Shift-Collapse Algorithm

Manaschai Kunaseth

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
University of Southern California
&
National naotechnology Center (NANOTEC), Thiland

Email: manaschai@nanotec.or.th

M. Kunaseth et al., ACM/IEEE supercomputing, SC13

G255

Dynamic n-Tuple Computation

Force computation of n-body potential term requires n-tuple of atomic positions:

(FgsTgseeesk, 1) ;
f7==) P, (XX,)
rm a

V(ro "“’rn_l)e (XO ""’Xn—l)=(I‘0 ,...,I‘n_l)

MD problem statement: Given a set on N atoms, find a particular set of n-tuples:
* n-tuple space I': exponential in n, O(N")
* n-tuple lists are dynamically constructed every MD step

e Many MD problems (e.g. bio-MD) only consider dynamic pairs n = 2 and static
lists of n > 2.

(a) n=2 (b) n=3 (c) n=4

o 00\ Oo
cu 0 0
|1_'(2)|=0(N2) |F(3)|—0(N3) |1_'(4)|—0(N4)

\
IT™I=N/ [Z(N -n)!]—O(N)

Ilustration of dynamic n-tuple (n=3)

Ranged-Limited n-Tuples

° ° ° _ o *(n) _
Atom interaction in many system are short-ranged: """ = {(ro ,,,,,rn_1)| Fegt <7 ut_n}

* Only atoms within a certain cutoff distance are considered for force
computation

 The range-limited n-tuple set I'"™:[["®[=0(V) A2
e Exhaustive search I''™ is intractable O(N")

Cell method: find a super set S™ (i.e. force set) that tightly bounds I'"**:
* Prune I'™ to obtain S, then exhaustive search I'"®

How to obtain S efficiently?

Pair-Space Pruning: Cell Method

Cell method: Divide system into small non-overlapping cells of size = r,

ut-n:

* For each atom in a cell, all of its range-limited pairs are guaranteed be
within the nearest-neighbor cells

* By looping over all cells in the system, all range-limited pairs are
enumerated

* Reduce search complexity from O(N?) = O(N)

Conventional cell methods

@ o |.roelg . (b) r®
o II D O \ ;
"\\ e 1
o ? rcut i [+ :" 1
\‘\O (+] /,'o_] | C
O Se el _ - -
S@ ~ ® _4-"7
w © © Ol.--""

Cell data structure: Loop over all cells in the USC Viterbi
c(q) = {r;Ir;is in the volume} system Q2 e f P
School of Engineering

Related Works: Pair Computation Case

Cell methods for pair computation has been used extensively:
* FS and HS: ““Owner-compute’ rule for pair computation (Rappaport, 1988)
* Force decomposition: Non ‘““owner-compute’ rule approach (Plimpton, 1995)
e Hybrid spatial & force decomposition (Kale et al., 2002), (Snir, 2004)
* Neutral-territory method: optimal for low latency networks (Shaw, 2005)

 Eighth-shell (ES) method: Best available cell-based (Bower et al., 2006) (Hess et al., 2008’

(a) (b) (c)

R

y

Full-Shell (FS) Method Half-Shell (HS) Method Eighth-Shell (ES) Method
(Rappaport, 1988) (Rappaport, 1988) (Bower et al., 2006)
Redundancy removal Footprint

reduction

Issue: Limited Study on n-Tuple Computation

Interaction for n > 2 is complicated. Only Range-limited property of MD
simple FS is trivial in term of
correctness: (IS NN P
* Redundant searches SRR A

\N'/ \\
>*- _7
/|\ ,

/ \

/ {A‘\

 Large cell footprint =» large import
volume in parallel runs

'
\
\
/7
N
7| N\
N\,
1 A
N
N I 7
/7
/

\

1

)

1,
\

|

—-

L2 s T
’

]

1

1,

AN N
N \

1

I

/|
N\
-k V.
N\
N\
N

* Very low performance: not feasible for
large-scale and/or long-time simulation

)
Pl |
1
N N
2\ 4

FSforn=3

i\

Research question:
How can we generalize the computation-redundancy removal in the HS
scheme and the footprint reduction in the ES scheme developed for pair
computation into arbitrary dynamic n-tuple computations?

