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Objective
• Derive quantum molecular dynamics (QMD) equations, which follow 

classical-mechanical trajectories of atoms, while computing interatomic 
interactions quantum mechanically:

1. Ehrenfest molecular dynamics (EMD)
• Solves the time-dependent Schrödinger equation for electrons
• Attosecond (10-18 s) to femtosecond (10-15 s) electron dynamics
P. Ehrenfest, Zeit. Phys. 45, 455 (’27) 

2. Born-Oppenheimer molecular dynamics (BOMD)
• Obtain the electronic ground state at every time instance
• Electron & nucleus dynamics above femtosecond (10-15 s)
M. Born & R. Oppenheimer, Annal. Phys. 84, 457 (’27) 
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Electron-Nucleus Dynamics
• Consider a system of N electrons & Natom nuclei, with their position 

operators, 𝐫"|𝑖 = 1,… ,𝑁 & 𝐑+|𝐼 = 1,… ,𝑁-./0
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• Here, ℏ is the Planck constant, PI , MI & ZI are the momentum, mass & 
charge of the I-th nucleus, and m & e are the electron mass & charge; Vext & 
vext are external potentials (like external electric field) acting on nuclei & 
electrons, respectively

• We focus on the system dynamics described by the time-dependent 
Schrödinger equation in non-relativistic quantum mechanics, where ΨAOP is 
the electron-nucleus wave function & t is the time 

electron-electron
interaction

electron-nuclei
interaction

nuclei-nuclei
interaction
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Separation of Length Scales 
• Due to the much larger nuclei masses (MI) compared to the electron mass 

(m), the quantum-mechanical nature of nuclei is negligible except in extreme 
cases like nuclear fusion

• More specifically, the length scale below which a particle’s quantum-
mechanical nature becomes appreciable at a given temperature T (i.e., 
thermal de Broglie wave length) is much smaller for nuclei than for electron
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1 a.u. (bohr) = 0.529 Å

• Motivate classical & quantum-mechanical descriptions of nuclei & 
electrons, respectively 



Ehrenfest Molecular Dynamics (EMD)

• Small ℏ expansion, applied to the nucleus degrees-of-freedom, 
leads to mixed quantum (for electrons) & classical (for nuclei) 
dynamical equations

• See notes on:
(1) QMD summary & (2) QMD equation
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Classical Newton’s equation of motion for nucleus positions

Time-dependent Schrödinger equation for the electronic wave function Ψ



Derivation of EMD Equations (1)
• Dynamics of the electron-nucleus system is encoded in the scattering matrix 

(or S matrix) in the closed-time path integral form

• See notes on:
(1) unitary time propagation; (2) closed-time path integral; (3) QMD equation 
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K.-c. Chou et al., “Equilibrium & nonequilibrium formalisms made unified,” 
Phys. Rep. 118, 1 (’85)



Derivation of EMD Equations (2)
• Path-integral w.r.t. nucleus trajectories: 𝐻(𝑡) = 𝐏�
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• See note on:
QMD equation
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Derivation of EMD Equations (3)
• Keep the leading term of the ℏ expansion (i.e. saddle-point approximation) 

of the path integral 

which amounts to

• See notes on
(1) QMD equation & (2) functional derivative
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EMD Application: Electron Mobility

• Electron transport in condensed matter under electric field 𝓔
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• A. Nakano, P. Vashishta & R. K. Kalia, “Electron transport in disordered systems: 
a nonequilibrium quantum molecular dynamics approach,” Phys. Rev. B 43, 
10928 (’91)

• A. Nakano, P. Vashishta & R. K. Kalia, “Probing localization & mobility of an 
excess electron in a-Si by quantum molecular dynamics,” Phys. Rev. B 45, 8363 
(’92)

• For the computation of electronic conductivity & associated 
gauge transformation, see the note on quantum dynamical 
computation of electronic conductivity



EMD Application: Attosecond Dynamics

A. Sommer, K. Yabana et al., “Attosecond nonlinear polarization 
& light-matter energy transfer in solids,” Nature 534, 86 (’16)

