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In ab initio MD, the energies and forces need to be
calculated “on-the-fly”: very expensive

* Energies can be fitted to high accuracy with very small
remaining errors compared to the underlying reference data

* Energies can be calculated efficiently and require much less
CPU time than electronic structure calculations.

* No knowledge about the functional form of the PES is
required.

 The energy expression is unbiased, generally applicable to all
types of bonding and does not require system-specific
modification
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* Neural Network Potential (NNP)
* Kernel Ridge Regression (KRR)
e Gaussian Approximation Potential (GAP)
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e Training set
e Testing set
e Electric structure method

M L e Method

e Parameters

e Application
in MD
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Forwarding
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For High-dimensional NNPs, using a single NN for the
construction of high dimensional NNPs is impossible.

 Too many input nodes make the construction of the
NNP inefficient

 Symmetry of the NN
 Not scalable
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Symmetry Function

The cut-off function f,
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Symmetry Function

Natom
Gl = Z fe(Rij)

j=1

Natom ,
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Symmetry Function - Example
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Training NNs

1. Select an electronic structure method.

2. Define a first set of structures and determine
the energies and forces.

3. Construct a first preliminary NNP

4. Carry out simulations using this NNP to find
structures, give rise to extrapolation warnings
or unphysical geometries.

5. Determine the electronic structure energies and
forces of these structures, include them in the
training set and improve the NNP.

:: 1 6. Improve the NNP systematically and self-

consistently by running NNP-based simulations

B — using the multiple-NNP method.

conneion 7. As soon as no further warnings, the NNP is
ready to use.

Jorg Behler, International Journal of Quantum Chemistry 2015, 115, 1032-1050
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Disadvantages:

* The evaluation of NNPs is notably slower than the use of
simple classical force fields.

* NNPs have no physical basis and only very limited
extrapolation capabilities.

* The construction of NNPs requires substantial effort, and a
large number of training points from electronic structure
calculations is required.

e Currently, NNPs are limited to systems containing either only
a few different chemical elements but many atoms or a small
number of atoms with arbitrary nuclear charges.
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Adaptive Machine Learning Framework
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The significant redundancies implicit in conventional ab initio MD
schemes can be systematically eliminated.

V. Botu, R. Ramprasad, International Journal of Quantum Chemistry 2015, 115, 1074-1083
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 To simulate 32 atom bulk Al, to use ML method,
each prediction takes roughly a millisecond.
* For comparison, the same case with DFT will take

about 45 min on a 16 core machine, a speed up
on the order of 1076

V. Botu, R. Ramprasad, International Journal of Quantum Chemistry 2015, 115, 1074-1083
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Symmetry Function
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Machine Learning Method — Kernel Ridge Regression

KRR transforms the input fingerprint into a higher dimensional space
whereby a linear relation between the transformed fingerprint and
the property of interest can be established. To be precise, the mapping
process between the fingerprint and property involves the “distances”
between fingerprints rather than the fingerprints themselves. KRR
may thus be viewed as a similarity-based learning method, that is,
similar fingerprints will lead to similar properties.

2
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Introduction to Atomic Energy Network (aenet) Package
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Atomic Energy Network - aenet

» Open source http://ann.atomistic.net
» Potential construction tools

" generate.Xx — preprocessing

= train.X — train ANN force field

» Application tools

= predict.x — get forces from atomic coordinates
= aenetLib — interface to other program

Train neural network force field
> Activation functions

linear function fa®) =1,
hyperbolic tangent fﬁ (x) = tanh(x) = };gjx,
logistic function flx) = ==, and

fa(x) = 1.7159 tanh (2x) + ax,

» Learning methods — batch and online

» Optimization methods — gradient descent,
limited-memory BFGS, Levenberg-Marquardt

tanh with linear twisting
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Train an ANN Force Field (TiO,) via aenet

Generate reference data set

Set up structural fingerprint

Select network architecture

Select training method

University of Southern California




Generate reference data set

Initial Reference  (DFT calculation of distorted ideal rutile,
Data Set anatase and brookite as well as O vacant structure)

Ready for
production

Add structures
to reference set

ruct
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Set up structural fingerprint

» 8 radial and 18 angular Behler-Parrinello basis functions for each
combination of atomic species

» 8x2 (0O, T1) radial basis functions

» 18x3(0-0, Ti-Ti, O-T1) angular basis functions

» Total 70 basis functions or nodes at the input layer

Radial function — G2

Gt =D _e "R fe(Ry) fc<R,-j>{g'5[C°S (&) +1] for Ry <R

por for Rj > R..

