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Numerical procedures for generating ultrasoft pseudopotentials are described in detail.
Atomic radial pseudo-wave-functions are constructed so as to coincide with radial all-electron
wave functions beyond a chosen cutoff radius with continuous derivatives up to the fourth
order, which guarantees numerical stability in electronic-structure calculations for materials.
We present a method for solving the radial generalized eigenequation with the ultrasoft
pseudopotentials, which is required to test their transferability.

§1. Introduction

Ab initio molecular-dynamics (MD) simulations are a powerful approach to in-
vestigate the electronic and atomic structures of condensed matters at finite tem-
perature, and have been applied to various kinds of high-temperature materials,
such as liquid metals, liquid semiconductors, and superionic conductors. Interatomic
forces are computed quantum mechanically?)>?) in the framework of the density func-
tional theory (DFT)3):%) to accurately describe chemical reactions. In this approach,
the electronic structure is calculated within the Born-Oppenheimer approximation,
which separates ionic and electron degrees-of-freedom, and the electron-ion interac-
tion is calculated using the pseudopotential method.?%)

In the applications of ab initio MD simulations, the plane-wave (PW) basis has
been used most widely,”)"13) because the formulation is simple and the atomic forces
are easily calculated. However, implementation of the PW algorithm on parallel
computers involves global operations, and hence its scalability becomes problematic
on massively parallel computers. To overcome this drawback of the PW algorithm,
the real-space (RS) algorithm with a high-order finite difference method to calculate
derivatives such as the kinetic-energy operator has been proposed and applied.14-17)
In this RS algorithm, all operations are inherently short-ranged, resulting in superior
scalability on parallel computers.

In both PW and RS algorithms, the smoothness of the pseudopotentials is crucial
in determining the amount of computations. Vanderbilt!® has proposed a method to
construct soft pseudopotentials, so-called ultrasoft pseudopotentials, which reduce
computational costs considerably, compared with the usual norm-conserving pseu-
dopotentials.®) Also, his method allows transferability of the pseudopotentials to be
improved systematically, although a generalized eigenvalue problem has to be solved.
The ultrasoft pseudopotentials have been applied to first-row and transition-metal
systems, which have been hard to be treated by the PW and RS algorithms so far.

In this paper, we describe numerical procedures for generating the ultrasoft pseu-
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dopotentials. Kresse and Hafner!?) have proposed an efficient method to generate
the ultrasoft pseudopotentials. However, the atomic radial pseudo-wave-functions
have continuous derivatives only up to the second order, while they coincide with
the radial all-electron wave functions beyond a chosen cutoff radius. The disconti-
nuity of the third derivatives causes numerical instability which is encountered in
obtaining the physical quantities associated with the first derivative of the total en-
ergy, such as atomic forces and internal stresses. We generalize their method so as
to construct the radial pseudo-wave-functions with continuous derivatives up to the
fourth order, which guarantees numerical stability. Also, we describe a numerical
technique to solve the radial generalized eigenequation with the ultrasoft pseudopo-
tentials in detail. Since the examination of the eigenvalues and eigen functions for
various electron configurations, which are different from that used to obtain the
pseudopotentials, is necessary to test the transferability of the pseudopotentials, it
is important to establish a numerical solver for the radial generalized eigenequation.

§2. Ultrasoft pseudopotentials

2.1. Input parameters

For each set of quantum numbers (n, ), where n and [ are the principle and
the angular momentum quantum numbers, respectively, for electrons in a specified
atom, we define four input parameters:

(1) n; is the number of reference energies to construct pseudopotentials.
(2) ;5 is the jth reference energy (j = 1,--- ,m).
(3) r¢ is a cutoff radius for the ultrasoft (US) pseudo-wave-functions Pyg ;7).

(4) r, is a cutoff radius for the norm-conserving (NC) pseudo-wave-functions Pxc;(r)-

The explicit definitions for Pyg;(r) and Pyc,;(r) are given in the subsections 2.5
and 2.6, respectively. Hereafter the principle quantum number n is omitted for
simplicity.

