Pseudopotentials

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological Sciences University of Southern California Email: anakano@usc.edu

How to abstract atoms in solid?

Background: Atomic Orbitals

- $\begin{cases} n = 1, 2, \cdots \\ l \in [0, n-1] \\ m \in [-l, l] \end{cases} \qquad \begin{array}{c} \psi_{nlm}(r, \theta, \phi) = R_{nl}(r) Y_{lm}(\theta, \phi) & \text{s:} \quad l = 0 \\ \text{Radial Spherical p:} \quad l = 1 \\ \text{function harmonics d:} \quad l = 2 \end{cases}$
- Hydrogen eigenstates ($\rho = v_{xc} = 0$)

Laguerre polynomial

Hydrogen Eigenstates

See notes on (1) Laplacian in spherical coordinates & (2) Schrodinger equation for spherically symmetric potentials

Herman-Skillman Solutions for Atoms

• Hartree approximation ($v_{xc} = 0$) for many-electron interaction

Outer shells (*i.e.*, larger *n*) still spread outward

For the inclusion of xc potential, see notes on (1) Numerical integration of radial wave function & (2) Kohn-Sham potential

Atomic Orbitals

sp³ Hybridization: Pauling's Note (1930)

Colculations such as these are sumplified by the fact that for a complete 3 athogonal transformation the sum of the squares of the coefficients for a quien mittal signerf 2 is unity. Four equivalent bouch from p3. max. value. $\mathcal{H}_{mn} = \frac{1}{2}(x + x + y + z)$ Hely in 2 4777= ±(2+ ++ ++ z) Cobular Kiley SAM 4777= ±(0+ x+ +- z) 4777= = = + (2 + x + y + 2) prolema It may be significant that we get 4 tetraledrally-We can paint one & along the 2 aris, say. directed bonds, each with the maximum 4、= シャ+星、と possible stationgth 4:= 10-芸子+告x (assuming Ro= Rp). This 43= さの- カマー た×+たそ SARS 4= さかーなる - ないーたい means that if Rs happens to squal Rp, two bonds The coeff. of s is '2 to make the 4's equivalent. or three bounds will be Then the coeffo. of 2 are fixed for norm. + or the is strongest when at tetrahedral angles. But if Ris stretches out forther than Rp. (which it actually does for name Zeff.), then things are different. Latus assume max &= maxp=1. Then da (a+(1-2)=0, a= = ? Maximim passible = 12=1.414 In this case two strong bonds will be oppositely directed (Insis molecule), three will Twobends, Maxvalue lie i a plane, four towards tetrahedron Three gound : 1.392 corners. Four squal 1.366

Charge Density at GaAs/Si (111) Interface

- Highest occupied states in Si have the hybrid sp³ character
- Occupied GaAs states are As p-like (lowest unoccupied states are s-like)

Projection of Kohn-Sham wave functions onto atomic orbitals

		Band	Ga 4s	Ga 4p	Ga 4d	As 4s	As 4p	As 4d	Total
		1150	0.0000	0.1157	0.0708	0.0000	0.8033	0.0101	1
		1151	0.0000	0.1158	0.0709	0.0000	0.8033	0.0100	1
	Occupied	1152	0.0000	0.1166	0.0713	0.0000	0.8017	0.0104	1
Unoccupied		1153	0.6763	0.0000	0.0000	0.3236	0.0001	0.0000	1

Z. Yuan et al., J. Appl. Phys. 114, 074316 ('13); Nano Lett. 13, 4925 ('13)

Wave Functions in MoSe₂ Bilayer

- Highest occupied states (blue) are d_{z2}-like •
- Lowest unoccupied states (red) are d_{xv}-like •

Electron

M.-F. Lin et al., Nature Commun. 8, 1745 ('17)

Valence Electrons

• Example: Silicon — 1s²2s²2p⁶3s²3p²

WebElements[™] periodic table

Electronic Configuration

The following represents the electronic configuration and its associated term symbol for the **ground state neutral gaseous atom**. The configuration associated with silicon in its compounds is not necessarily the same.

- Ground state electron configuration: [Ne].3s².3p²
- Shell structure: 2.8.4

Abstraction: Pseudopotential

Norm-Conserving Pseudopotential

Construct pseudopotentials such that:

- **1.** Pseudowave functions, $R_l^{PP}(r)$ (l = 0, 1, 2, ...), contain no nodes
- **2.** $R_l^{PP}(r)$ coincides with the all-electron wave function $R_l^{AE}(r)$ beyond a cutoff radius r_{cl}
- **3.** The charge enclosed within r_{cl} for the AE- & pseudo-wave functions must be equal $\int_{0}^{r_{cl}} 4\pi r^{2} dr \left| R_{l}^{PP}(r) \right|^{2} = \int_{0}^{r_{cl}} 4\pi r^{2} dr \left| R_{l}^{AE}(r) \right|^{2}$
- **4.** AE- & pseudo-eigenenergies must be identical $E_l^{PP} = E_l^{AE}$
- **5.** Conditions 2 & 4 imply: the logarithmic derivatives of the two wave functions must match at r_{cl}

$$\frac{1}{R_l^{\mathrm{PP}}(r,E_l)} \frac{dR_l^{\mathrm{PP}}(r,E_l)}{dr} \bigg|_{r=r_{\mathrm{c}l}} = \frac{1}{R_l^{\mathrm{AE}}(r,E_l)} \frac{dR_l^{\mathrm{AE}}(r,E_l)}{dr} \bigg|_{r=r_{\mathrm{c}l}}$$

Troullier & Martins, *Phys. Rev. B* **41**, 1993 ('91)

See notes on (1) Norm-conserving pseudopotential & (2) Logarithmic derivative

Local & Nonlocal Pseudopotentials

Ionic pseudopotential operator

$$\widehat{V}_{\text{ion}}^{\text{PP}}(r) = V_{\text{ion,local}}^{\text{PP}}(r) + \sum_{l,m} |lm\rangle \Delta V_l(r) \langle lm|$$
Common to all angular momenta Angular-momentum dependent

• (Example) Polyethylene slab without & with external electric field

See notes on (1) Nonlocal pseudopotential & (2) Fully nonlocal pseudopotential

Projector-Augmented Wave (PAW)

• Core-charge correction significantly increases the transferability $\tilde{v}_{xc}(\mathbf{r}) = v_{xc}([\rho_{PS}], \mathbf{r}) + [v_{xc}([\rho_{PS} + \rho_{core}], \mathbf{r}) - v_{xc}([\rho_{PS}], \mathbf{r})]$

Louie, Froyen & Cohen, Phys. Rev. B 50, 1738 ('82)

• An "all-electron" electronic structure calculation that separates smooth pseudowave functions & rapidly varying all electron wave functions by using projection function

 For practical construction of pseudopotentials, see T. Sugahara et al., Phys. Rep. Kumamoto Univ. 12, 279 ('06)