Singular Value Decomposition

Aiichiro Nakano

Collaboratory for Advanced Computing \& Simulations Dept. of Computer Science, Dept. of Physics \& Astronomy,

Dept. of Chemical Engineering \& Materials Science, Dept. of Biological Sciences University of Southern California

Email: anakano@usc.edu

Goal: Another matrix decomposition (SVD) for low-rank matrix approximation

Rank of a Matrix

- $N \times M$ matrix A as a mapping: $R^{M} \rightarrow R^{N}$

$$
M[x] x\left(\in R^{M}\right) \underset{A}{1} b=A x\left(\in R^{N}\right)[b] N
$$

- Range of A : Vector space $\{b=A x \mid \forall x\}$
- Rank of A : Number of linearly-independent vectors in the range, i.e., how many linearly-independent N-element vectors are there in the range, such that

$$
b=A^{\forall} x=\sum_{v=1}^{m} c_{v}|\boldsymbol{v}\rangle
$$

Low Rank Approximations of a Matrix

- Rank-1 approximation: $N M \rightarrow N+M$

$$
\boldsymbol{N}\left[\begin{array}{c}
\boldsymbol{M} \\
\psi
\end{array}\right] \cong\left[u \left[\begin{array}{lll}
& v &]
\end{array}\right.\right.
$$

- Rank-2 approximation: $N M \rightarrow \mathbf{2 (N + M)}$

$$
[] \cong\left[u_{1}\right] w_{1}\left[\begin{array}{ll}
& v_{1}
\end{array}\right]+\left[u_{2}\right] w_{2}\left[v_{2}\right]
$$

- Rank- $m(\mathrm{~m} \ll N, M)$ approximation: $N M \rightarrow m(N+M)$

$$
\left[\begin{array}{ll}
\psi
\end{array}\right] \cong \sum_{v=1}^{m}\left[u_{v}\right] w_{v}\left[\begin{array}{lll}
& v_{v} &]
\end{array}\right.
$$

Singular Value Decomposition

- Problem: Optimal approximation of an $N \times M$ matrix ψ of rank- $m(m \ll N)$?
- Theorem: An $N \times M$ matrix ψ (assume $N \geq M$) can be decomposed as

$$
\psi=U D V^{T}=\sum_{v=1}^{M} U_{i v} d_{v} V_{j v}=\sum_{v=1}^{M} u_{i}^{(v)} d_{v} v_{j}^{(v)}
$$

where $U \in \boldsymbol{R}^{N} \times \boldsymbol{R}^{M} \& V \in \boldsymbol{R}^{M} \times \boldsymbol{R}^{M}$ are column orthogonal \& \boldsymbol{D} is diagonal

- Theorem: Sort the SVD diagonal elements in descending order $d_{1} \geq d_{2} \geq \ldots \&$ retain the first m terms

$$
\psi^{(m)} \equiv \sum_{v=1}^{m} u^{(v)} d_{v} v^{(v) T}
$$

which is optimal among \forall rank- m matrices in the 2-norm sense with the error

$$
\begin{gathered}
\min _{\operatorname{ank}(A)=m}\|A-\psi\|_{2}=\left\|\psi^{(m)}-\psi\right\|_{2}=d_{m+1} \\
c f . \text { singular.c \& svdcmp.c }
\end{gathered}
$$

SVD for Image Compression

Original Image

5 Iterations

10 Iterations

D. Richards \& A. Abrahamsen

20 Iterations

60 Iterations

100 Iterations

SVD in Data Mining

Given Point Set

Approximating Attributes by Representative Vectors

Reduced Density Matrix

- Quantum system coupled to an environment

$$
\left\{|i\rangle=\psi_{i}(x) \mid i=1, \ldots, N\right\} \quad \text { E: Environment }
$$

- \forall Quantum state of block + environment

$$
|\psi\rangle=\sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{i j}|i\rangle|j\rangle \quad \text { or } \quad \Psi(x, X)=\sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{i j} \psi_{i}(x) \phi_{j}(X)
$$

- Reduced density matrix

$$
\left\langle{ }^{\forall} A\right\rangle=\sum_{i} \sum_{j} \psi_{i j}^{*}\langle j|\langle i| A \sum_{i^{\prime}} \sum_{j^{\prime}} \psi_{i^{\prime} j^{\prime}}\left|i^{\prime}\right\rangle\left|j^{\prime}\right\rangle
$$