2.2. Radial all-electron wave functions

We assume that the all-electron (AE) potential Vag(r), the eigenvalues 550),

. and the radial AE wave functions (eigenfunctions) P/gg’l(r) are obtained from self-
consistent AE atomic calculations. For each quantum number [ and each reference
energy €5, the radial AE wave function Pag ;(r) is obtained by solving the following
radial Scrodinger equation:

( ¢ Ui+

dr? r2

+ VAE(T)) Psgj(r) = €15 Pagyi(r), (2.1)

up to R = max(rg,r};) from the origin (r = 0). Note that ¢j; is not required to be
the eigenvalue Ego). For heavy atoms, the relativistic effects become important, and
one may need to solve the scalar relativistic Scrodinger equation given by

dr? M(ry dr \dr r

%’ d? o? dV(r) (d 1
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+ L m0) (Ve - 2) | Pamg) = 0, 22)
where
M(r) =1+ a*(e; — Vag(r) ), (2.3)

with the fine structure constant o related to the speed of light according to ¢ = 1/«

Usually, it is enough to set n; = 1 or 2. Although ¢; ; are erbitrary in principle,
it is convenient to set £ j—1 = 5? (the eigenvalue). If n; = 2, & j=9 should be different
from ¢; j—; as far as possible. :

2.3. False-position method

For later use, we describe a method, so-called false-position method, to search
solutions {zo} of an equation f(x) = 0 for an arbitrary function f(z). We call {z¢}
zero points of f(x). The procedure consists of the following steps:

1. Find two points z; and z that give a relation f(z;)f(zs) < 0. At least, one
zero point xo must be between z; and z;. We assume that f(z) is smooth
between z1 and 29, and that there is only one zero point in this range of .

f(ml) (.’L’ —lp )
flag) = fl@) 2~ "V

2. Calculate f(z3) with z3 =21 — '

3. Terminate if f(z3) < e.

4. If f(z1)f(x3) <0 (or > 0), set zo = z3 (or z1 = z3). Return to step 2.

2.4. Condition for spherical Bessel functions

Kresse and Hafner!?) have proposed to .define the pseudo-wave-functions as a
sum of spherical Bessel functions j;(g;7), as will be given in Egs. (2.9) and (2.12).
Due to a condition that the logarithmic derivatives of the pseudo-wave-functions
should coincide with those of the respective AE wave functions at the cutoff radii,
g; should satisfy the following equation:

d: (%PAE,J;‘(T)) — 14— (ad;jt(x)) ’ (2.4)

Ppg gi(re) — Ji(z)

!

where z = g;r. (1. = ro or 1),

:c(()i—l) L < :c(()i), where xéi) is the ith zero point of j;(z). The value of the left hand

side of Eq. (2.4) is determined numerically. Since the right hand side is transformed
into

). “Ome has to find the solution z in the range of

2 (L) =12 (i@ i) @9
— 4 Ji-1(z) (2.6)

Nt
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the problem to solve Eq. (2.4) becomes a problem to search the zero point of the
following function f(z):

o \
3

_ ji-1(z) T d . _
f@%=4+fﬁ@>—FMw“dﬁ—Rmmm\ —0. @7

The zero point z can be found by the false position method described in the subsec-
tion 2.3. Finally, ¢; is obtained as

g = =, (2.8)

Te
The zero points xéi) of ji(z) are determined analytically or numerically.

2.5. Ultrasoft pseudo-wave-functions

The US pseudo-wave-functions Pyg ;;(r) are defined by the sum of two spherical
Bessel functions as

2
Pysy;(r) = > eirji(gir)- (2.9)
i=1

o) and oy are determined by the conditions of the continuous first two derivatives
of Pyg(r) at rg, which are given by

(4 ) N PN |
\EPAE,U(T) . == Zai E(rjl(qir))J _ (2.10)
e i=1 T=Tel
d? 2 42
: — ) F y s \
<dr2 PR, (T))TZT | = Z: a; {er (T]l((]ﬂ)}} . (2.11)

By solving these simultaneous linear equations, a1 and o are uniquely determined.

2.6. Norm-conserving pseudo-wave-functions

The NC pseudo-wave-functions Py ;(r) are defined by the sum of three spher-
ical Bessel functions as

3
Pncyj(r) = airji(gir)- (2.12)
=1

In addition to the conditions of the continuous first two derivatives of Pncy;(r) at
r!, given by

(%PAE,U(T)) = iai {%(sz(%r))} ; (2.13)

r=ry) i=1 B=T;
d? \ 2o ]
——RWJWQ - a[——meﬂy | (2.14)
<dT2 ’ r=ry &=l Fldr? JT:T?!
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the condition of the norm conservation has to be satisfied:

o T
/ dr|Pag,;(r))* = / dr|Pxc,;(r)?
0 0

3 3 ’
- Ezaiak/ drrji(gir)u(qer)

.
i=1 k=1 0

3 3
=Y ) cionSi(gi g Th)- (2.15)

=1 k=1

These three conditions determine the three parameters o, a9, and az. In practical
procedures, one searches a3 as a zero point of the following function:

. ol
fla) =33 wansigar) = [ driPazy(IF =0, (216)

i=1 k=1
where a; and oy are determined from Eqgs. (2.13) and (2.14) for a given as.

