
Shift-Collapse Algorithm

Manaschai Kunaseth
Collaboratory for Advanced Computing & Simulations

Department of Computer Science
University of Southern California

&
National naotechnology Center (NANOTEC), Thiland

Email: manaschai@nanotec.or.th

M. Kunaseth et al., ACM/IEEE supercomputing, SC13

Dynamic n-Tuple Computation
Force computation of n-body potential term requires n-tuple of atomic positions:

(r0,r1,...,rn-1)

|G(n)|=N!/[2(N-n)!]=O(Nn)

|G(2)|=O(N2) |G(3)|=O(N3) |G(4)|=O(N4)

MD problem statement: Given a set on N atoms, find a particular set of n-tuples:
• n-tuple space G: exponential in n, O(Nn)
• n-tuple lists are dynamically constructed every MD step
• Many MD problems (e.g. bio-MD) only consider dynamic pairs n = 2 and static

lists of n > 2.

fi
(n) = −

∂
∂xi

Φn (x0,...,xn−1)
∀(r0 ,...,rn−1)∈Γ

(n)
∑

(x0 ,...,xn−1)=(r0 ,...,rn−1)

Illustration of dynamic n-tuple (n=3)

Ranged-Limited n-Tuples
Atom interaction in many system are short-ranged:

• Only atoms within a certain cutoff distance are considered for force
computation

• The range-limited n-tuple set Γ*(n):|Γ*(n)|=O(N)
• Exhaustive search Γ*(n) is intractable

Γ*(n) ⊆ S(n)

Cell method: find a super set S(n) (i.e. force set) that tightly bounds Γ*(n):
• Prune Γ(n) to obtain S(n), then exhaustive search Γ*(n)

Γ*(n) = (r0,...,rn−1) rk,k+1 < rcut−n{ }

O(Nn)O(N)

O(Nn)O(N) O(N)

How to obtain S(n) efficiently?

Pair-Space Pruning: Cell Method
Cell method: Divide system into small non-overlapping cells of size ≥ rcut-n:

• For each atom in a cell, all of its range-limited pairs are guaranteed be
within the nearest-neighbor cells

• By looping over all cells in the system, all range-limited pairs are
enumerated

• Reduce search complexity from O(N2) è O(N)

Cell data structure:
c(q) = {ri |ri is in the volume}

Loop over all cells in the
system Ω

Γ(2)

Conventional cell methods

S(2)

Γ*(2)

Related Works: Pair Computation Case
Cell methods for pair computation has been used extensively:

• FS and HS: “Owner-compute” rule for pair computation (Rappaport, 1988)

• Force decomposition: Non “owner-compute” rule approach (Plimpton, 1995)

• Hybrid spatial & force decomposition (Kale et al., 2002), (Snir, 2004)

• Neutral-territory method: optimal for low latency networks (Shaw, 2005)

• Eighth-shell (ES) method: Best available cell-based (Bower et al., 2006),(Hess et al., 2008)

Full-Shell (FS) Method
(Rappaport, 1988)

Half-Shell (HS) Method
(Rappaport, 1988)

Eighth-Shell (ES) Method
(Bower et al., 2006)

Redundancy removal Footprint
reduction

Issue: Limited Study on n-Tuple Computation
Interaction for n > 2 is complicated. Only

simple FS is trivial in term of
correctness:
• Redundant searches
• Large cell footprint è large import

volume in parallel runs
• Very low performance: not feasible for

large-scale and/or long-time simulation
FS for n = 3

Range-limited property of MD

Research question:
How can we generalize the computation-redundancy removal in the HS
scheme and the footprint reduction in the ES scheme developed for pair

computation into arbitrary dynamic n-tuple computations?

Computation-Pattern Algebraic Framework
A general n-tuple computation formulation:

• Formulate computation in terms of vector algebra
• Allow mathematically rigorous proofs of correctness and optimality

Unified description of n-tuple computation within uniform cell pattern
(UCP) framework:

• Generalize FS, HS, ES in the case of n = 2 in to general n

Uniform Cell-Pattern (UCP) Framework
Framework to enumerate set of n-tuples S(n) (i.e. force set) :

• Abstraction of n-tuples in terms of cell list
• Generate n-tuples from “pattern” and “cell data”

v0

v1 v2

p(3) = (v0,v1,v2)

Computation path
for n = 3

Triplets contained
in 3 cells

Computation
pattern for n = 3

Y(3)

S(n) =UCP(Ω,Ψ (n))
= Scell (c(q),Ψ

(n))
∀c(q)∈Ω

Scell (c(q),Ψ
(n)) =

(r0,...,rn−1)
∀p = (v0,...,vn−1)∈ Ψ (n)

∀k ∈ {0,...,n−1} :∀rk ∈ c(q+ vk)

%
&
'

('

)
*
'

+'

Y(n) = {p(n)} Set of (r0, r1, r2)

UCP Force-Set Generation
• Apply a pattern to all cells in the system to obtain force set S(n)

• Correctness of UCP: S(n) must contain all range-limited tuples: Γ*(n) Í S(n)

• Unnecessary tuples must be filtered out
• Goal: find a pattern that minimizes the filtering process

Parallel MD
Spatial decomposition:
• Partition N atoms in the system into P equal volumes.
• Each volume is assigned to a different processor
• Import volume: data from nearest-neighbor process (blue regions) need to be

imported.

