomic potential V.

With the ANN potential, we can considerably accelerate MD simulation with ab initio
accuracy (at least for the states which are included in the training set).

[Atomic Energy NETwork (aenet) package]

This is an interatomic potential generation software using ANN provided by Nongnuch Artrith
et al. at UC Berkley. (GNU GPL, fortran95/2003 Flat MPI).

Atomic Fingerprints (AFs) proposed by J. Behler indicates numerical representations of
characteristic local atomic structures. Using the AFs as basis set, we can construct ANN potential.

Using the AFs, we can also determine whether a focused atomic structure data has been learned
or not. Thus, for example, it is possible to speed up MD simulation by switching of ANN and
Ab initio potentials.

Since a (rough) AF create method has been provided by J. Behler, basically, you can construct
ANN potential for any materials you want.



How to run aenet

N. Artrith, et al., Comp. Mat. Sci. 114, 135 (2016).

generate.x - Create training data that train.x can read.

However, prepare before executing generate.x.
- Atomic Fingerprints set (Fingerprint.f90)
- Structure Files (results of QXMD and make xsf.f90 )

train.x ‘ Learn ANN Potentials (weights {wil}"})
= Setting of ANN
Num. of Hidden Layers
Num. of Nodes
= Select optimization method
Online learning method: Steepest descent method
Batch learning method: L- BFGS method
Levenberg-Marquardt method

Env. Setups

* for each atomic

species

Transform atomic 4"“"
coordinates to
invariant
representation of
the local atomic

predicts.x

‘ Check the prediction accuracy of
energy and force of ANN potential

environments. i |Reference Set:
atomic structures
* and energies

Training Set File

atomic environm.

ANN Potentials
for each atomic
species

Optimize network

weights according
predict.x

to selected method
(on-line or batch

Transform atomic

coordinates

training).
PARALLEL

UolIljdnNijsuod |eljualjod NNV

Evaluate atomic
energies & forces
PARALLEL

Atomic Structure

PARALLEL
A

uoiljeosijddy

total energy &
\ atomic forces




Aenet-KU2 on Github

(1). Before you create ANN using aenet, vou need to prepare the following.

(i) QXMD data as a reference data (specifically, gm_ion.d, gm_frc.d, gm_cel.d, md_eng.d)

(i1) Potential Energies of Isolated Atoms calculated by QXMD.
(If you want to create ANN for H,O system,
you need to prepare Potential Energies of H and O atoms, respectively.)

2. Using make_xsf.fo0 with QXMD data and the energies of isolated atoms,
create xsf files for each atomic configuration that generate.x can read.

®. Using Fingerprint.f90, create files which AF sets for each element are written.

(e.g. H.fingerprint.stp, O.fingerprint.stp) It is generated automatically

@. Using generate.x with xsf files, fingerprint files, and qeneratéﬁn,/ by executing make_xsf.f90.

create training data that train.x can read (e.g. H20O.train).
and files which correlation coefficients between AFs are written (correlation files).

®. Using the correlation files, delete the redundant AFs from fingerprint files.

Explain later.
®. Using train.x with training data (e.g. H20.train) and trairtin, P

train and create ANN potentials. (e.g. H.10t-10t.ann O.10t-10t.ann)



train.in (For example, H,O)

TRAININGSET H20.train Training file generated by generate.x
TESTPERCENT 30 Number of data used to check prediction accuracy in H20.train (%)
ITERATIONS 288  Number of iterations to update all weights

MAXENERGY 0.0 Please ignore.
TIMING Please ignore.
SAVE _ENERGIES Please ignore.
METHOD Select optimization method
bfgs bfgs: L-BFGS method (recommended), Im: Levenberg-Marquardt method
online_sd: Steepest descent method
NETWORKS _ _
H H.1l0t-10t.ann 2 18:twist 10:twist
0 0.10t-10t.ann 2 10:twist 10:ftwist
— —
— \

Output ANN potential file names Num. of Nodes and

types of activation functions

Num. of Hidden layers



Predict.x

. Before you perform predict.x, you need to prepare input file (predict.in).

Using predict.f90, you divide xsf files into those used for learning (train) and other (test),
and create two predict.in that respective them are written (predict_train.in and predict_test.in)

2. Using predict.x with predict_train.in or predict_test.in, you can find out prediction accuracies

for train and test data, respectively.

If you perform predict.x, energy.dat and force.dat are output.
In these files, predicted energies predicted forces as well as referenced energies
with those correlation coefficients and forces are written.

Reference Total Energy (Hartree/atom)

-7.336

-7.338

-7.340

-71.342

Potential energy V

T

T T T T T

é‘,
- Training Set s
- Test Set

L,

°
°
°

Iy = 0.999 (train)
/ Tey = 0.999 (test)

|

1 l 1 l 1
-7.342 -7.340 -7.338
Predicted Total Energy (Hartree/atom)

-7.336

Reference Forces (eV/A)

IS )
. .

i
e

o IN
: :

(=]
T

Force

o Training Set
= Test Set

|
6

0.711 (train)
0.711 (test)

4 2 0 2
Predicted Forces (eV/A)



Aenet-KU2 on Github

Uploaded to Github,
(1) the ANN potential for liguid Na as an example.
(2) Readme: explaining procedure of creating ANN potential for liquid Na.

How to run MD using ANN potential

With ANN potential files, we can perform ANN based MD simulation using QXMD.

Uploaded to Github,

(1) the input file to perform QXMD with ANN potentials.
(2) Readme: how to perform using above input file.

If you have questions...

Please contact Shimamura (shimamura@port.kobe-u.ac.jp).






