
Parallel Quantum Molecular Dynamics

Aiichiro Nakano
Collaboratory for Advanced Computing & Simulations

Depts. of Computer Science, Physics & Astronomy, Chemical
Engineering & Materials Science, and Biological Sciences

University of Southern California
Email: anakano@usc.edu

Parallel Computing Hardware

• Processor: Executes arithmetic & logic operations
• Memory: Stores program & data (stored program computer)
• Communication interface: Performs signal conversion &

synchronization between communication link & a computer
• Communication link: A wire capable of carrying a sequence of

bits as electrical (or optical) signals

Processor

Memory

Communication
interface

Processor

Memory

Communication
interface

Communication
link

Computer 1

Computer 2

See http://cacs.usc.edu/education/cs596.html

Communication Network

Crossbar
switch

Mesh
(torus)

NEC Earth Simulator (640x640 crossbar)

IBM Blue Gene/Q (5D torus)

10

3

2

54

76 8

History of Supercomputers
Early ’40s: ENIAC by Presper Eckert & John
Mauchly at Univ. of Pennsylvania—First general-
purpose electronic computer
’76: Cray 1 by Seymour Cray—beginning of
vector supercomputer era
Late 80’s: massively parallel computers such as
the Thinking Machines CM-2
(’71: Intel 4004—invention of microprocessor)

See lecture on “MD machines”

Merge of PC & Supercomputers

http://www.top500.org (November ’17)

Theoretical performance
Measured performance
(in Tflop/s)

Flop/s =
floating-point
operations/second
M (mega) = 106

G (giga) = 109

T (Tera) = 1012

P (Peta) = 1015

X (Exa) = 1018

• USC-HPC: 13,440 cores, 0.62 Pflop/s
• CACS: 4,096 cores
• CACS-INCITE: 200M core-

hours/year on 786,432-core 8.6 Pflop/s
Blue Gene/Q at Argonne Nat’l Lab

See lecture on “Beowulf clusters”

��

��

����

TaihuLight

93 petaflop/s TaihuLight

256 cores/Sunway SW26010 processor ´ 40,960 = 10,485,760 cores

MPI Programming

http://www.mcs.anl.gov/mpi

#include "mpi.h"
#include <stdio.h>
main(int argc, char *argv[]) {
MPI_Status status;
int myid;
int n;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {
n = 777;
MPI_Send(&n, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);

}
else {
MPI_Recv(&n, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
printf("n = %d\n", n);

}
MPI_Finalize();

}

Send

Receive

Single Program Multiple Data (SPMD)

Process 1

if (myid == 0) {
n = 777;
MPI_Send(&n,...);

}
else {
MPI_Recv(&n,...);
printf(...);

}

Process 0

if (myid == 0) {
n = 777;
MPI_Send(&n,...);

}
else {
MPI_Recv(&n,...);
printf(...);

}

Parallel computing: Specifies “Who does what”

Multicore Processors

• Multiple simple processors (or cores) sharing
common memory

Intel core i9

Intel 80-core chip
1.01 teraflop/s @62W

ASCI Red (’97)
Teraflop/s @1MW

CACS PS3 cluster

Cell Broadband
Engine

Peng	et	al.,	Euro-Par	2008

Dursun et al.,
Par. Proc. Lett. 19, 535 (’09)

Godson-T Many-core Architecture

��

OpenMP Programming
#include <stdio.h>
#include <omp.h>
void main () {
int nthreads,tid;
nthreads = omp_get_num_threads();
printf("Sequential section: # of threads = %d\n",nthreads);
/* Fork multi-threads with own copies of variable */
#pragma omp parallel private(tid)
{
/* Obtain & print thread id */
tid = omp_get_thread_num();
printf("Parallel section: Hello world from thread %d\n",tid);
/* Only master thread does this */
if (tid == 0) {
nthreads = omp_get_num_threads();
printf("Parallel section: # of threads = %d\n",nthreads);}

