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Dynamic n-Tuple Computation
Force computation of n-body potential term requires n-tuple of atomic positions: 

(r0,r1,...,rn-1) 

|G(n)|=N!/[2(N-n)!]=O(Nn) 

|G(2)|=O(N2) |G(3)|=O(N3) |G(4)|=O(N4) 

MD problem statement: Given a set on N atoms, find a particular set of n-tuples:
• n-tuple space G: exponential in n, O(Nn)
• n-tuple lists are dynamically constructed every MD step
• Many MD problems (e.g. bio-MD) only consider dynamic pairs n = 2 and static 

lists of n > 2.
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Illustration of dynamic n-tuple (n=3)



Ranged-Limited n-Tuples
Atom interaction in many system are short-ranged:

• Only atoms within a certain cutoff distance are considered for force 
computation

• The range-limited n-tuple set Γ*(n):|Γ*(n)|=O(N)
• Exhaustive search Γ*(n) is intractable

Γ*(n) ⊆ S(n)

Cell method: find a super set S(n) (i.e. force set) that tightly bounds Γ*(n):
• Prune Γ(n) to obtain S(n), then exhaustive search Γ*(n)

Γ*(n) = (r0,...,rn−1)  rk,k+1 < rcut−n{ }

O(Nn)O(N)

O(Nn)O(N) O(N)

How to obtain S(n) efficiently?



Pair-Space Pruning: Cell Method
Cell method: Divide system into small non-overlapping cells of size ≥ rcut-n:

• For each atom in a cell, all of its range-limited pairs are guaranteed be 
within the nearest-neighbor cells

• By looping over all cells in the system, all range-limited pairs are 
enumerated 

• Reduce search complexity from O(N2) è O(N) 

Cell data structure:
c(q) = {ri |ri is in the volume} 

Loop over all cells in the 
system Ω

Γ(2)

Conventional cell methods

S(2)

Γ*(2)



Related Works: Pair Computation Case
Cell methods for pair computation has been used extensively:

• FS and HS: “Owner-compute” rule for pair computation (Rappaport, 1988)

• Force decomposition: Non “owner-compute” rule approach (Plimpton, 1995)

• Hybrid spatial & force decomposition (Kale et al., 2002), (Snir, 2004)

• Neutral-territory method: optimal for low latency networks (Shaw, 2005)

• Eighth-shell (ES) method: Best available cell-based (Bower et al., 2006),(Hess et al., 2008)

Full-Shell (FS) Method
(Rappaport, 1988)

Half-Shell (HS) Method
(Rappaport, 1988)

Eighth-Shell (ES) Method
(Bower et al., 2006)

Redundancy removal Footprint
reduction



Issue: Limited Study on n-Tuple Computation
Interaction for n > 2 is complicated. Only 

simple FS is trivial in term of 
correctness: 
• Redundant searches
• Large cell footprint è large import 

volume in parallel runs
• Very low performance: not feasible for 

large-scale and/or long-time simulation 
FS for n = 3

Range-limited property of MD

Research question: 
How can we generalize the computation-redundancy removal in the HS 
scheme and the footprint reduction in the ES scheme developed for pair 

computation into arbitrary dynamic n-tuple computations? 



Computation-Pattern Algebraic Framework
A general n-tuple computation formulation:

• Formulate computation in terms of vector algebra
• Allow mathematically rigorous proofs of correctness and optimality

Unified description of n-tuple computation within uniform cell pattern 
(UCP) framework:

• Generalize FS, HS, ES in the case of n = 2 in to general n



Uniform Cell-Pattern (UCP) Framework
Framework to enumerate set of n-tuples S(n) (i.e. force set) :

• Abstraction of n-tuples in terms of cell list
• Generate n-tuples from “pattern” and “cell data”

v0

v1 v2

p(3) = (v0,v1,v2) 

Computation path 
for n = 3

Triplets contained 
in 3 cells

Computation 
pattern for n = 3

Y(3)

S(n) =UCP(Ω,Ψ (n) )
= Scell (c(q),Ψ

(n) )
∀c(q)∈Ω


Scell (c(q),Ψ
(n) ) =

(r0,...,rn−1)
∀p = (v0,...,vn−1)∈ Ψ (n)

∀k ∈ {0,...,n−1} :∀rk ∈ c(q+ vk )
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Y(n) = {p(n)} Set of (r0, r1, r2)



UCP Force-Set Generation
• Apply a pattern to all cells in the system to obtain force set S(n)

• Correctness of UCP: S(n) must contain all range-limited tuples: Γ*(n) Í S(n)

• Unnecessary tuples must be filtered out
• Goal: find a pattern that minimizes the filtering process



Parallel MD
Spatial decomposition:
• Partition N atoms in the system into P equal volumes.
• Each volume is assigned to a different processor
• Import volume: data from nearest-neighbor process (blue regions) need to be

imported.