Arbitrary operator in the block

$$
\begin{aligned}
& =\sum_{i} \sum_{j} \sum_{i^{\prime}} \sum_{j^{\prime}} \psi_{i^{\prime} j^{\prime}} \psi_{i j}^{*}\langle i| A\left|i^{\prime}\right\rangle\left\langle j \mid j^{\prime}\right\rangle \\
& =\sum_{i} \sum_{i^{\prime} j} \sum_{j} \psi_{i^{\prime} j} \psi_{i j}^{*}\langle i| A\left|i^{\prime}\right\rangle \equiv \sum_{i} \sum_{i^{\prime}} \rho_{i^{\prime} i^{\prime}} A_{i i^{\prime}}=\operatorname{tr}_{\mathrm{B}}(\rho A) \\
& \quad \rho_{i^{\prime} i} \equiv \sum_{j} \psi_{i^{\prime} j} \psi_{i j}^{*} \quad A_{i i^{\prime}} \equiv\langle i| A\left|i^{\prime}\right\rangle
\end{aligned}
$$

Low-Rank Approx. to Reduced Density Matrix

$$
\begin{gathered}
\psi \cong \psi^{(m)}=\sum_{v=1}^{m} u^{(v)} d_{v} v^{(v) T} \psi_{i j}^{(m)}=\sum_{v=1}^{m} u_{i}^{(v)} d_{v} v_{j}^{(v)} \\
\rho=\psi \psi^{T} \cong \psi^{(m)} \psi^{(m) T}=\sum_{v=1}^{m} \sum_{v^{\prime}=1}^{m} u^{(v)} d_{v}\left(v^{(v) T} v^{\left(v^{\prime}\right)}\right) d_{v^{\prime}} u^{\left(v^{\prime}\right) T} \\
=\sum_{v=1}^{m} \sum_{v^{\prime}=1}^{m} u^{(v)} d_{v}\left(\delta_{v v^{\prime}}\right) d_{v^{\prime}} u^{\left(v^{\prime}\right) T}=\sum_{v=1}^{m} u^{(v)} d_{v}^{2} u^{(v) T} \equiv \rho^{(m)} \\
\rho_{i i^{\prime}}^{(m)}=\sum_{v=1}^{m} u_{i}^{(v)} d_{v}^{2} u_{i^{\prime}}^{(v)}
\end{gathered}
$$

- Density matrix renormalization group = systematic procedure to accurately obtain a quantum ground state:

1. Incrementally add environment to a block
2. Solve the global (= block + environment) ground state
3. Construct a low-rank approx. to represent the block with reduced d.o.f.
S. R. White, Phys. Rev. B 48, 10345 ('93)

Rapid Genome Sequencing

- \$10M Archon X prize for decoding 100 human genomes in 10 days $\boldsymbol{\&} \$ 10 \mathrm{~K}$ per genome (http://genomics.xprize.org): Preemptive attack on diseases

- Quantum tunneling current for rapid DNA sequencing?

- Tunneling current alone cannot distinguish the 4 nucleotides (A, C, G, T)

Rapid DNA Sequencing via Data Mining

- Use tunneling current (I)-voltage (V) characteristic (or electronic density-ofstates) as the 'fingerprints' of the 4 nucleotides

Shapir et al.,
Nature Materials ('08)

- Principal component analysis (PCA) \& fuzzy c-means clustering clearly distinguish the 4 nucleotides

H. Yuen et al., IJCS 4, 352 ('10)

- Viterbi algorithm for even higher-accuracy sequencing

SVD vs. PCA

- SVD of N (number of companies) $\times T$ (number of time points) of stock-price time series

$$
{\underset{T \times N}{\Xi}}^{T}=\mathbf{U}_{T \times N} \sum_{N \times N} \mathbf{V}_{N \times N}^{T}
$$

- Stock correlation matrix

$$
\underset{N \times N}{\mathbf{C}}=\underset{N \times T}{\boldsymbol{\Xi}} \underset{T \times N}{\boldsymbol{\Xi}}{ }^{T}
$$

- Principal component analysis (PCA): Eigen decomposition of the correlation matrix

$$
\begin{gathered}
\mathbf{C}=\boldsymbol{\Xi} \boldsymbol{\Xi}^{T} \\
=\mathbf{V} \boldsymbol{\Sigma} \underbrace{\mathbf{U}^{T} \mathbf{U}}_{\mathbf{I}} \mathbf{\Sigma} \mathbf{V}^{T} \\
=\mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}
\end{gathered}
$$

- Compare the spectrum with that of random matrix theory (RMT) for judging statistical significance

$$
\begin{aligned}
& \rho_{\mathrm{RMT}}=\frac{Q}{2 \pi} \frac{\sqrt{\left(\lambda_{+}-\lambda\right)\left(\lambda-\lambda_{-}\right)}}{\lambda} \\
& \lambda_{ \pm}=\left(1+\frac{1}{\sqrt{Q}}\right)^{2} \\
& Q=T /(2 N) \quad N, T \rightarrow \infty
\end{aligned}
$$

T time points
Y. Kichikawa et al., Proc. Comp. Sci. 60, 1836 ('15)