} /* All created threads terminate */
}

pa
ra
lle
l	s
ec
tio

n

• Obtain the number of threads & my thread ID
• By default, all variables are shared unless selectively changing storage

attributes using private clauses
http://www.openmp.org

core 0 core 1

Hybrid MPI+OpenMP Programming
Each MPI process spawns multiple OpenMP threads

hpc0010

hpc0011

proc0-2

proc0-2

MPI_Send/MPI_Recv

In a PBS script:
mpirun –np 2

In the code:
omp_set_num_threads(3);

• MPI processes
communicate by
sending/receiving messages

• OpenMP threads
communicate by writing
to/reading from shared
variables

SIMD Vectorization: MD

Original solution SIMD solution

• Single-instruction multiple-data (SIMD) parallelism using
vector registers

for (i=0; i<N; i++)
for (a=0; a<3; a++)
r[i][a] =
r[i][a] +
DeltaT*rv[i][a];

Peng et al., PDPTA 2009; UCHPC 2010; J. Supercomputing 57, 20 (’11)

vector registers

(Example) Zero padding to align complex data in molecular dynamics

SIMD Vectorization: LBM

Original solution

for(i=0;i<3;i++){
u[i]=0.0; rho=0.0;
for(l=0;l<18;l++){
fi[l] = f[18*cnz+1];
u[i] += fi[l]*v[l][i];
rho += fi[l];

}
}

SIMD solution

3´18´5 = 270 computation

18´4 = 72 computation

Ideal Speedup 3.5

• Translocated statement fusion in lattice-Boltzmann flow
simulation

SIMDizable mathematical formulations:
Special relativity, quaternion, etc.

!" = $%, '(, '), '*
+" = , $⁄ , +(, +), +*

⊡ +" =
1
$)

0)

01)
− 3) +" =

45
$
!"

Massive SIMD Data Parallelism

Quantum dynamics on 8,192-processor
(128 × 64) MasPar 1208B
Nakano,
Comput. Phys. Commun.
83, 181 (’94)

7 ← 9+ ;

7<= ← 9<= + ;<=

See lecture on “pre-Beowulf parallel computing”

Parallel Molecular Dynamics
Spatial decomposition (short ranged): O(N/P) computation

Map

Atom caching: O((N/P)2/3) Atom migration

This
subsystem

(-1,1,0) (0,1,0) (1,1,0)

(1,0,0)

(1,-1,0)(0,-1,0)(-1,-1,0)

(-1,0,0)

This
subsystem

(-1,1,0) (0,1,0) (1,1,0)

(1,0,0)

(1,-1,0)(0,-1,0)(-1,-1,0)

(-1,0,0)

See also “parallel quantum dynamics” lecture

P0 P1

P0
P1

History of Particle Simulations
’44 John von Neumann memo on a stored-program computer: �Our present

analytical methods seem unsuitable for the solution of the important problems
arising in connection with nonlinear partial differential equations. The really
efficient high-speed computing devices may provide us with those heuristic
hints which are needed in all parts of mathematics for genuine progress�

’53 First Monte Carlo simulation of liquid by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller on MANIAC at Los Alamos Nat’l Lab

’55 Enrico Fermi, John Pasta, and Stanislaw Ulam studied the dynamics of an
one-dimensional array of particles coupled by anharmonic springs on
MANIAC

’56 Dynamics of hard spheres (billiards) studied by Alder and Wainwright at
the Lawrence Livermore Nat’l Lab.

’60 Radiation damage in crystalline Cu studied with short-range repulsion and
uniform attraction toward the center by George Vineyard’s group at
Brookhaven Nat’l Lab

’64 First MD simulation of liquid (864 argon atoms) using interatomic
potentials by Aneesur Rahman at the Argonne Nat’l Lab on a CDC 3600

Moore’s Law in Scientific Computing
Number of particles in MD simulations has doubled:
• Every 19 months in the past 50 years for classical MD
• Every 22 months in the past 30 years for DFT-MD

2014: 1012-atom MD & 108-electron DFT on a 10 petaflop/s Blue Gene/Q
with advances in algorithmic & parallel-computing techniques

FMM
Greengard

-Rokhlin

O(N) DFT

Exaflop/s?