N atoms

Ω
Data of required cells (yellow cells)

are imported from the other processors
Atoms are assigned to
different processors



UCP-MD Optimization Problem
UCP allow us to formulate n-tuple MD problem mathematically:

PROBLEM (OPTIMAL UCP-MD). Given a cell domain W, find a set of 
n-complete computation patterns {Y*(n)} for all n Î {2,…,nmax} such 
that each Y*(n) satisfies the following:

Ψ*(n) = argmin
Ψ(n )
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Search-space minimization: Import-volume minimization:



Translation Invariance

p(3)+D = (v0+D,v1+D,v2+D) p(3) = (v0,v1,v2) 

HS pattern for n = 2 ES pattern for n = 2 

Shift

D = (0,1)

We have proved that translation preserves the resulting force set:
• Translation of the origin of the computation path 
• Manipulate paths to reduce footprint



Reflection Invariance

Collapse

Reflecting the Newton’s third law:
• Forces from n-tuple is undirectional: (r0,r1,...,rn-1) produces the same forces 

as (rn-1,rn-2,...,r0)
• Paths can be “collapsed” if they are in the opposite direction of each other

FS pattern for n = 2 HS pattern for n = 2 

pinv
(3) = (v2,v1,v0) 

p (3) = (v0,v1,v2) 

p (3) = (v0,v1,v2) 



Shift-Collapse (SC) Algorithm
Optimal computation pattern created by the following 3 phase:

1. Generate FS pattern
2. Perform octant-compression (OC) shift
3. Collapse all equivalent paths

THEOREM 2. Given an arbitrary cell domain W, a computation pattern Y(n)
SC

generated from the shift-collapse algorithm is n-complete.



Full-Shell Pattern Generation
Full-shell generation algorithm:

1. (n-1)-fold nested loop
2. vk+1 = vk ± 1; for all k = [0, n-1] and v0 = (0,0)
3. Add (v0,v1,…,vn-1) to the output pattern

Generation of YFS: n = 3 Generation of YFS: n = 4



Octant-Compression Shift and Reflective Collapse
OC-shift algorithm:

1. For each path p = (v0,v1,…,vn-1) in a pattern Y(n)

2. find Δmin = min (vβk); "k = {0,…,n-1}:vk Î p; β = {x, y, z}
3. pnew = p - Δmin

R-Collapse algorithm:
1. For each pair of paths, remove one if they are reflective to each other



Search-Cost Optimization
Search cost of UCP is the cost of filtering necessary from S(n)

• We have proved that search-cost is proportional to size of pattern |Ψ(n)|
• Search cost of SC is about half that of FS
• for n = 2, search cost of SC is the same as search cost of HS and ES

:
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(n) = 27n−1

Analytical search cost:
• FS pattern

• SC pattern

Actual search-cost 
n = 3



Import-Volume Optimization
• OC shift reduces cell footprint to the most compact configuration

(l+(n-1))3(l+(2n-1))3

1
2
V (ωFS)>V (ωSC )

SC generalizes ES

Pair
FS

ES



Performance Benchmark
Compare actual runtime of three codes for dynamic n-tuples, (n = 2, 3):

• SC-MD: shift-collapse MD code
• FS-MD: Simple full-shell MD code
• Hybrid-MD: production code using full-shell (n = 2) + dynamic Verlet-

neighbor list (n = 3) only if rcut-2 > rcut-3 [SC01 Best paper] 

Specification of test platforms



Fine-Grain Parallelism
Runtime comparison on 48 Intel-Xeon nodes and 64 BlueGene/Q nodes

• SC-MD is always faster than FS-MD
• At smallest grain, SC-MD is 9.7- and 5.1-fold speedups over hybrid code
• Crossover of optimal algorithm from SC-MD to Hybrid MD at larger 

granularity (i.e. N/P > 2,095 on Intel Xeon and N/P > 425)

:
48 Intel Xeon nodes@USC-HPCC 64 BlueGene/Q nodes@ANL



Strong Scalability
Strong-scaling benchmarks on 64 Intel-Xeon and 512 BlueGene/Q nodes:

• SC-MD shows excellent strong scalability on both platforms: 0.90 and 0.92
parallel efficiencies

• Scalability of FS-MD and Hybrid MD degrade severely after 8 nodes on 
Xeon cluster and 16 nodes on BlueGene/Q

Fixed N = 7.7×105

1-64 Intel Xeon nodes@USC-HPCC 1-512 BlueGene/Q nodes@ANL

Fixed N = 8.8×105


