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In	ab	initio	MD,	the	energies	and	forces	need	to	be	
calculated	“on-the-fly”:	very	expensive

• Energies	can	be	fitted	to	high	accuracy	with	very	small	
remaining	errors	compared	to	the	underlying	reference	data

• Energies	can	be	calculated	efficiently	and	require	much	less	
CPU	time	than	electronic	structure	calculations.

• No	knowledge	about	the	functional	form	of	the	PES	is	
required.

• The	energy	expression	is	unbiased,	generally	applicable	to	all	
types	of	bonding	and	does	not	require	system-specific	
modification



• Neural	Network	Potential	(NNP)
• Kernel	Ridge	Regression	(KRR)
• Gaussian	Approximation	Potential	(GAP)



Train	&	
Test

• Training	set
• Testing	set
• Electric	structure	method

ML • Method
• Parameters

MD • Application	
in	MD
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Jorg Behler,	International	Journal	of	Quantum	Chemistry 2015,	115,	1032–1050



For	High-dimensional	NNPs,	using	a	single	NN	for	the	
construction	of	high	dimensional	NNPs	is	impossible.

• Too	many	input	nodes	make	the	construction	of	the	
NNP	inefficient

• Symmetry	of	the	NN
• Not	scalable



Jorg Behler,	International	Journal	of	Quantum	Chemistry 2015,	115,	1032–1050



Symmetry	Function

The	cut-off	function	𝑓C
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Symmetry	Function
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Training	NNs

1. Select	an	electronic	structure	method.
2. Define	a	first	set	of	structures	and	determine	

the	energies	and	forces.
3. Construct	a	first	preliminary	NNP
4. Carry	out	simulations	using	this	NNP	to	find	

structures,	give	rise	to	extrapolation	warnings	
or	unphysical	geometries.

5. Determine	the	electronic	structure	energies	and	
forces	of	these	structures,	include	them	in	the	
training	set	and	improve	the	NNP.

6. Improve	the	NNP	systematically	and	self-
consistently	by	running	NNP-based	simulations	
using	the	multiple-NNP	method.

7. As	soon	as	no	further	warnings,	the	NNP	is	
ready	to	use.

Jorg Behler,	International	Journal	of	Quantum	Chemistry 2015,	115,	1032–1050



Weight	Parameters
• Random	numbers
• Different	optimization	algorithms	

to	improve	them

The	architecture	of	the	NNs
• Empirical
• Identify	a	suitable	number	of	

hidden	layers	and	nodes	per	layer	is	
simply	to	carry	out	a	number	of	fits	
and	to	select	the	one	with	the	
lowest	errors	of	the	energies	and	
forces	in	the	test	set.

Jorg Behler,	International	Journal	of	Quantum	Chemistry 2015,	115,	1032–1050



Disadvantages:

• The	evaluation	of	NNPs	is	notably	slower	than	the	use	of	
simple	classical	force	fields.

• NNPs	have	no	physical	basis	and	only	very	limited	
extrapolation	capabilities.

• The	construction	of	NNPs	requires	substantial	effort,	and	a	
large	number	of	training	points	from	electronic	structure	
calculations	is	required.

• Currently,	NNPs	are	limited	to	systems	containing	either	only	
a	few	different	chemical	elements	but	many	atoms	or	a	small	
number	of	atoms	with	arbitrary	nuclear	charges.



Adaptive	Machine	Learning	Framework

The	significant	redundancies	implicit	in	conventional	ab	initio	MD
schemes	can	be	systematically	eliminated.

V.	Botu,	R.	Ramprasad,	International	Journal	of	Quantum	Chemistry 2015,	115,	1074–1083



• To	simulate	32	atom	bulk	Al,	to	use	ML	method,	
each	prediction	takes	roughly	a	millisecond.

• For	comparison,	the	same	case	with	DFT	will	take	
about	45	min	on	a	16	core	machine,	a	speed	up	
on	the	order	of	10^6!

V.	Botu,	R.	Ramprasad,	International	Journal	of	Quantum	Chemistry 2015,	115,	1074–1083
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Machine	Learning	Method	– Kernel	Ridge	Regression

KRR	transforms	the	input	fingerprint	into	a	higher	dimensional	space
whereby	a	linear	relation	between	the	transformed	fingerprint	and	
the	property	of	interest	can	be	established.	To	be	precise,	the	mapping	
process	between	the	fingerprint	and	property	involves	the	“distances”	
between	fingerprints	rather	than	the	fingerprints	themselves.	KRR	
may	thus	be	viewed	as	a	similarity-based	learning	method,	that	is,	
similar	fingerprints	will	lead	to	similar	properties.
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Vacancy	migration	within	bulk	Al	correspond	to	steps	1,	5,	10,	15,	and	20.

a) and d) with no retraining, b) and e) with the TS added to training and c) and f )
with TS and image 1 and 5 added to the training.