2.7. Corrections to continuous derivatives up to forth order

The US and NC pseudo-wave-functions defined by Egs. (2.9) and (2.12) have the
continuous derivatives only up to the second order, which causes numerical instability
in the self-consistent calculations. In this section, we propose a method to construct
the pseudo-wave-functions that have the continuous derivatives up to the fouth order,
while keeping the numerical efficiency. We add two terms to the original pseudo-
wave-functions (Egs. (2.9) and (2.12)) as

Ppsyi(r) = > airii(air) + ans1 Fij(r) + antaFi;(r), (2.17)
i=1

where n = 2 and 3 for PS=US and PS=NC, respectively. Fj;(r) and f}j(r) are given

[ sin®(Qr) exp (= (re—1)) = f(g(r) (7o)
Fii(r) = < = A 2.18
5(r) Pl (cq + cor? + car® + cer5 + cgr®) = Z eI (r < Fc)<, )
\ =0
[ sin’(Qr) exp (= (re— 7)) = f(r)g(r) (r > 7o)
Fii(r) = ¢ 4 2.19)
]( ) Tl_H(d() + dor? + dyrt + der® + dg?“g) = Z d2n7‘[+1+2n (r < 1)
\ n=0

The parameter Q is set to be @ = 7/r., which guarantees that the derivatives of
Fi;(r) and Flj(r) vanish at r. up to the second and third orders, respectively.
and 7, are arbitrary parameters. By examining the dependence of the functional
form on these parameters, we have found that a smooth function can be obtained
by v = 10.0/r. and 7. = 0.1r.. The parameters {cz,} and {d2n}, which give Fj;(r)
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and F‘lj(r), respectively, for r < 7., are uniquely determined by the conditions of the
continuous derivatives up to the fourth order at r = 7. 3
At r = r,, the zeroth, first, and second derivatives of Fj;(r) and F;(r) vanish as

follows:
Flj(rc) = 0, Fl]( Te) = 0,
(dmr)) _ . (dFm )) _
&/, ’ r ) T (2.20)
(d%(r)) _ 0 (dzﬁm) _
a2 ), ’ a2 ) '

Therefore, the conditions of the first two derivatives for Pyg () (Egs. (2.10) and
(2.11)) and Pxc,;(r) (Egs. (2.13) and (2.14)) are held, which give o; and oy in the
same way as in the subsections 2.5 and 2.6.

From the third and fourth derivatives of Fj;(r) and FIJ( T} at r = r¢, which are

given by
(LF(r) = —6Q%, £, = o,
dr3  J._, dr
&)\ SR\ —
' U 3 y\r 4
= =24 = 24
( d'f'4 )T:T Q ’Y’ ( dT4 ) Q 7
¢ T=T¢
any1 and g2 are determined by the conditions of the continuous third and fourth
derivatives:
d3 3 ‘
pre 3PAE 15 (r) = Zaz d T3 T]l(QzT)) - 6Q%an+1, (2.22)
T=T¢l =1 T=T¢
d - d* " 4
(mPAE,U (T)) => o [m(rjl(qir))] —24Q°yan+1+24Q  ant2. (2.23)
T=T¢l =1 T=T¢l
The norm-conserving condition for Pxc,;(r) is given by
Yl 9 Tex 9
/ dr|Pag;(r)|* = /o dr|Pnc,;(r)]
0
Tel 3 =
= /0 dr| Y airii(gir) + aaFy(r) + asFy(r)
i=1
5 5
= Zzalakszk cl)’ (224)

=1 k=1

where, for i < 3 and k < 3,

/

Tcl . A
st (rhy) = /o drr?j1(gim)ji(gkr),
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)

sig(rly) = / ) drrji(gir) Fij(r),
0"21 -

sl = [ drrian) o)
Oriz

() = /0 drFy(r) Fyy (1),

LT .
she(rly) = /f) ar Fy;(r) Fij(r),

Tl ~ .
sky(ry) = /0 arfy;(r) Foy(r).

