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How to incorporate many-electron correlations into effective

single-electron (Kohn-Sham) equations?




Preliminary: Second Quantization (1)

e Consider a system of /V electrons with the Hamiltonian
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* Occupation-number representation: An antisymmetric Fermionic wave
function can be expanded as a linear combination of Slater determinants
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where 71, is the occupation number of the k-th single-electron state Y, (1),
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Preliminary: Second Quantization (2)

 The quantum-dynamical system is identical to
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with the Hamiltonian operator
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Physicist’s notation Chemist’s notation
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and the creation (d,t,) & annihilation (@, ) operators anticommute
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Preliminary: Second Quantization (3)

 Hamiltonian operator in the coordinate representation
H=T+V+0U
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e See note on second quantization

A. L. Fetter & J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, '71)
A. Szabo & N. S. Ostlund, Modern Quantum Chemistry (McMillan, '82)



Preliminary: Hartree-Fock Approximation

e Hartree-Fock approximation determines the “best single Slater
determinant” that minimizes the energy
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e See note on Hartree-Fock approximation

A. Szabo & N. S. Ostlund, Modern Quantum Chemistry (McMillan, ’82)



Energy Functional

Exchange-correlation (xc¢) functional via Kohn-Sham decomposition

Elp(r)] = Ts[p(r)] + J drv(r)p(r) + . f dl‘dr'p(r)p(f’)
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+ Exc[p(r)]

Kinetic energy of
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External potential




Electron-Electron Interaction Energy
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e Two-body correlation function g(r,r’)
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* See note on second quantization



Electron Correlation vs. Density Response

e Information on two-body correlation is encoded in the density response

function y through fluctuation-dissipation theorem; see note on time-
dependent perturbation
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* Equation-of-motion & functional derivative to derive approximate y; see A.
Nakano & S. Ichimaru, Phys. Rev. B 39, 4930 ('89); ibid. 39, 4938 ('89)



Pair Correlation: Exchange Hole

e Radial distribution function g(|Jr — r’|) in a homogeneous system

e Hartree-Fock (HF) approximation: Ground state is a Slater determinant of
plane waves occupied up to the chemical potential u

o g(r) is analytically calculated for homogeneous electron gas with HF

No correlation

| Exchange hole

Hartree Fock

9 |sin(kgr) — kgrcos (kgr) 2

gur() =1 - > K33

krp = \/2mu/h = Fermi wave number

¢ gHF(T) represents Pauli

exclusion principle
between same-spin
electrons embodied in
the antisymmetric
Slater determinant

1 e See note on

Hartree-Fock approximation



Exchange & Coulomb Holes

e g(r) of homogeneous electron liquid with various approximations for

incorporating the correlation effect, which represents additional Coulomb
(or correlation) hole
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P. Vashishta & K. S. Singwi, “Electron correlation at metallic densities. V,”
Phys. Rev. B 6, 875 ('72)



Exchange-Correlation Functional

e Universal functional (of density) that describes many-body
eftects beyond the mean-field approximation

2 /
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* Some commonly used exchange-correlation functionals
>LDA (local density approximation): E,. = [ drp(r)e,.(p(r))
>LSDA (local spin density approximation): ¢,..(p;(r), p, (1))

> GGA (generalized gradient approximation): €,.(p(1), |Vp(r)|)
PBE: Perdew, Burke & Ernzerhof, Phys. Rev. Lett. 77, 3865 (’96)

> MetaGGiik: functional of Kinetic-energy density

Ty(r) = Ezne{occupied} Ve ()|
SCAN: Sun, Ruzsinszky & Perdew, Phys. Rev. Lett. 115, 036402 ('15)



HK vs. PBE

Generalized gradient approximation made simple
JP Perdew, K Burke, M Ernzerhof - Physical review letters, 1996 - APS

