
1

Monte Carlo Basics

§1 Introduction

WHAT IS THE MONTE CARLO METHOD?

• Monte Carlo (MC) method: A computational method that utilizes random numbers.
• Two major applications of the MC method:
 1. Multidimensional integrations (e.g., statistical mechanics in physics);
 2. Simulation of stochastic natural phenomena (e.g., stock price).
• Numerical vs. MC Integration
 The simplest numerical integration of a one-dimensional function, f(x), in the range, [a, b], samples

function values at regular intervals, f(xn = a + (n − 1/2)Δx) (n = 1, ..., M; Δx = (b − a)/M), see the
figure below (this is just an average of (b − a)f(xn)):

 dxf (x) ≅ Δxf (xn)
n=1

M

∑a

b
∫ .1

 The MC method instead generates a sequence of random numbers, rn, in the range, [a, b], and
approximates the integral as (the only difference being random instead of regular points)

 dxf (x) ≅
b− a

M
f (rn)

n=1

M

∑
a

b

∫ .

 Both methods may look similar in this one-dimensional example.
 Consider now an integration of an N-dimensional function, f(x1, ..., xN), in a unit hypercube, [0, 1]N,

 dx
1

0

1

∫  dxN
0

1

∫ f (x
1
,…, xN) .

 For example, even a crude numerical integration with 10 function evaluations for each of the N
coordinates requires 10N function evaluations. This is intractable for a large N, say N = 106. The
error of the MC estimates scales with the number, M, of the sample points as 1/M1/2 (to be proven
later). The MC method provides an approximate estimation of the integral with increased accuracy
with an increased number of sample points.

Figure: Numerical integration of a one-dimensional
function, f(x).

Figure: Numerical integration of a two-dimensional
function, f(x).

1 This is the simplest numerical integration with an error on the order of O(Δx). For the integration of smooth functions,
higher-order numerical integration methods with smaller errors can be used, such as the O(Δx2) trapezoid rule and the O(Δx4)
Simpson’s rule.

2

• MC simulation of stochastic natural phenomena
 (Example) stock price
 The MC method simulates a stochastic natural phenomenon by generating random numbers.

 Stock portfolio trading at Quantlab Financial LLC (courtesy of Dr. Andrey Omeltchenko, 1997

graduate of the Collaboratory for Advanced Computing and Simulations)

 Technology Stock Basket Performance

50

100

150

200

250

300

350

400

450

500

D
e

c
-9

7

J
a

n
-9

8

F
e

b
-9

8

M
a

r-
9

8

A
p

r-
9

8

M
a

y
-9

8

J
u

n
-9

8

J
u

l-
9

8

A
u

g
-9

8

S
e

p
-9

8

O
c
t-

9
8

N
o

v
-9

8

D
e

c
-9

8

J
a

n
-9

9

F
e

b
-9

9

M
a

r-
9

9

A
p

r-
9

9

M
a

y
-9

9

J
u

n
-9

9

J
u

l-
9

9

A
u

g
-9

9

S
e

p
-9

9

O
c
t-

9
9

N
o

v
-9

9

D
e

c
-9

9

J
a

n
-0

0

63-Stock Basket

S&P 500

NASDAQ

3

MC INTEGRATION 1: HIT AND MISS

 Consider a square, {(x, y) | 0 ≤ x < 1, 0 ≤ y < 1}, of unit area. Consider
a subspace inside this square, {(x, y) | 0 ≤ x < 1, 0 ≤ y < 1, x2 + y2 ≤ 1}.
This subspace is a quarter of a unit circle, so that its area is 1/4 × π × 12 =
π/4.
 The subspace area is estimated by the MC method as follows.
Generate Ntry pairs of random numbers, (x, y), in the range [0, 1]. For each
pair, test the condition, x2 + y2 ≤ 1. If this is true, then the pair hits the
subspace and we increment the number, Nhit, of hits. The area is estimated
by

Nhit/Ntry × the area of the square = Nhit/Ntry

The value of π is estimated by multiplying this value by four.
• Program: hit.c
/* Monte Carlo integration of PI by hit and miss */
#include <stdio.h>
#include <stdlib.h>
main() {
 double x, y, pi;
 int hit = 0, try, ntry;
 printf("Input the number of MC trials\n");
 scanf("%d",&ntry);
 srand((unsigned)time((long *)0));
 for (try=0; try<ntry; try++) {
 x = rand()/(float)RAND_MAX;
 y = rand()/(float)RAND_MAX;
 if (x*x+y*y < 1.0) ++hit;
 }
 pi = 4.0*hit/ntry;
 printf("MC estimate for PI = %f\n", pi);
}

> cc hit.c

> a.out
Input the number of MC trials
10000
Ntry Hit = 10000 7874
MC estimate for PI = 3.149600

> a.out
Input the number of MC trials
10000
Ntry Hit = 10000 7798
MC estimate for PI = 3.119200

• Random-number generator in the standard library: The Unix standard library on bit includes a
random-number generator, int rand(), note the header file, #include <stdlib.h>. Successive
calls to this routine generate a sequence of random numbers in the range, [0, 231 − 1 =
2,147,483,647].