Practical procedures are similar to those in the subsection 2.6, i.e., a3 is determined
by the false-position method as a zero point of the following function:

. T
flos) =30 aionsly(rly) - / dr|Pag;(r)|2 = 0, (2.25)

=1 k=1

where o and ay are determined from Eqgs. (2.13) and (2.14), respectively, and oy
and a3 are determined from Egs. (2.22) and (2.23), respectively, for a given aj.

2.8. Local pseudopotential Vipcar(r)

We propose the local pseudopotential Vioca1(r) in the following form

Vooa0) = { o) (05 et 229
where ]
p(r) = azar™. (2.27)
n=2

Vo(< 0) gives the value of Vigcal(r) at 7 = 0. Tiocq) is a cutoff radius beyond which
Viocal(r) coincides with the AE potential Vag(r). The coefficients {az,} are deter-
mined by the conditions of the continuous derivatives at r = rigca).

2.9. Ultrasoft pseudopotential operators

In this section, we describe several quantities, which are necessary to characterize
the ultrasoft pseudopotentials. These quantities are derived from the USPP and
NCPP pseudo-wave-functions and the local potential.

The local functions x;;(r) are defined as

Ixi5) = (e17 = T — Viocat) | Pus,i;) (2.28)
2 I1+1)
(53 = —(71 gy = Vlocal(r)) Pysgi(r) (r <ra)

(2.29)

0 (T‘ > Tcl)a
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where T is the kinetic energy operator.
The basis functions [;;(r) are defined as

) =3 (B:7), ). (2.30)

where the elements of the matrix B are given by
By jk = (Pus,ij|xik) , (2.31)
= [ Pusuyriantriar. (232

The augmentation functions Qy ;x(r) are defined as
Q& (r) = Pxcyj(r)Pncgk(r) — Pys;(r) Pusk(r). (2.33)
The augmentation charges g j; are defined as

@ik = (Pxc,j|Pyck) — (PusjlPus k) (2.34)
Tel

= A thj('l‘)d’l‘. (235)

Finally, the pseudopotential operator Vi and overlap operator S are defined,
respectively, as

VL = Z Z Dy jk|Bi;)(Bix)s (2.36)
T ik .
S=1+4>"3 aklB8i;)(Bul; (2.37)
Tk

where Dy jx = By jk + €ikqi,jk-
§3. Generalized eigenequation

By the construction, the US pseudo-wave-function Pyg;(r) satisfies the follow-
ing integro-differential equation:

(T + Viocal(r) + VNL)PUS,U‘(T) = £1;8 Pys 1(r). (3.1)

For the reference electron configuration used in constructing the pseudopotentials,
this generalized eigenequation Eq. (3.1) has the same eigenvalues as the AE eigen-

values g;; = 8(0), and the corresponding eigenfunctions coincide with the AE eigen-
J I g e1g g

functions ng,l(r) outside the cutoff radius 7.

The examination of the eigenvalues and eigenfunctions obtained by solving Eq.
(3.1) for different electron configurations from the reference configuration is impor-
tant to test the transferability of the pseudopotentials. By substituting Egs. (2.36)




(2.30)

(2.31)
(2.32)

(2.33)

(2.34)
(2.35)

lefined,

(2.36)

(2.37)
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and (2.37) for Eq. (3.1), we have

d2 (l+1
(ﬁaﬁ + —(?—) + Vigcal(r) + Z Dy ji|Bi;)(Bik| | Pusm(r)
o

=éenl (1 +> ql,jklﬁlj)(ﬂlkl)Pus,nz(r)» 3.2)

jk

d2pP r (l+1
_ Zi’znl( ) + ( ( 2 ) + Vlocal(r) - Enl) PUS*"I(T)

L2 Z (Dl,jk - 5nl‘1l,jk) |81;){Bik| Pus,mi) = 0. (3.3)
ik
By expressing the bra-ket in the explicit integral notation, Eq. (3.3) becomes

d2p r l+1
= [lei’;l( ) + ( ( 5 ) + Viocal(r) - Eﬂl) PUS’”I(T)

+ Z Bi;(r) (Dl,jk - 5lel,jk> JI/(; dr' B (r') Pus m(r') = 0. (3.4)
7

T oo THz D
To treat the rapidly oscillating functions near the origin, a log-scale coordinate z =
In7 is used to solve Eq. (3.4). By introducing a function Y;(r) as

Pysn(r) = r'/2Y(r), (3.5)

Eq. (3.4) becomes the following integro-differential eigenequation:

d?Y(z) = = s im '