Tunable Hierarchical Cellular Decomposition

• Spatial decomposition with data “caching” & “migration”
• Computational cells (e.g. linked-list cells in MD) < cell blocks

(threads) < processes (Pg
p, spatial decomposition subsystems) <

process groups (Pg, Grid nodes)
• Multilayer cellular

decomposition (MCD)
for n-tuples (n = 2-6)

• Tunable cell data &
computation structures:
Data/computation re-
ordering & granularity
parameterized at each
decomposition level

• Tunable hybrid MPI +
OpenMP + SIMD
implementation

Mapping O(N) divide-&-conquer algorithms onto memory hierarchies

Nomura et al., IPDPS 2009

Floating-point
operation/L2
cache miss
trade-off:
331,776-atom
silica MRMD
on 1.4GHz
Pentium III

Execution time/MD time step (sec) Number of OpenMP
threads, ntd

Number of MPI
processes, np MRMD P-ReaxFF

1
2
4
8

8
4
2
1

4.19
5.75
8.60
12.5

62.5
58.9
54.9
120

MPI/OpenMP parallelism trade-off:
8,232,000-atom silica MRMD &
290,304-atom RDX F-ReaxFF on
8-way 1.5 GHz Power4

Performance Tunability

Spatially Compact Thread Scheduling

M. Kunaseth et al., PDPTA’11; J. Supercomput. (’13)

Concurrency-control mechanism:
Data privatization # of atoms

of threads• Reduced memory:
Θ(nq) ® Θ(n+n2/3q1/3)

• Strong scaling parallel
efficiency 0.9 on quad quad-
core AMD Opteron

• 2.6´ speedup over MPI by
hybrid MPI+OpenMP on
32,768 IBM Blue Gene/P
cores

Concurrency-Control Mechanisms

CCM performance varies:
• Depending on computational characteristics of each program
• In many cases, CCM degrades performance significantly

A number of concurrency-control mechanisms (CCMs) are provided by
OpenMP to coordinate multiple threads:
• Critical section: Serialization
• Atomic update: Expensive hardware instruction
• Data privatization: Requires large memory Θ(nq)
• Hardware transactional memory: Rollbacks (on IBM Blue Gene/Q)

Goal: Provide a guideline to choose the “right” CCM

#pragma omp <critical|tm_atomic>
{

ra[i][0] += fa*dr[0];
ra[i][1] += fa*dr[1];
ra[i][2] += fa*dr[2];

}

#pragma omp atomic
ra[i][0] += fa*dr[0];
#pragma omp atomic
ra[i][1] += fa*dr[1];
#pragma omp atomic
ra[i][2] += fa*dr[2];

HTM/critical section Atomic update Data privatization

of threads
of atoms per node

Hardware Transactional Memory
Transactional memory (TM): An opportunistic CCM

• Avoids memory conflicts by monitoring a set of speculative operations
(i.e. transaction)

• If two or more transactions write to the same memory address,
transaction(s) will be restarted—a process called rollback

• If no conflict detected in the end of a transaction, operations within
the transaction becomes permanent (i.e. committed)

• Software TM usually suffers from large overhead
Hardware TM on IBM Blue Gene/Q:

• The first commercial platform implementing TM support at
hardware level via multiversioned L2-cache

• Hardware support is expected to reduce TM overhead
• Performance of HTM on molecular dynamics has not been quantified

Strong-Scaling Benchmark for MD

1 million particles
on 64 Blue Gene/Q nodes
with 16 cores per node

Developed a fundamental understanding of CCMs:
• OMP-critical has limited scalability on larger number of threads (q > 8)
• Data privatization is the fastest, but it requires Θ(nq) memory
• Fused HTM performs the best among constant-memory CCMs