V.	Botu,	R.	Ramprasad,	International	Journal	of	Quantum	Chemistry 2015,	115,	1074–1083



Introduction	to	Atomic	Energy	Network	(aenet)	Package



Ø Activation functions

Ø Learning methods – batch and online
Ø Optimization methods – gradient descent, 

limited-memory BFGS, Levenberg-Marquardt

Atomic	Energy	Network	- aenet
Ø Open source http://ann.atomistic.net
Ø Potential construction tools

§ generate.x – preprocessing
§ train.x – train ANN force field

Ø Application tools
§ predict.x – get forces from atomic coordinates
§ aenetLib – interface to other program

Train	neural	network	force	field



Train	an	ANN	Force	Field	(TiO2)	via	aenet

Select	training	method

Select	network	architecture

Set	up	structural	fingerprint

Generate	reference	data	set



Generate	reference	data	set
(DFT	calculation	of		distorted	ideal	rutile,
anatase and	brookite as	well	as	O	vacant	structure)	



Set	up	structural	fingerprint
Ø 8 radial and 18 angular Behler-Parrinello basis functions for each 

combination of atomic species 
Ø 8x2 (O, Ti) radial basis functions
Ø 18x3(O-O, Ti-Ti, O-Ti) angular basis functions
Ø Total 70 basis functions or nodes at the input layer

Radial	function	– G2

Angular	function	– G4



Select	the	best	network	architecture

Ø The balance between model complexity and transferability (predictive power) 
Ø Network architecture: # of network layers + # of nodes per network layer
Ø Too simple à poor transferability
Ø Too complex à poor efficiency and possible overfitting (poor transferability)

parallel



Select	training/optimization	method
Ø 3 available training methods: online GD, LBGFS, Levenberg-Marquardt (LM)
Ø Online GD – least computationally demanding; any ANN architectures;

not well parallelized
Ø Batch LBGFS – well parallelized; scales linearly with reference structures
Ø Bacth LM – 2nd order convergence rate; needs to invert Hessian



Evaluate	the	Trained	ANN	Force	Field	(TiO2)

Reliability	for	MD	simulations	

Accuracy	of	the	ANN	Potential



Accuracy	of	the	TiO2 ANN	Potential

Error	statistics

Smooth	change	of	
energy	with	volume



Reliability	of	the	TiO2 ANN	Potential	for	MD	Runs

NVE	runs	with	
various	timesteps

NVT	runs	at	500	K
for	different	structures



Machine learning based 
interatomic potential for 
amorphous carbon 



Basic	Ideas	&	Background	

• Interatomic	Potential:	Mathematical	functions	for	calculating	
the	potential	energy	of	a	system	of	atoms	with	given	positions	
in	space

• Amorphous	Carbon(a-C):	free,	reactive	carbon	that	does	not	
have	any	crystalline	structure

• Tetrahedral	Amorphous	Carbon	(ta-C):	a	new	semiconductor	
which	is	able	to	accept	dopants	and	shows	photoconductivity

• GAP:	Gaussian	approximation	potential



Basic	Ideas	&	Background	

• Fast	potentials	make	large-scale	molecular-dynamics	(MD)	
simulations	possible	

• Efficient	enough	to	perform	thin-film	deposition	simulations
• Directly	mirroring	the	atomic-scale	processes	in	experiments

Shortcomings:
• prominent	an	underestimated	concentration	of	sp3-bonded	
atoms	in	ta-C	and	poor	description	of	surfaces.	

• density-functional	theory(DFT)-based	methods	are	restricted	
to	quite	small	system	sizes	and	they	are	limited	in	practice	to	a	
few	hundred	atoms.



Key	Ideas	of	Machine	Learning	(ML)
• map	a	set	of	atomic	environments	directly	onto	numerical	values	
for	energies	and	forces	

• these	quantities	are	“trained”	from	a	large	and	accurate	
quantum-mechanical	reference	database

• interpolated	using	the	ML	algorithm
Gaussian	approximation	potential	(GAP):

• Determine	the	maximum	accuracy	that	any	finite-range	potential	
can	achieve	in	a	carbon	structures.	

• Construct	a	GAP	model	that	can	indeed	reach	the	target	
accuracy,	by	using	a	hierarchical	set	of	two-,	three-,	and	many-
body	structural	descriptors.

• Show	predictions	for	energies	and	structures	of	ta-C	surfaces,	
which	play	a	key	role	in	wear	and	fracture	mechanisms



Gaussian	approximation	potential	(GAP)
Energy	Function	ε:	energy	function	is	expanded	in	a	basis	set	
adapted	to	the	input	database.	Generated	using	a	kernel	function,	or	
similarity	measure	of	neighbor	environments.
Extrapolation:	a	poor	fit	in	regions	of	configuration	space	far	away	
from	any	data	points.	

Starting	point	for	the	total	energy



Local	energy	corresponding	to	each	descriptor	d	∈
{2b,3b,MB}

ξ	is	an	index	running	
over	the	components	
of	the	descriptor	vector	
q(d	)

the	case	of	pairs

the	case	of	triplets



Smooth	overlap	of	atomic	positions	(SOAP	)	descriptor

the	sum	is	over	
neighboring	atoms
gn:	orthogonal	radial	basis	
functions
Ylm :	spherical	
harmonics	

spherical	power	spectrum



The	kernel	function	for	the	SOAP	term	

raise	it	to	a	small	integer	power	for	a	
sharper	distinction	between	
different	environments	

The	expression	for	the	
total	energy	in	GAP

All	fitting	coefficients	α	
enter	linearly	



COMPUTATIONAL	METHODS
• General	protocol	for	melt-quench	simulations	：Structural	data	were	obtained	from	melt-

quench	MD,	following	protocols	that	are	well	established	for	a-C	
• DFT-based	(“ab	initio”)	molecular	dynamics	:Structures	for	initial	training,	as	well	as	

benchmarks	for	a-C	properties,	were	generated	using	DFT-based	ab	initio	MD,	using	the	
QUICKSTEP	scheme	and	a	stochastic	Langevin	thermostat	as	implemented	in	CP2K	

• Construction	of	the	training	database	:contains	structural	snapshots	from	ab	initio	MD	and	
also,	as	it	is	iteratively	extended,	from	GAP- driven	simulations.



Results	and	Discussion