• void srand((unsigned) time((int *)0));
 To initialize the sequence of random numbers, use void srand(unsigned seed), where seed is a

random starting point of a sequence. In the above, the seed depends on the time the program is run.
The int time(int *tloc) system call returns the time since 00:00:00 GMT, January 1, 1970,

Figure: 10,000 randomly generated
points, (x, y), in [0, 1]2. The 7,874
blue points satisfy x2 + y2 < 1, while
the remaining 2,126 (= 10,000 -
7,874) red points do not.

4

measured in seconds. If tloc is nonzero, the return value is also stored in the place to which tloc
points.

• RAND_MAX is the maximum random number, 231 − 1 = 2,147,483,647, defined in
/usr/include/stdlib.h. The expression, rand()/(float)RAND_MAX, generates a random number
in the range, [0,1].

MC INTEGRATION 2: SAMPLE MEAN

Recall the MC integration of a one-dimensional function, f(x), in the range, [a, b],

dxf (x) ≅
b− a

M
f (rn)

n=1

M

∑
a

b

∫ .

Let’s apply this method to f(x) = 4/(1 + x2) in the range, [0, 1]. Note that

dx
4

1+ x
2
=

dθ

cos
2θ

4

1+ tan
2θ0

π /4

∫ =
0

1

∫ 4dθ
0

π /4

∫ = π .

(We have changed the variable from x to θ where x = tan θ.)
• Program: mean.c
/* Monte Carlo integration of PI by sample mean */
#include <stdio.h>
#include <stdlib.h>
main() {
 double x, pi, sum = 0.0;
 int try, ntry;
 printf("Input the number of MC trials\n");
 scanf("%d",&ntry);
 srand((unsigned)time((int *)0));
 for (try=0; try<ntry; try++) {
 x = rand()/(float)RAND_MAX;
 sum += 4.0/(1.0 + x*x);
 }
 pi = sum/ntry;
 printf("MC estimate for PI = %f\n", pi);
}

> cc mean.c
> a.out
Input the number of MC trials
100
MC estimate for PI = 3.127413

APPLICATION: STATISTICAL MECHANICS

Consider a cubic box of length, L, which contains N particles. Statistical mechanics deals with the long-
time average behavior of such a system.
 Let’s specify a configuration of the system using a set of coordinates,
{

r
i
= (x

i
, y

i
, z

i
) | 0 < x

i
, y

i
, z

i
< L;i =1,...,N} . The long-time average of any physical quantity, A({r

i
}) , is

given by a multidimensional integral,

Figure: Function values, f(x) = 4/(1
+ x2) for 100 random points, x = rn
(n = 1, ..., 100).

5

A({

r
i
}) =

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)A({

r
i
})∫∫

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)∫∫

.

Here T is the temperature in Kelvin, kB = 1.38×10-16 erg/K is the Boltzmann constant, and V ({r
i
}) is the

potential energy of the system in erg. (An example of A({r
i
}) is

the average distance of a pair of particles.)
 For example, if the particles have a charge, e, in the
electrostatic unit, then the potential energy is given by

V ({

r
i
}) =

e
2

r
i
− r

ji< j

∑ .

State-of-the-art particle simulations involve 1 billion particles,
for which the above expression contains 3-billion dimensional
integrals. Numerical integration using regular mesh points is
prohibitive for such large systems. The simplest MC integration
would generate a random point in the 3 billion-dimensional space
by generating 3 billion random numbers in [0, L], and then
evaluate the function at the point. In many cases, however, the
factor exp(−V ({r

i
}) / k

B
T) (called the Boltzmann factor) is

extremely small in most of the points except for the neighbor of
the point where V ({r

i
}) takes its minimum value.

 To illustrate this, let’s consider a single particle in one-dimensional space of length 1 cm. The
particle is subjected to a potential, V(x) = CkB(x − 0.5)2, where C = 1 K/cm2. The figure shows the factor
exp(−V ({


r
i
}) / k

B
T) for temperatures 0.1, 0.01,

and 0.001 K. For the lowest temperature, 0.001
K, the ranges, [0, 0.4] and [0.6, 1], contribute
negligibly to the integration. By generating
random numbers uniformly in [0, 1], therefore,
we are wasting 80 % of the computing time. If
there are 100 particles in the same 1-
dimensional space all subjected to the same
potential, only 0.2100 = 1.27×10−70 of the total
random points contribute to the integral. Your
random numbers make a contribution once in
every 1070 attempts!
 An efficient MC method should generate
random points preferentially near the potential
minimum, x = 0.5. Techniques to sample
important points preferentially are called
importance sampling, which is essential for
successful MC applications.