M. Kunaseth et al., PDSEC’13

*Baseline: No CCM; the result is wrong

per Node

Threading Guideline for Scientific Programs
Focus on minimizing runtime
(best performance):
• Have enough memory ® data privatization
• Conflict region is small ® OMP-critical
• Small amount of updates ® OMP-atomic
• Conflict rate is low ® HTM
• Other ® OMP-critical* (poor performance)

*

M. Kunaseth et al., PDSEC’13

IEEE PDSEC Best Paper & Beyond

GPU Programming: CUDA
• Compute Unified Device Architecture
• Integrated host (CPU) + device (GPU) application

programming interface based on C language
developed at NVIDIA

• CUDA homepage
http://www.nvidia.com/object/cuda_home_new.html

• Compilation
$ nvcc pi.cu

• Execution
$ a.out
PI = 3.141593

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Summary: CUDA Computing

copy: host device

copy: host device

Multithreading
(SPMD):
big loop

input

output

cudaMemcpy()

cudaMemcpy()

__global__ void kernel_fun()

See http://cacs.usc.edu/education/cs596.html

Grid Computing

NASA NAS IPG

• World Wide Web: Universal interface to digital library on the Internet
• Information Grid: Pervasive (from any place in the world at any time)

access to everything (computing, mass storage, experimental equipments,
distributed sensors, etc., on high-speed networks)

Global Collaborative Simulation

Japan: Yamaguchi—65 P4 2.0GHz
Hiroshima, Okayama, Niigata—3´24 P4 1.8GHz

US: Louisiana—17 Athlon XP 1900+

Multiscale MD/QM simulation on
a Grid of distributed PC clusters in the US & Japan

MD — 91,256 atoms
QM (DFT) — 76n atoms on n clusters

• Scaled speedup, P = 1 (for MD) + 8n (for QM)
• Efficiency = 94.0% on 25 processors over 3 PC clusters

• Task decomposition (MPI Communicator) + spatial decomposition
• MPICH-G2/Globus

Kikuchi et al.
IEEE/ACM SC02

Internode Optimization
• Communication bottleneck in metacomputing on a Grid

µs

ms

Grid-Enabled MD Algorithm
Renormalized Messages:
Latency can be reduced by
composing a large cross-site
message instead of sending
all processor-to-processor
messages

Grid MD algorithm:
1. asynchronous receive of cells to be

cached MPI_Irecv()
2. send atomic coordinates in the

boundary cells
3. compute forces for atoms in the inner

cells
4. wait for the completion of the

asynchronous receive MPI_Wait()
5. compute forces for atoms in the

boundary cells

Sustainable Grid Supercomputing
• Sustained (> months) supercomputing (> 103 CPUs) on a Grid of

geographically distributed supercomputers
• Hybrid Grid remote procedure call (GridRPC) + message passing

(MPI) programming
• Dynamic allocation of computing resources on demand &

automated migration due to reservation schedule & faults
Ninf-G GridRPC: ninf.apgrid.org; MPICH: www.mcs.anl.gov/mpi

Multiscale QM/MD simulation of high-energy beam oxidation of Si

Takemiya et al., IEEE/ACM SC06
Song et al., IJCS (’09)

Grid Remote Procedure Call (RPC)

double A[n][n],B[n][n],C[n][n]; /* Data Declaration */
dmmul(n,A,B,C); /* Call local function */

grpc_function_handle_default(&hdl, “dmmul”);
grpc_call(hdl,n,A,B,C); /* Call server side routine */

• Simple RPC API (application program interface)
• Existing libraries & applications into Grid applications
• IDL (interface definition language) embodying call

information, with minimal client-side management

• Ninf-G Grid RPC system
http://ninf.apgrid.org

US-Japan Grid Testbed

Result	of	the	experiment	

Phase 1 Phase 2 Phase 3 Phase 4

USC

Fault Tolerance
• Automated migration in response to unexpected faults

Current & Future Computing Platforms

Innovative & Novel Computational Impact on Theory & Experiment

• Won two DOE supercomputing awards to develop &
deploy metascalable (“design once, scale on future
platforms”) simulation algorithms (2017-2020)