Abstract Generalized gradient approximations (GGA's) for the exchange-correlation energy
improve upon the local spin density (LSD) description of atoms, molecules, and solids. We
present a simple derivation of a simple GGA, in which all parameters (other than those in

w99

Cited by 80145

Related articles All 26 versions Web of Science: 6454

Inhomogeneous electron gas
P Hohenberg, W Kohn - Physical review, 1964 - APS

Abstract This paper deals with the ground state of an interacting electron gas in an external
potential v (r). It is proved that there exists a universal functional of the density, F [n (r)],
independent of v (r), such that the expression EZ[ v (r) n (r) d r+ F [n (r)] has as its minimum
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Lesson: Publish something simple that others can use



Other Exchange-Correlation Functionals

e Select an appropriate functional for the purpose & target
system of the QMD simulation

> LDA+U method for transition metals
_~Occupation of /-th orbital

SEipa+u/6n; = €Lpa + U(‘ —n;)
Anisimov et al., Phys. Rev. B 44, 943 ('91)

>DFT-D: van der Waals (vDW) functional for molecular
crystals & layered materials

Eqisp = —Se Zl<] RS fdamp (Rl])
Grimme, J. Comput. Chem. 25, 1463 ('04); J. Chem. Phys. 132, 154104 ('10)
> Nonlocal correlation functional

ER =~ [ dr [ dr’ p(r)¢(r,r)p(r")
Dion et al., Phys. Rev. Lett. 92, 246401 ('04)

For comparison of DFT-D & nonlocal correlation functionals, see
Shimojo et al., J. Chem. Phys. 132, 094106 ('10)



Validation of XC Functional

e Comparison with high accuracy methods, such as quantum Monte Carlo
(QMC), & experimental data

e Sensitivity analysis among different exchange-correlation (xc) functionals
e Consistency of the obtained result with the level of approximation

Example: Atomically thin tellurium (tellurene)
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Band-Gap Problem

Janak’s theorem equates the ionization potential (IP) & electron affinity
(EA) with the Kohn-Sham (KS) eigenenergies of the highest occupied

molecular orbital (HOMO) & lowest unoccupied molecular orbital

(LUMO), respectively
Janak, Phys. Rev. B 18, 7165 ('78)

Band gap, E,,, = IP — EA, is usually underestimated with GGA-type
exchange- correlatlon (xc) functional

This is })artl y due to self interaction: Note the Hartree potential vy (1) =
[dr'e?p(r')/|r — r'| includes repulsive interaction of an occupied electron
with itself (artifact), but not for an unoccupied electron

Self-interaction correction (SIC): A qulck fix subtracts the self-interaction of
each KS orbital, vy ,,,(r) = [ dr' e*[p(r") — 1Yo 1]/ Ir — r'|, which

introduces an orbital-dependent KS potential (expensive & deviates from
the DFT principle)

Perdew & Zunger, Phys. Rev. B 23, 5048 ('81)

Thorough analysis of the band-gap problem focuses on the discreteness of
an electron

Cohen et al., Science 321, 792 ('08)
Mori-Sanchez et al., Phys. Rev. Lett. 100, 146401 ('08)



Hybrid Exact Exchange Functional

 Hartree-Fock (HF) approximation, with the underlying
antisymmetric Slater determinant, is free from self interaction

 Hybrid exact-exchange functional incorporates part of the
exact exchange using HF approximation & the rest with other
x¢ functional (it is not strictly DFT)

B3LYP: e.g., Stephens et al., J. Phys. Chem. 98, 11623 ('94)

PBEOQ: Perdew et al., J. Chem. Phys. 105, 9982 ('96)
 Range-separated hybrid exact-exchange mixes HF & other xc

functional at different distance

HSE: Heyd, Scuseria & Ernzerhof, J. Chem. Phys. 118, 8207 ('03)

For comparison of LSDA, SIC & HF for a 2-electron problem,
see Nakano et al., Phys. Rev. B 44, 8121 ('91)

e See note on Hartree-Fock approximation