4z T Ui@)¥i(z) + > Buj(@)u i i dz'Bi(z")Yi(2') =0,  (3.6)

jk 3 ‘\7

where . xv yx

1Y% 5

Ul(m) = |1+ 5 + (Vlocal(x) - Z':nl)r , (3-7)
uy ik = Dijk — €niqujk, (3.8)
Bii(z) = r3/2By; (). (3.9)

First, we solve Eq. (3.6) by an outward integration up to the classical turning
point x,, from small 7 near the origin. Using the solution W;(z) of the following
homogeneous differential equation:

d’>Wy(x)

-8 ) Witz) = o, (3.10)
and the solution wy;(z) of the following inhomogeneous equation:
d2wy;(z ~
~259) | gy @y ) = Byta), (311)
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0.6 ' J
0.4
D
0.0
< -02
=02
-
AT 0.0
= 02

-0.9 |
0 1 2 3

r(a.u.)

Fig. 1. USPP pseudo-wave-functions Pys,;(r) and AE wave functions Pag,;(r) for I = 0 (5s),
1 =1 (5p), and | = 2 (4d) electronic states of Ag. The dotted and solid lines show Pys,;(r) and
Pag,(r), respectively.

we suppose that the solution Y;(z) of the integro-differential eigenequation Eq. (3.6)
- is given by

Yi(z) = b Wi(z +Zal wyi(z (3.12)

where b and {a;} are coefficients to be determlned. By substituting Eq. (3.12) for
Eq. (3.6), we have

Z Blj(m){bzﬂz,jkwlk + Z(%‘ + Z Uz,jkﬁll,ki)ai} =0, (3.13)
J k i k

where

o ~ )
Wik = / Az B ()W) = / dr' T2 8 (P YWi(r), (3.14)
0

0

??')l,ki‘—‘/ dz’ B, (") wis (') =/ dr'r2 By (r')wyi (r'). (3.15)
0

0

Since ﬁlj(:c) # 0 and {---} =0, the following equation is derived:
Z dij + Z“lakwl ki)@i = —bZUleWuc (3.16)
1

From these simultaneous linear equations, the coefficients {a;} are obtained with
b = 1, which give the solution Yj(z) through Eq. (3.12).




0 (5s),
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(3.14)
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r(a.u.)

Fig. 2. Local functions xi;(r) for I =0 (5s), ! =1 (5p), and | = 2 (4d) electronic states of Ag.

To obtain the solution Y;(z) of Eq. (3.6) by an inward integration up to z, from
large T > T, it is enough to solve the homogeneous equation Eq. (3.10), because
Byj(z) = 0 in this region.

The logarithmic derivative defined as

1 1 dY;(z) 1
o (%) ... 010
is easily obtained by using the relation: '
dYi(z
(’?l(—)> =b Vi(zm) + @i vii(zm)- (3.18)
T T=Tm i

The eigenvalue is obtained by matching the logarithmic derivatives for the solutions
obtained by the outward and inward integrations at the classical turning point zpm.

Finally, the pseudo-wave-function Pysni(r) is obtained from Yj(r) using Eq.
(3.5), and is normalized as

(Pus,lPusm) + Y q1,ik(Pus.atlBij) (Bik| Pus,mt) = 1. (3.19)
ik

§4. Estimation of plane-wave cutoff energies

It is useful to estimate the plane-wave cutoff energies for the pseudo-wave-
functions and electron density in the calculations of condensed matters from the
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i Lo
30 1 2 3 4 5

r(a.u.)

Fig. 3. Basis functions (;;(r) for I =0 (5s), l = 1 (5p), and | = 2 (4d) electronic states of Ag.

atomic quantities. An error in the total energy associated with the cutoff energy
E.y for the pseudo-wave-functions is estimated as

Qmax _
AFEin 1 (Ecut) =/ dq | Pus,u(9)el?, (4.1)

where

Pysnilg) = \/% /0 ~dr Pysn(r) jilgr)er (4.2)

is the Fourier component of Pygpni(r). The cutoff energy Ecy has to be selected so
as to give a small error AFEy;p, ;.

The cutoff energy E3™ for the electron density is estimated from the Fourier
components of the augmentation functions @y jx(r):

Qrjr(a) = (0)° / " dr Quisr) jular) (=0, ,20). (4.3)

0

E35S has to be large enough to give a small QlL]k(q) for g = 1/ ESSS,

The logarithmic derivative of the USPP pseudo-wave-functions is given by

Gle,R) = (iln M) - (4.4)

cut

dr i




f Ag.

energy

(4.1)

(4.2)
cted so

Fourier

(4.3)

)
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6_ —
x 10"
3._ —
[=2
| |
1T 2 3 3

r(a.u.)