786,432-core	IBM	Blue	Gene/Q

• One of 10 exclusive users of the next-generation DOE supercomputer

• NAQMD & RMD simulations
on full 800K cores

Nation’s	first	exaflop/s	
computer,	Intel	A21	(2021)

R. F. Service, Science 359, 617 (’18)

USC@A21 in the Global Exascale Race

16,611-atom
quantum molecular dynamics
Shimamura et al.,
Nano Lett.
14, 4090 (’14)

Billion-atom
reactive molecular dynamics
Shekhar et al.,
Phys. Rev. Lett.
111, 184503 (’13)

But...

• Need metascalable (or “design once, scale on new architectures”) parallel
applications

• Proposed divide-conquer-recombine
Divide-and-conquer Recombine

M. Kunaseth et al., ACM/IEEE SC13 (’13)

Range-limited	n-tuple
computations

F. Shimojo et al., J. Chem. Phys. 140, 18A529 (’14);
K. Nomura et al., ACM/IEEE SC14 (’14)

https://www.top500.org/news/

Divide-Conquer-Recombine (DCR) Engines
Divide-and-conquer Recombine

• Lean divide-&-conquer density functional theory (LDC-DFT) algorithm
minimizes the prefactor of O(N) computational cost
F. Shimojo et al., J. Chem. Phys. 140, 18A529 (’14); K. Nomura et al., IEEE/ACM SC14

• Extended-Lagrangian reactive molecular dynamics (XRMD) algorithm
eliminates the speed-limiting charge iteration
K. Nomura et al., Comput. Phys. Commun. 192, 91 (’15)

M. Kunaseth et al., ACM/IEEE SC13

Range-limited n-tuple
computations

See lecture on “shift-collapse” algorithm

Divide-Conquer-(Re)combine
• “The first was to never accept anything as true

which I could not accept as obviously true. The
second was to divide each of the problems in as
many parts as I should to solve them. The third,
beginning with the simplest and easiest to
understand matters, little by little, to the most
complex knowledge. And the last resolution was to
make my enumerations so complete and my
reviews so general that I could be assured that I
had not omitted anything.” (René Descartes,
Discourse on Method, 1637)

• #<;=3��>��
3��3�9.�4!��
+.�����:!<;=3��2��/6'2�
��,8*1(0)!-*2	 3�7�5��(
%81&'�2%8"$?�����3	 !ADC
B@

Kenichi Fukui [Nobel Chemistry Prize, ’98]
room	for	creativity

Scalable Simulation Algorithm Suite

QMD (quantum molecular
dynamics): DC-DFT

RMD (reactive molecular
dynamics): F-ReaxFF

MD (molecular dynamics):
MRMD

• 4.9 trillion-atom space-time multiresolution MD (MRMD) of SiO2
• 67.6 billion-atom fast reactive force-field (F-ReaxFF) RMD of RDX
• 39.8 trillion grid points (50.3 million-atom) DC-DFT QMD of SiC

parallel efficiency 0.984 on 786,432 Blue Gene/Q cores

• Overlapping spatial domains:
• Domain Kohn-Sham equations

• Global & domain electron densities

Divide-&-Conquer Density Functional Theory

Domain	support	function Global	chemical	potential

Global-local
self-consistent
field	(SCF)
iteration

>?@,AB %CDEFGD(I)

KL"	(I)

Ω =∪" Ω"

− (
)
3) + >?PEQ + >?@,AB %CDEFGD I KL"(I)= RL"KL"(I)

%CDEFGD I = Σ"	T"(I)%" I

Σ"	T"(I) = 1

%" I = ΣL KL"
) Θ V − RL"

W = ∫ YI	%CDEFGD I

Optimization of Divide-&-Conquer DFT
• Computational parameters of DC-DFT = domain size (l) + buffer thickness (b)

• Complexity analysis to optimize the domain size l

• Error analysis: Buffer thickness b is dictated by the accuracy requirement

L

Per-domain computational complexity of DFT = O(nn): n = 2 or 3 (n < or > 103)