Angular function — G*

G =2"3"N (1 + icos )" - e "RIRER L (Ry) - fo(Ri) - fe(Ri),

A1 k=i
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Select the best network architecture

YV V VYV

The balance between model complexity and transferability (predictive power)
Network architecture: # of network layers + # of nodes per network layer

Too simple = poor transferability

Too complex => poor efficiency and possible overfitting (poor transferability)
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Select training/optimization method

» 3 available training methods: online GD, LBGFS, Levenberg-Marquardt (LM)
» Online GD — least computationally demanding; any ANN architectures;
not well parallelized
» Batch LBGFS — well parallelized; scales linearly with reference structures
» Bacth LM — 2nd order convergence rate; needs to invert Hessian
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Evaluate the Trained ANN Force Field (TiO,)

Accuracy of the ANN Potential

Reliability for MD simulations
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Accuracy of the TiO, ANN Potential
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Reliability of the TiO, ANN Potential for MD Runs
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Machine learning based
interatomic potential for

amorphous carbon
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Basic Ideas & Background

* |nteratomic Potential: Mathematical functions for calculating
the potential energy of a system of atoms with given positions

In space
 Amorphous Carbon(a-C): free, reactive carbon that does not
have any crystalline structure
e Tetrahedral Amorphous Carbon (ta-C): a new semiconductor
which is able to accept dopants and shows photoconductivity
GAP: Gaussian approximation potential

University of Southern California




Basic Ideas & Background

* Fast potentials make large-scale molecular-dynamics (MD)

simulations possible
e Efficient enough to perform thin-film deposition simulations

* Directly mirroring the atomic-scale processes in experiments

Shortcomings:

e prominent an underestimated concentration of sp3-bonded
atoms in ta-C and poor description of surfaces.

* density-functional theory(DFT)-based methods are restricted
to quite small system sizes and they are limited in practice to a
few hundred atom:s.

University of Southern California




Key ldeas of Machine Learning (ML)

* map a set of atomic environments directly onto numerical values
for energies and forces

* these quantities are “trained” from a large and accurate
guantum-mechanical reference database

* interpolated using the ML algorithm

Gaussian approximation potential (GAP):
* Determine the maximum accuracy that any finite-range potential

can achieve in a carbon structures.

* Construct a GAP model that can indeed reach the target
accuracy, by using a hierarchical set of two-, three-, and many-
body structural descriptors.

* Show predictions for energies and structures of ta-C surfaces,
which play a key role in wear and fracture mechanisms

University of Southern California




Gaussian approximation potential (GAP)

Energy Function €: energy function is expanded in a basis set
adapted to the input database. Generated using a kernel function, or
similarity measure of neighbor environments.

Extrapolation: a poor fit in regions of configuration space far away
from any data points.

Starting point for the total energy

E — (5(2b))2 Z 8(2b)(q(2b)) +(5(3b))2 Z 8(3b)(q(§b))
I J

I € pairs J €triplets

_|_(3(MB))2 Z 8(MB)(qa(MB)), (1)

a € atoms
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Local energy corresponding to each descriptor d &
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Smooth overlap of atomic positions (SOAP ) descriptor

the sum is over
(r_rab)2 . .
Pa(r) = Xb:exp [—th] X Jalra),  Ineighboring atoms

lgn;orthogonal radial basis

functions
pa(t) = Y _ iy, 8a (P Yim(®), V.. : spherical
nlm .
harmonics
@ 8> @ \* (@) herical
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The kernel function for the SOAP term
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COMPUTATIONAL METHODS

* General protocol for melt-quench simulations : Structural data were obtained from melt-
guench MD, following protocols that are well established for a-C

* DFT-based (“ab initio”) molecular dynamics :Structures for initial training, as well as
benchmarks for a-C properties, were generated using DFT-based ab initio MDD, using the
QUICKSTEP scheme and a stochastic Langevin thermostat as implemented in CP2K

e Construction of the training database :contains structural snapshots from ab initio MD and
also, as it is iteratively extended, from GAP- driven simulations.

TABLEI Key parameters for the GAP model created in this work
(see Sec. II for definitions).

Two-body Three-body SOAP
8 (eV) 5.0° 0.3% 0.1
Feut (A) 3.7 3.0 3.7
ra (A) 05
ou (A) 05
nmaxv lmax 8
¢ 4
Sparsification Uniform Uniform CUR
N, (a-C bulk) 125 2500
N, (a-C surfaces) 50 1000
N; (crystalline) 25 500
N, (dimer) 30
N, (total) 15 200 4030

2For the 2b and 3b descriptors, when specifying training input, the &
given here is divided by the expected number of pairs or triplets an
atom is involved in.
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Results and Discussion
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