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Objective

* Derive quantum molecular dynamics (QMD) equations, which follow
classical-mechanical trajectories of atoms, while computing interatomic
interactions quantum mechanically:

1. Ehrenfest molecular dynamics (EMD)
* Solves the time-dependent Schrodinger equation for electrons
o Attosecond (10-13 s) to femtosecond (1015 s) electron dynamics
P. Ehrenfest, Zeit. Phys. 45, 455 ('27)

2. Born-Oppenheimer molecular dynamics (BOMD)
e Obtain the electronic ground state at every time instance
e Electron & nucleus dynamics above femtosecond (10-1° s)
M. Born & R. Oppenheimer, Annal. Phys. 84, 457 (°27)
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Electron-Nucleus Dynamics

* Consider a system of N electrons & N, ., nuclei, with their position
operators, {r;|i = 1,..., N} & {R,|I = 1 o, Natom}
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e Here, 5 is the Planck constant, P, , M, & Z, are the momentum, mass &
charge of the I-th nucleus, and m & e are the electron mass & charge; V., &
V. are external potentials (like external electric field) acting on nuclei &
electrons, respectively

e We focus on the system dynamics described by the time-dependent
Schrodinger equation in non-relativistic quantum mechanics, where W, , is
the electron-nucleus wave function & ¢ is the time
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Separation of Length Scales

* Due to the much larger nuclei masses (M;) compared to the electron mass

(m), the quantum-mechanical nature of nuclei is negligible except in extreme
cases like nuclear fusion

* More specifically, the length scale below which a particle’s quantum-
mechanical nature becomes appreciable at a given temperature 7 (i.e.,
thermal de Broglie wave length) is much smaller for nuclei than for electron
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* Motivate classical & quantum-mechanical descriptions of nuclei &
electrons, respectively



Ehrenfest Molecular Dynamics (EMD)

 Small /1 expansion, applied to the nucleus degrees-of-freedom,
leads to mixed quantum (for electrons) & classical (for nuclei)
dynamical equations

Classical Newton’s equation of motion for nucleus positions

ddzz R1 <Lp(t)‘ ah({rl} {Rz}) |q,(t)>
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Time-dependent Schrodinger equation for the electronic wave function W

* See notes on:
(1) QMD summary & (2) QMD equation



Derivation of EMD Equations (1)

* Dynamics of the electron-nucleus system is encoded in the scattering matrix
(or S matrix) in the closed-time path integral form

Unitary time propagator
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e See notes on:
(1) unitary time propagation; (2) closed-time path integral; (3) QMD equation

K.-c. Chou et al., “Equilibrium & nonequilibrium formalisms made unified,”
Phys. Rep. 118, 1 ('85)



Derivation of EMD Equations (2)
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e Path-integral w.r.t. nucleus trajectories: H(t) = vl h(r,R, t)
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* See note on:
QMD equation



Derivation of EMD Equations (3)

e Keep the leading term of the 7 expansion (i.e. saddle-point approximation)
of the path integral

h
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which amounts to
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e See notes on
(1) QMD equation & (2) functional derivative



EMD Application: Electron Mobility

e Electron transport in condensed matter under electric field £
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* For the computation of electronic conductivity & associated

gauge transformation, see the note on quantum dynamical
computation of electronic conductivity

« A. Nakano, P. Vashishta & R. K. Kalia, “Electron transport in disordered systems:

a nonequilibrium quantum molecular dynamics approach,” Phys. Rev. B 43,
10928 ('91)

 A. Nakano, P. Vashishta & R. K. Kalia, “Probing localization & mobility of an
excess electron in a-Si by quantum molecular dynamics,” Phys. Rev. B 45, 8363
(92)



EMD Application: Attosecond Dynamics
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A. Sommer, K. Yabana et al., “Attosecond nonlinear polarization
& light-matter energy transfer in solids,” Nature 534, 86 ('16) :
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* Ehrenfest dynamics codes by Prof. Kazuhiro Yabana’s group
ARTED: https://github.com/ARTED/ARTED