Error toleranceDecay length
cf. quantum nearsightedness [Kohn, Phys. Rev. Lett. 76, 3168 (’96)]

Z∗ = argmin bBEcd(Z) = argmin
e
Z

*

(Z + 2g)*h =
2g
i − 1

g = jln	(max	{|o%"(I)||I ∈ 0q"}) s %"(I)⁄

%" I − %CDEFGD(I)

Lean Divide-&-Conquer (LDC) DFT
• Density-adaptive boundary potential to reduce the O(N) prefactor

• More rapid energy convergence of LDC-DFT compared with nonadaptive DC-DFT

512-atom amorphous CdSe

LDC-DFT

DC-DFT

• Factor 2.03 (for n = 2) ~ 2.89 (for n = 3) reduction of the computational cost
with an error tolerance of 5´10-3 a.u. (per-domain complexity: nn)

F. Shimojo et al., J. Chem. Phys. 140, 18A529 (’14);
Phys. Rev. B 77, 085103 (’08); Comput. Phys. Commun. 167, 151 (’05)

Buffer layer

t"FB(I) = ∫ YI′
0t(I)
0%(Iv)

%" I − %CDEFGD I ≅
%" I − %CDEFGD I

x

Hierarchical Computing
• Globally scalable (real-space multigrid) + locally fast (plane wave) electronic solver

• Hierarchical band (i.e. Kohn-Sham orbital) + space + domain (BSD) decomposition

Inter-domain

Intra-
domain

Multigrid

Fast
Fourier

transform
Domain Spiral	FFT	library

[M.	Puschel et	al.,	Proc.	IEEE 93,	232	(’05)]	

>?@,AB %CDEFGD(I) KL"	(I)

F.	Shimojo et	al.,	J.	Chem.	Phys. 140, 18A529 (’14)

Parallel Efficiency

• Execution time: T(W,P)
W: Workload
P: Number of processors

• Speed:

• Speedup:

• Efficiency:

How to scale WP with P?

Parallel computing = solving a big problem (W) in a short time
(T) using many processors (P)

See http://cacs.usc.edu/education/cs596-lecture.html

Fixed Problem-Size (Strong) Scaling

WP = W—constant (strong scaling)

• Speedup:

• Efficiency:

• Amdahl’s law: f (= sequential fraction of the workload)
limits the asymptotic speedup

Solve the same problem faster

Isogranular (Weak) Scaling

WP = Pw (weak scaling)
w = constant workload per processor (granularity)

• Speedup:

• Efficiency:

Solve a larger problem within the same time duration

Analysis of Parallel MD
• Parallel execution time:

Workload µ Number of atoms, N (linked-list cell algorithm)

Fixed Problem-Size Scaling
• Speedup:

• Efficiency:

pmd.c: N = 16,384, on HPC

Isogranular Scaling of Parallel MD
• n = N/P = constant
• Efficiency:

pmd.c: N/P = 16,384, on HPC

Parallel Performance of QXMD
• Weak-scaling parallel efficiency is 0.984 on 786,432 Blue Gene/Q cores for a

50,331,648-atom SiC system
• Strong-scale parallel efficiency is 0.803 on 786,432 Blue Gene/Q cores

SiC
64 atoms/core

Li2136Al2136 in water
77,889 atoms

Weak scaling Strong scaling

K.	Nomura	et	al.,	IEEE/ACM	Supercomputing,	SC14	(’14)

• 62-fold reduction of time-to-solution [441	s/SCF-step	for	50.3M	atoms] from the
previous state-of-the-art [55	s/SCF-step	for	102K	atoms,	Osei-Kuffuor et	al.,	PRL ’14]

BLASification
• Transform from band-by-band to all-band computations to utilize a matrix-

matrix subroutine (DGEMM) in the level 3 basic linear algebra
subprograms (BLAS3) library

• Algebraic transformation of computations

Example: Nonlocal pseudopotential operation
D. Vanderbilt, Phys. Rev. B 41, 7892 (’90)