Fig. 4. Augmentation functions Q; ;x(r) for [ =0 (5s), I =1 (5p), and | = 2 (4d) electronic states
of Ag.

5 T T T
= i)
E ar - 1=2]]
= _
5
Sl ]
g
i
€3] L _
< 1 ____________
% ' ' 15 20

10
E o )
Fig. 5. Estimation of the error AFExyin (Ecut) for I = 0 (5s), Il = 1 (5p), and [ = 2 (4d) electronic
states of Ag.

The transferability of the pseudopotentials constructed is investigated by the com-
parison of the energy dependence of (;(¢, R) with that of the all-electron (ag,(c, R)
for a chosen distance R.
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T T T 1
=0+

,,jk(q)
[\®]
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¥ 1
0 100 200 300
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Fig. 6. Fourier components Q[’jjk(q) of the augmentation functions Q jx(r) for I =0 (5s), l =1
(5p), and [ = 2 (4d) electronic states of Ag.

§5. Ultrasoft pseudopotentials for Ag

As described in the subsection 2.9, the ultrasoft pseudopotentials consist of the
pseudopotential operator Vi, (Eq. (2.36)) and the overlap operator S (Eq. (2.37)).
To construct these operators, we have to obtainf the AE wave function Pag;(r), the
USPP pseudo-wave-functions Pyg j;(r) (Eq. (2.9)), the NCPP pseudo-wave-functions
Preyj(r) (Eq. (2.12)), the local functions x;;(r) (Eq. (2.28)), the basis functions
Bi(r) (Eq. (2.30)), and the augmentation functions Q; jx(r) (Eq. (2.33)). In this
section, we calculate these functions for a Ag atom. The ground-state electron
configuration is used as the reference electron configuration, and the pseudopotentials
are constructed for [ = 0 (5s), l = 1 (5p), and [ = 2 (4d) electronic states. We use
the cutoff lengths of rg = 2.53 and 7/, = 2.28 a.u.

Figure 1 shows the USPP pseudo-wave-functions Pysy;(r) and the AE wave
functions Pag ;(r). We see that Pyg;(r) are nodeless, while Pag,;(r) have oscillat-
ing behavior near the origin. Each Pyg;(r) approaches the corresponding Pag,;(r)
smoothly. The NCPP pseudo-wave-functions Pyc ;(r) have similar profiles to those
of Pys;;(r). The local functions x;;(r) are displayed in Fig. 2. It is seen that
x1;(r) become zero at r, where the first and second derivatives also vanish because
Pys,;j(r) have the continuous derivatives up to the fourth order. In the method pro-
posed by Kresse and Hafner,'9) the derivative of Pys,;(r) are continuous only up to
the second order, and, therefore, x;;(r) calculated by Eq. (2.28) vanish with a finite
first derivative. The basis functions §;;(r) and augmentation functions @y ;x(r) are
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Fig. 7. Comparison of the energy dependence of the logarithmic derivatives (;(e, R) of the pseudo-
wave-functions (dotted lines) with that of the all-electron {ag, (e, R) (solid lines) for [ =0 (5s),
I =1 (5p), and | = 2 (4d) electronic states of Ag.

shown in Figs. 3 and 4, respectively. 3;;(r) and @y jk(r) also approach zero smoothly
at 7.

Figure 5 shows the estimation of the error AEyin ;(Ecut) (Eq. (4.1)) associated
with the plane-wave cutoff energy F.y for the pseudo-wave-functions. We see that
the [ = 2 (4d) electronic state mainly determines the cutoff energy E¢y;. The required
E..; is estimated to be about 16 ry for an error of 1 mry/electron. The cutoff energy
Edens for the electron density is estimated from Qlljjk (9) (Eq. (4.3)), as displayed in

ut

Fig. 6. The required EL will be about 100 ry.

cut
Figure 7 shows the comparison of the energy dependence of the logarithmic

derivatives (;(¢, R) of the pseudo-wave-functions with that of the all-electron (ag (€, R)
for R = 3.5 a.u. It is seen that (;(¢, R) are in good agreement with (ag (e, R) for
a wide range of energy, which means that the pseudopotentials constructed have a
high transferability.
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