SALMON: http://salmon-tddft.jp SALMON




Born-Oppenheimer Molecular Dynamics

* Due to the much larger nuclei masses (M;) compared to the
electron mass (m), the quantum-mechanical wave function of
the system is separable to those of the electrons & nuclei

e At ambient conditions, the electronic wave function remains in
its ground state (|¥,)) with the energy eigenvalue €,
corresponding to the instantaneous nuclei positions ({R,}), with
the latter following classical mechanics
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* See notes on:
(1) QMD summary & (2) adiabatic approximation



Born-Oppenheimer (BO) MD Derivation (1)

 Expand the wave function in terms of the complete set of eigenstates,
{Yr(r,R)}, with fixed nuclei position R (i.e., adiabatic basis)

VRO = ) 2R DY R)

k
h(r, R)Y (r,R) = Ex (R)Y (1, R)

e Resulting time-dependent Schrodinger equation
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e See notes on:
(1) QMD summary & (2) adiabatic approximation



Born-Oppenheimer (BO) MD Derivation (2)

* Born-Oppenheimer approximation neglects all T,,, terms; when in the
electronic ground state (k = 0), off-diagonal transition is negligible if

ITko(R)| < Ex(R) — Eo(R)

diagonal term 7, was shown to be O(m/M,)

e Classical limit of the resulting equation for nuclei can be derived using the
same h expansion as in the derivation of Ehrenfest MD
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e See notes on:
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Hellmann-Feynman theorem

(1) QMD summary & (2) adiabatic approximation
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Hellmann-Feynman Theorem

e Consider a Hamiltonian that include a parameter A (in our case, nuclei
positions R)

dE
A_ <¢A\HA!¢A>

p )
<‘” BT ) (ol

)

d¢A dw)\ dI‘:r)\
E)\< o () +EA<¢A| ™ >+<¢A Y ¢A>
= E)\_ (U |x) +< >

<¢)\ dH, ¢>\> (Yala) =1




BOMD Application: H, Production from Water

16,661-atom BOMD simulation of Li, Al in K. Shimamura et al.,
water on 786,432 IBM Blue Gene/QQ cores Nano Lett. 14, 4090 ('14)

21,140 time steps (129,208 self-consistent-field iterations); unit time-step = 0.242 fs




Berry Phase

* The adiabatic basis (electronic eigenstates with fixed nucleus
positions R(7) at each instance of time 7) with energy E,(R),
used here, plays a role in the discussion of Berry (or geometric)
phase of electronic wave function during adiabatic turning-
on/off of external potential

k() = exp(ivic(t)exp |~ 1 [y dt'Ex(R()) | [k(t = 0))

s fpath dR « i(k(R)|aiR|k(R)>

Berry phase

* Integration of the Berry phase along a closed path can be
nonzero, which is observable (e.g. Aharonov-Bohm effect)

e QXMD uses it to compute electronic polarizability

D. Xiao et al., “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959 ('10)



Quantum-Mechanical Calculation of Polarization

 While polarization P = [ drr|y(r)|? is ill-defined under periodic boundary
condition, its change AP = | Ot dt'y is well-defined, with a proper gauge to
compute current j (note on quantum dynamical computation of electronic conductivity)

* Change of polarization upon adiabatic switching of finite electric field £
with periodic boundary condition
R. Resta, Phys. Rev. Lett. 80, 1800 ('98); P. Umari & A. Pasquarello, ibid. 89, 157602 ('02)

APel, = —%Im(ln det[(Y,,| exp(i2mx /L) |Y,)]) (m,n € {occupied})

{Ym} = ar'gmin(EKohn—Sham [{hm}] — EAPg) [{lpm}])

* The above formula is equivalent to a sum of valence-band Berry phases

R. D. King-Smith & D. Vanderbilt, Phys. Rev. B 47, 1651(°93); |. Souza, J. Iniguez & D.
Vanderbilt, Phys. Rev. Lett. 89, 117602 ('02)
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e Above a critical field £. ~ (energy gap)/(simulation cell size), the energy
functional has no minimum, indicating Zener breakdown (i.e. tunneling
from valence to conduction bands)