K. Nomura et al., IEEE/ACM Supercomputing, SC14 (’14)

• 50.5% of the theoretical peak FLOP/s performance on 786,432 Blue Gene/Q
cores (entire Mira at the Argonne Leadership Computing Facility)

• 55% of the theoretical peak FLOP/s on Intel Xeon E5-2665

tyQD|KL"⟩ = {
|}~�Ä

Å

{ |ÇÉ,ÅÑÖÉÜ,Å ÇÜ,Å KL"
áÄ}à

ÉÜ

â = 1,… ,WFGQã

å = |K("⟩, … , |K|ç}éè
" Ñ 	êë í = |ÇÉ,(Ñ, … , |ÇÉ,|}~�ÄÑ 	 ìë(í, ') Å,î

= ÖÉÜ,ÅïÅî

tyQDå ={êë(í)ìë(í, ')êë(')ñ
á

É,Ü

BLAS3-Performance Molecular Dynamics?
• BLAS3: q = flop/memory access = (block size)1/2

• Molecular dynamics: q = O(n2)/O(n) = O(n: block size)
> Use of SIMD (single instruction multiple data)

instructions on Cell, multicore (SSE)?

BLAS 3

BLAS 2
BLAS 1

Peak

Exascale Computing Challenge
1. Scalability for billion-way parallelism

Divide-conquer-recombine (DCR) algorithmic framework
Metascalable (“design once, scale on future architectures”)

Divide-and-conquer Recombine

ACM/IEEE SC13

Range-limited n-tuple
computations

J. Chem. Phys. 140, 18A529 (’14)
IEEE/ACM SC14

IEEE Computer 48(11), 33 (’15)

2. Reproducibility of real-number summation for multibillion summands in
the global sum; double-precision arithmetic began to produce different
results on different high-end architectures

Reproducibility Challenge
• Rounding (truncation) error makes floating-point addition non-associative

• Sum becomes a random walk across the space of possible rounding error

Exact (current work)

Double precision

Standard deviation of sum with
random summation orders

Distribution of sum with random
summation orders

Double precision

High-Precision (HP) Method
• Propose an extension of the order-invariant, higher-precision

intermediate-sum method by Hallberg & Adcroft [Par. Comput. 40, 140
(’14)]

• The proposed variation represents a real number r using a set of N 64-
bit unsigned integers, ai (i = 0, N-1)

• k is the number of 64-bit unsigned integers assigned to represent the
fractional portion of r (0 ≤ k ≤ N), whereas N-k integers represent the
whole-number component

• Negative number is represented by two’s complement in integer
representation, using only 1 bit

P. E. Small et al., IEEE IPDPS 2016

ó ={ òÉ2ôö(|õúõÉõ()
|õ(

Éùû
= òû2ôö(|õúõ() + ⋯+ ò|õúõ(

|õú

+⋯+ ò|õú2õôö +⋯+ ò|õ(2õôöú
ú

Performance Projection
• HP sum is faster than Hallberg sum for higher precision &

larger numbers of summands

Speedup(HP/Hallberg) > 1

Speedup(HP/Hallberg) < 1

Higher	Precision

More
Massive
Sum

P. E. Small et al., IEEE IPDPS 2016

U.S. National Initiatives

• MGI will accelerate materials developments
using data sciences

• NSCI will merge exaflop/s (1018 floating-point operations per second) high
performance computing (HPC) & exabyte (1018 bytes) “big data” to advance
the frontier of sciences, economic growth & national security

Big
DataHPC

QM/NN(TN) on A21?
• Sequential QM-machine learning (ML) molecular dynamics

[Botu & Ramprasad, Int. J. Quant. Chem. 115, 1074 (’15)]

• Concurrent nonadiabatic quantum-neural-network (NN) molecular
dynamics with accelerators?

DC-NAQMD

NNMD

Accelerator

CPU

Time

Training data

• NAQMD augmented w/ tensor network (TN)? [Orus, Ann. Phys. 349, 117 (’14)]