Computation-Pattern Algebraic Framework

A general n-tuple computation formulation:
* Formulate computation in terms of vector algebra

e Allow mathematically rigorous proofs of correctness and optimality

Unified description of n-tuple computation within uniform cell pattern
(UCP) framework:

e Generalize FS, HS, ES in the case of n = 2 in to general n

Uniform Cell-Pattern (UCP) Framework

Framework to enumerate set of n-tuples S™ (i.e. force set) :
* Abstraction of n-tuples in terms of cell list

* Generate n-tuples from ‘“‘pattern” and *‘cell data”

Set of (g, ry, 1) pY = (Vo.V,.¥2)
q+vV, 0 (4TV: © Vi AL »
5 oT% o -
qt+v, .’
g
O rio 0
Triplets contained Computation path Computation
in 3 cells forn=3 pattern for n =3
S.n(e(q), ") = S™ = UCP(Q,¥™)

Vp=(v,,....V,_) p n
b v)= } = U Scell(c(q)’qj())

Vk€{0,....,n-1}:Vr, Ec(q+v,) Ve(q)EQ

UCP Force-Set Generation

e Apply a pattern to all cells in the system to obtain force set S

 Correctness of UCP: S”™ must contain all range-limited tuples: " < S®
e Unnecessary tuples must be filtered out

* Goal: find a pattern that minimizes the filtering process

(@A) o /_o.--\p ~\\(~b)
o I,, ‘D O \\‘ o) ~~~
o —© i © 1
o \‘ cut j O I’
'\? O ’/" o_ ‘
[+ o o
o 9 © ol.---""] '

Parallel MD

Spatial decomposition:
e Partition N atoms in the system into P equal volumes.
* Each volume is assigned to a different processor

e Import volume: data from nearest-neighbor process (blue regions) need to be
imported.

.

Atoms are assigned to Data of required cells (yellow cells)
different processors are imported from the other processors

UCP-MD Optimization Problem

UCP allow us to formulate n-tuple MD problem mathematically:

PROBLEM (OPTIMAL UCP-MD). Given a cell domain £, find a set of
n-complete computation patterns {¥" ™)} for all n € {2,...,n,, } such

that each W™ satisfies the following:

Search-space minimization: Import-volume minimization:
(n) _ : S 1P(n) 111(11) _ . I qj(n) e
P = argmin 11 (€,) = argmin (c,)
w VeeQ w VeeQ

Translation Invariance

We have proved that translation preserves the resulting force set:

* Translation of the origin of the computation path

e Manipulate paths to reduce footprint

P® = (V¥

HS pattern for n =2

¢ A=(0,1)

»

PO+A = (Vy+A v +A,V,+A)

fen

s

ES pattern for n =2

Reflection Invariance

Reflecting the Newton’s third law:

* Forces from rn-tuple is undirectional: (r,r,,....,r, ;) produces the same forces
as (rn_l,rn_z,...,ro)

e Paths can be ““collapsed” if they are in the opposite direction of each other

Piny> = (V2.V},V)) pP© =(vy,v,,V,)

/

FS pattern for n =2 HS pattern for n =2

Shift-Collapse (SC) Algorithm

Optimal computation pattern created by the following 3 phase:

1. Generate FS pattern
2. Perform octant-compression (OC) shift

3. Collapse all equivalent paths

I I N N T N N .

-
"

-
¢‘T

THEOREM 2. Given an arbitrary cell domain ©, a computation pattern WY
generated from the shift-collapse algorithm is n-complete.

Full-Shell Pattern Generation

Full-shell generation algorithm:
1. (n-1)-fold nested loop
2. V=V, X 1;forall k=[0,n-1] and v, = (0,0)
3. Add (vy,¥qs...5v,.1) to the output pattern

Generation of Wyt n =3 Generation of Wgg: n =4

0/81 0/729

Octant-Compression Shift and Reflective Collapse

OC-shift algorithm:
1. For each path p = (v,,v,,...,v,;) in a pattern ¥
2. find A_; =min ($); Vk={0,...,n-1}:v, € p; f ={x,y,2}
3. Pnew=P-Apnin

R-Collapse algorithm:

1. For each pair of paths, remove one if they are reflective to each other

Search-Cost Optimization

Search cost of UCP is the cost of filtering necessary from S

* We have proved that search-cost is proportional to size of pattern W)
e Search cost of SC is about half that of FS

e for n = 2, search cost of SC is the same as search cost of HS and ES

2x10’