N atoms

Ω
Data of required cells (yellow cells)

are imported from the other processors
Atoms are assigned to
different processors

UCP-MD Optimization Problem
UCP allow us to formulate n-tuple MD problem mathematically:

PROBLEM (OPTIMAL UCP-MD). Given a cell domain W, find a set of
n-complete computation patterns {Y*(n)} for all n Î {2,…,nmax} such
that each Y*(n) satisfies the following:

Ψ*(n) = argmin
Ψ(n)

Scell (c,Ψ
(n))

∀c∈Ω
∑

&

'
(

)

*
+ Ψ*(n) = argmin

Ψ(n)
Π(c,Ψ (n))

∀c∈Ω
 −Ω

'

(
)

*

+
,

Search-space minimization: Import-volume minimization:

Translation Invariance

p(3)+D = (v0+D,v1+D,v2+D) p(3) = (v0,v1,v2)

HS pattern for n = 2 ES pattern for n = 2

Shift

D = (0,1)

We have proved that translation preserves the resulting force set:
• Translation of the origin of the computation path
• Manipulate paths to reduce footprint

Reflection Invariance

Collapse

Reflecting the Newton’s third law:
• Forces from n-tuple is undirectional: (r0,r1,...,rn-1) produces the same forces

as (rn-1,rn-2,...,r0)
• Paths can be “collapsed” if they are in the opposite direction of each other

FS pattern for n = 2 HS pattern for n = 2

pinv
(3) = (v2,v1,v0)

p (3) = (v0,v1,v2)

p (3) = (v0,v1,v2)

Shift-Collapse (SC) Algorithm
Optimal computation pattern created by the following 3 phase:

1. Generate FS pattern
2. Perform octant-compression (OC) shift
3. Collapse all equivalent paths

THEOREM 2. Given an arbitrary cell domain W, a computation pattern Y(n)
SC

generated from the shift-collapse algorithm is n-complete.

Full-Shell Pattern Generation
Full-shell generation algorithm:

1. (n-1)-fold nested loop
2. vk+1 = vk ± 1; for all k = [0, n-1] and v0 = (0,0)
3. Add (v0,v1,…,vn-1) to the output pattern

Generation of YFS: n = 3 Generation of YFS: n = 4

Octant-Compression Shift and Reflective Collapse
OC-shift algorithm:

1. For each path p = (v0,v1,…,vn-1) in a pattern Y(n)

2. find Δmin = min (vβk); "k = {0,…,n-1}:vk Î p; β = {x, y, z}
3. pnew = p - Δmin

R-Collapse algorithm:
1. For each pair of paths, remove one if they are reflective to each other

Search-Cost Optimization
Search cost of UCP is the cost of filtering necessary from S(n)

• We have proved that search-cost is proportional to size of pattern |Ψ(n)|
• Search cost of SC is about half that of FS
• for n = 2, search cost of SC is the same as search cost of HS and ES

:

ΨSC
(n) =

1
2
(27n−1 − 27

n+1
2

#
$#

%
&%
−1
)+ 27

n+1
2

#
$#

%
&%
−1

=
1
2
27n−1 +O(27n/2)

ΨFS
(n) = 27n−1

Analytical search cost:
• FS pattern

• SC pattern

Actual search-cost
n = 3

Import-Volume Optimization
• OC shift reduces cell footprint to the most compact configuration

(l+(n-1))3(l+(2n-1))3

1
2
V (ωFS)>V (ωSC)

SC generalizes ES

Pair
FS

ES

Performance Benchmark
Compare actual runtime of three codes for dynamic n-tuples, (n = 2, 3):

• SC-MD: shift-collapse MD code
• FS-MD: Simple full-shell MD code
• Hybrid-MD: production code using full-shell (n = 2) + dynamic Verlet-

neighbor list (n = 3) only if rcut-2 > rcut-3 [SC01 Best paper]

Specification of test platforms

Fine-Grain Parallelism
Runtime comparison on 48 Intel-Xeon nodes and 64 BlueGene/Q nodes

• SC-MD is always faster than FS-MD
• At smallest grain, SC-MD is 9.7- and 5.1-fold speedups over hybrid code
• Crossover of optimal algorithm from SC-MD to Hybrid MD at larger

granularity (i.e. N/P > 2,095 on Intel Xeon and N/P > 425)

:
48 Intel Xeon nodes@USC-HPCC 64 BlueGene/Q nodes@ANL

Strong Scalability
Strong-scaling benchmarks on 64 Intel-Xeon and 512 BlueGene/Q nodes:

• SC-MD shows excellent strong scalability on both platforms: 0.90 and 0.92
parallel efficiencies

• Scalability of FS-MD and Hybrid MD degrade severely after 8 nodes on
Xeon cluster and 16 nodes on BlueGene/Q

Fixed N = 7.7×105

1-64 Intel Xeon nodes@USC-HPCC 1-512 BlueGene/Q nodes@ANL

Fixed N = 8.8×105