Electric field-induced 
polarization in silica 

Positive (red) & negative (blue) 
change in charge density 

• Ehrenfest dynamics codes by Prof. Kazuhiro Yabana’s group
ARTED: https://github.com/ARTED/ARTED
SALMON: http://salmon-tddft.jp



Born-Oppenheimer Molecular Dynamics
• Due to the much larger nuclei masses (MI) compared to the 

electron mass (m), the quantum-mechanical wave function of 
the system is separable to those of the electrons & nuclei

• At ambient conditions, the electronic wave function remains in 
its ground state (|𝛹v⟩) with the energy eigenvalue 𝜖v, 
corresponding to the instantaneous nuclei positions ({RI}), with 
the latter following classical mechanics
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• See notes on:
(1) QMD summary & (2) adiabatic approximation



Born-Oppenheimer (BO) MD Derivation (1) 
• Expand the wave function in terms of the complete set of eigenstates, 
{𝝍𝒌(𝐫, 𝐑)}, with fixed nuclei position R (i.e., adiabatic basis)

• Resulting time-dependent Schrödinger equation

ψ 𝐫, 𝐑, 𝑡 =2𝜒s(𝐑, 𝑡)𝜓s(𝐫, 𝐑)
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• See notes on:
(1) QMD summary & (2) adiabatic approximation
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Nonadiabatic coupling	due	to	nuclei	motion



Born-Oppenheimer (BO) MD Derivation (2) 

• See notes on:
(1) QMD summary & (2) adiabatic approximation

• Classical limit of the resulting equation for nuclei can be derived using the 
same ℏ expansion as in the derivation of Ehrenfest MD 

𝑇sv 𝐑 ≪ 𝐸s 𝐑 − 𝐸v 𝐑

• Born-Oppenheimer approximation neglects all Tkk’ terms; when in the 
electronic ground state (k = 0), off-diagonal transition is negligible if

diagonal term Tkk was shown to be O(m/MI)
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Hellmann-Feynman Theorem
• Consider a Hamiltonian that include a parameter 𝜆 (in our case, nuclei 

positions R)

𝜓� 𝜓� = 1



BOMD Application: H2 Production from Water

21,140	time	steps	(129,208	self-consistent-field	iterations);	unit	time-step	=	0.242	fs

16,661-atom BOMD simulation of Li441Al441 in 
water on 786,432 IBM Blue Gene/Q cores

K.	Shimamura et	al.,	
Nano Lett.	14,	4090	(’14)



Berry Phase
• The adiabatic basis (electronic eigenstates with fixed nucleus 

positions R(t) at each instance of time t) with energy Ek(R), 
used here, plays a role in the discussion of Berry (or geometric) 
phase of electronic wave function during adiabatic turning-
on/off of external potential

• Integration of the Berry phase along a closed path can be 
nonzero, which is observable (e.g. Aharonov-Bohm effect)

• QXMD uses it to compute electronic polarizability
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Berry	phase



• Change of polarization upon adiabatic switching of finite electric field ℰ
with periodic boundary condition
R. Resta, Phys. Rev. Lett. 80, 1800 (’98); P. Umari & A. Pasquarello, ibid. 89, 157602 (’02)

Quantum-Mechanical Calculation of Polarization
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• The above formula is equivalent to a sum of valence-band Berry phases
R. D. King-Smith & D. Vanderbilt, Phys. Rev. B 47, 1651(’93); I. Souza, J. Iniguez & D. 
Vanderbilt, Phys. Rev. Lett. 89, 117602 (’02)
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• Above a critical field ℰ_ ~ (energy gap)/(simulation cell size), the energy 
functional has no minimum, indicating Zener breakdown (i.e. tunneling 
from valence to conduction bands) 

• While polarization 𝐏 = ∫𝑑𝐫𝐫 𝜓(𝐫) 4�
� is ill-defined under periodic boundary 

condition, its change ∆𝐏 = ∫ 𝑑𝑡�𝐣�
v is well-defined, with a proper gauge to 

compute current j (note on quantum dynamical computation of electronic conductivity)