1x10’

Number of triplets

——SC-MD
<+ FS-MD

Actual search-cost
n = 3 /

5x10° 1x10%

1.5x10%

2x10%

Number of atoms

Analytical search cost:

* S pattern

wi|=27"

e SC pattern

1

n+l
I))+27

- (27" - 27{7
2
= %27"-1 +0(27"%)

n+l }_1
2

(n)
‘qjsc

Import-Volume Optimization

e OC shift reduces cell footprint to the most compact configuration

7x10°
° » o ——SC-MD
W I P P I R 6x10° - | —=—Fs.MD
T T T
/’ \\ Ve] |
% U SR - é‘moﬁ
I IS AR LA BENOSAN BEK N 2L - -
‘\\ Vs T‘\ x -:*\ /71:6\\ /(1 N -g 3X106 |
LR R R o
/7 N 4 Y 4 \ p A Y - E
4","’?@1\! *3 Nl 2 V(wFS) ~ V(wSC) / \ ~ 2x10°}
7| ". l’\ : /‘\ I A Y '. “
7 &7 e \\ 2N I \ 1x10° |
/4 \ / \
) \ ’ \
4 \ 3 34 \ T e
), \(l+(2n-1 H(n-1))°/ \ 0 210° 4x10° 610
/4 \(()) (()) V] \ Resident atoms
7 \) [
U4 \ .
/ \ A \ Pair
l’ \ A ‘\ FS
\ A
2 | > |

ES

— l — SC generalizes ES

Performance Benchmark

Compare actual runtime of three codes for dynamic n-tuples, (n = 2, 3):
e SC-MD: shift-collapse MD code

e FS-MD: Simple full-shell MD code

e Hybrid-MD: production code using full-shell (z = 2) + dynamic Verlet-
neighbor list (z = 3) only if 7., > 1y 3 [SCO1 Best paper]

BlueGene/Q-ANL USC-HPCC
Processor IBM PowerPC A2 Intel Xeon X5650
Clock Speed 1.6 GHz 2.66 GHz
Number of nodes 36,864 256
Cores per node 16 12
Memory per node 32 GB 24 GB
Network 3D torus Myrinet 10G

Specification of test platforms

Fine-Grain Parallelism

Runtime comparison on 48 Intel-Xeon nodes and 64 BlueGene/QQ nodes
e SC-MD is always faster than FS-MD
e At smallest grain, SC-MD is 9.7- and 5.1-fold speedups over hybrid code

* Crossover of optimal algorithm from SC-MD to Hybrid MD at larger
granularity (i.e. N/P > 2,095 on Intel Xeon and N/P > 425)

48 Intel Xeon nodes@USC-HPCC 64 BlueGene/Q nodes@ANL
25 : : : — __60 : . . .

g ——SC-MD _-7(a) g ——SC-MD /// (b)
S 20 ff - FS-MD e = 50} e FS-MD , i
[0) —=—Hybrid-MD [0) —=—Hybrid-MD
@ % 40]
A 15 o 425
= = 30| i
© 10 @
o o 20 L i
@ @
£ 5 £
€ g 10r 1
> >
X | 4

1 L 1 L 0 L 1 1 L
0 500 1000 1500 2000 2500 0 100 200 300 400 500
Number of atoms per core Number of atoms per core

Strong Scalability

Strong-scaling benchmarks on 64 Intel-Xeon and 512 BlueGene/(QQ nodes:

* SC-MD shows excellent strong scalability on both platforms: 0.90 and (.92
parallel efficiencies

* Scalability of FS-MD and Hybrid MD degrade severely after 8 nodes on
Xeon cluster and 16 nodes on BlueGene/Q

Strong-scaling speedup

1-64 Intel Xeon nodes@USC-HPCC

10° ——————rrry ——————rr
| ——SC-MD (a).
| ——Hybrid-MD P
| —=—FS-MD
--------- Ideal
10" |
Fixed N =7.7X10°
10° e
10" 102

Number of cores

10°

Strong-scaling speedup

1-512 BlueGene/(Q nodes@ANL

| ——SC-MD (b)
| ——Hybrid-MD 7]
| ——FS-MD
102- """"" Ideal
10" |
Fixed N = 8.8 X10°;
10° S S

10"

102 10° 10%
Number of cores

