Singular Value Decomposition

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Dept. of Computer Science, Dept. of Physics & Astronomy, Dept. of Chemical Engineering & Materials Science, Dept. of Biological Sciences University of Southern California

Email: anakano@usc.edu

Goal: Another matrix decomposition (SVD) for low-rank matrix approximation

1

• $N \times M$ matrix A as a mapping: $\mathbb{R}^M \to \mathbb{R}^N$

$$M \begin{bmatrix} x \\ x \end{bmatrix} x (\in \mathbb{R}^M) \xrightarrow{A} b = Ax (\in \mathbb{R}^N) \begin{bmatrix} b \\ b \end{bmatrix} N$$

- **Range of** *A*: Vector space $\{b = Ax | \forall x\}$
- Rank of A: Number of linearly-independent vectors in the range, *i.e.*, how many linearly-independent N-element vectors are there in the range, such that

$$b = A^{\forall} x = \sum_{\nu=1}^{m} c_{\nu} |\nu\rangle$$

Low Rank Approximations of a Matrix

• **Rank-1 approximation:** $NM \rightarrow N + M$

$$\mathbf{N} \begin{bmatrix} \mathbf{M} \\ \psi \end{bmatrix} \cong \begin{bmatrix} u \end{bmatrix} \begin{bmatrix} v \end{bmatrix}$$

• Rank-2 approximation: $NM \rightarrow 2(N + M)$

$$\psi \quad] \cong \begin{bmatrix} u_1 \\ w_1 \begin{bmatrix} v_1 \\ v_1 \end{bmatrix} + \begin{bmatrix} u_2 \\ w_2 \begin{bmatrix} v_2 \end{bmatrix} \end{bmatrix}$$

• Rank-*m* (m \ll *N*, *M*) approximation: *NM* \rightarrow *m*(*N* + *M*)

$$\psi \qquad \left] \cong \sum_{\nu=1}^{m} \left[u_{\nu} \right] w_{\nu} \left[v_{\nu} \right] \right]$$

Singular Value Decomposition

- Problem: Optimal approximation of an N×M matrix ψ of rank-m (m << N)?
- **Theorem:** An $N \times M$ matrix ψ (assume $N \ge M$) can be decomposed as

$$\psi = UDV^{T} = \sum_{\nu=1}^{M} U_{i\nu} d_{\nu} V_{j\nu} = \sum_{\nu=1}^{M} u_{i}^{(\nu)} d_{\nu} v_{j}^{(\nu)}$$

where $U \in \mathbb{R}^N \times \mathbb{R}^M$ & $V \in \mathbb{R}^M \times \mathbb{R}^M$ are column orthogonal & D is diagonal

• Theorem: Sort the SVD diagonal elements in descending order $d_1 \ge d_2 \ge ... \&$ retain the first *m* terms $\psi^{(m)} \equiv \sum_{v=1}^{m} u^{(v)} d_v v^{(v)T}$

which is optimal among $\forall \operatorname{rank} - m$ matrices in the 2-norm sense with the error $\min_{\substack{n \\ rank(A)=m}} \|A - \psi\|_2 = \|\psi^{(m)} - \psi\|_2 = d_{m+1}$ $cf. \operatorname{singular.c} \& \operatorname{svdcmp.c}$

SVD for Image Compression

Original Image

5 Iterations

10 Iterations

D. Richards & A. Abrahamsen

20 Iterations

60 Iterations

100 Iterations

SVD in Data Mining

Approximating Attributes by Representative Vectors

N. Ramakrishnan & A. Y. Grama

Reduced Density Matrix

• Quantum system coupled to an environment

• **VQuantum state of block + environment**

$$|\psi\rangle = \sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{ij} |i\rangle |j\rangle$$
 or $\Psi(x,X) = \sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{ij} \psi_i(x) \phi_j(X)$

• Reduced density matrix

Low-Rank Approx. to Reduced Density Matrix

$$\psi \approx \psi^{(m)} = \sum_{\nu=1}^{m} u^{(\nu)} d_{\nu} v^{(\nu)T} \qquad \psi_{ij}^{(m)} = \sum_{\nu=1}^{m} u_i^{(\nu)} d_{\nu} v_j^{(\nu)}$$

$$\rho = \psi \psi^T \cong \psi^{(m)} \psi^{(m)T} = \sum_{\nu=1}^m \sum_{\nu'=1}^m u^{(\nu)} d_\nu \left(v^{(\nu)T} v^{(\nu')} \right) d_{\nu'} u^{(\nu')T}$$

$$= \sum_{\nu=1}^{m} \sum_{\nu'=1}^{m} u^{(\nu)} d_{\nu} (\delta_{\nu\nu'}) d_{\nu'} u^{(\nu')T} = \sum_{\nu=1}^{m} u^{(\nu)} d_{\nu}^{2} u^{(\nu)T} \equiv \rho^{(m)}$$

$$\rho_{ii'}^{(m)} = \sum_{\nu=1}^{m} u_i^{(\nu)} d_{\nu}^2 u_{i'}^{(\nu)}$$

- **Density matrix renormalization group = systematic procedure to accurately obtain a quantum ground state:**
 - **1.** Incrementally add environment to a block
 - 2. Solve the global (= block + environment) ground state
 - **3.** Construct a low-rank approx. to represent the block with reduced d.o.f.

S. R. White, Phys. Rev. B 48, 10345 ('93)

Rapid Genome Sequencing

• \$10M Archon X prize for decoding 100 human genomes in 10 days & \$10K per genome (http://genomics.xprize.org): Preemptive attack on diseases

• Quantum tunneling current for rapid DNA sequencing?

Current (nA)

• Tunneling current alone cannot distinguish the 4 nucleotides (A, C, G, T)

Rapid DNA Sequencing via Data Mining

• Use tunneling current (I)-voltage (V) characteristic (or electronic density-ofstates) as the 'fingerprints' of the 4 nucleotides

Principal component analysis (PCA) & fuzzy c-means clustering clearly distinguish the 4 nucleotides
H. Yuen *et al.*, *IJCS* 4, 352 ('10)

Viterbi algorithm for even higher-accuracy sequencing

SVD vs. PCA

SVD of N (number of companies) × T (number of time points) of stock-price time series

$$\Xi_{T \times N}^{T} = \bigcup_{T \times N} \sum_{N \times N} \sum_{N \times N} V_{N \times N}^{T}$$

Stock correlation matrix

$$\mathbf{C}_{N \times N} = \mathbf{\Xi} \mathbf{\Xi}^{T}_{N \times T \ T \times N}$$

Principal component analysis (PCA): Eigen decomposition of the correlation matrix

 $\rho(\lambda)$

$$\mathbf{C} = \mathbf{\Xi}\mathbf{\Xi}^{T}$$
$$= \mathbf{V}\mathbf{\Sigma} \underbrace{\mathbf{U}^{T}\mathbf{U}}_{\mathbf{I}} \mathbf{\Sigma}\mathbf{V}^{T}$$
$$= \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{T}$$

Compare the spectrum with that of random matrix theory (RMT) for judging statistical significance