Figure: A set of N particles in a cubic box
of length L.

Figure: Boltzmann factor for a particle in one-dimensional factor.

6

§2 Probability—Foundation of the MC Method

ELEMENTS OF PROBABILITY THEORY2

• Random variable: Arises when repeated attempts under apparently identical conditions to measure

a quantity produce different results. For example, the reading from tossing a dice, x (∈ {1, 2, 3, 4, 5,
6}), is a random variable.

• Probability density function: Defines the probability, p(x), when the variable is sampled, that the
value x will result. For a large number of samples,

p(x) = (Number of samples with result x)/(Total number of samples)
 For example, the probability that the reading of dice is 1, p(1), is 1/6.
• Normalization condition: Satisfied by the probability density function simply states that the

number of samples for all the readings add up to the total number of samples.

p(xk)
k

∑ =1 ,

 i.e., Σx(Number of samples with result, x)/(Total number of samples) = 1. For example, for a dice,
p(1) + p(2) + ••• + p(6) = 1.

• Expectation (mean): of a random variable, x, is defined as

E[x]= x = xk p(xk)
k

∑ .

 For example, the expected reading of a dice is,

1×
1

6
+6×

1

6
=
6× (1+ 6)

2
×
1

6
= 3.5 .

CONTINUOUS RANDOM VARIABLES

Random variables can be continuous, e.g., the position of an atom along x axis in a box. The probability
density function now defines the probability that, when the variable is sampled, a value lying in the
range x to x + dx will result; this probability is

p(x)dx.
This is realized in the limit of very large number of sample points such that p(x)dx = (Number of
samples in the range, [x, x+dx])/(Total number of samples).

The normalization condition now involves an integral,

2 M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Vol. I: Basics (John Wiley & Sons, New York, 1986)—a good
introduction to the general MC method; P. K. MacKeown, Stochastic Simulation in Physics (Springer, Singapore, 1997)—
contains a practical introduction to probability with many applications in physics; W. Feller, An Introduction to Probability
Theory and Its Application, Vol. I, 3rd Ed. (John Wiley & Sons, New York, 1968)—a classic of probability theory with
rigorous treatment of Markov chains.

7

dxp(x)
−∞

∞

∫ =1 .
and the mean is calculated as

E[x]= x = dxxp(x)
−∞

∞

∫ .

We can also define the expectation of a function value,

E[f (x)]= f (x) = dxf (x)p(x)
−∞

∞

∫ ,

i.e., if we repeatedly generate random numbers, x, and sample the function value, f(x), then 〈f(x)〉 is the
average value over the entire samples.

Figure: A continuous probability density function.

Figure: Uniform probability in the range [a, b].

For example, if a random variable, x, is uniformly distributed in the range, [a, b], then the probability
density function is,

p(x) = 1/(a − b).
The mean of the random variable, x, is

x = dxx
1

b− a
=

a

b

∫
1

b− a

x
2

2










a

b

=
b
2 − a2

2(b− a)
=
b+ a

2
.

For a function, f(x) = x2, the expected value is given by

x
2
= dxx

2 1

b− a
=

a

b

∫
1

b− a

x
3

3










a

b

=
b
3 − a3

3(b− a)
=
b
2
+ ab+ a

2

3
.

VARIANCE AND STANDARD DEVIATION

• Variance of a random variable, x, is defined as

Var[x]= x − x()
2

= x
2
− 2x x + x

2
= x

2
− x

2 .

For the above uniform distribution, the variance is

Var[x]= b
2 + ba+ a2

3
−
b+ a
2

"

#
$

%

&
'
2

=
(b− a)2

12
.

• Standard deviation (standard error) of a random variable, x, is the square root of its variance,

Std[x]= Var[x] ,

 and it measures how broadly the probability density spreads around its mean. In the above example,
the standard deviation is | b− a | /2 3 .

8

§3 MC Estimation

SAMPLE MEAN MC

The sample mean MC estimation of a one-dimensional integral is derived as follows. Let p(x) be some
probability density function. (We assume that p(x) is nonzero in the range, [a, b].) Then rewrite the
integration as

F = dxf (x)
a

b

∫ = dx
f (x)

p(x)











a

b

∫ p(x) =
f (x)

p(x)
.

(Recall that E[f (x)]= dxp(x) f (x)∫ .) Thus the deterministic integration of a function is replaced by the
mean value, 〈f(x)〉, of the function value over stochastic samples.

 Consider a uniform distribution, p(x) = 1/(b − a), then

dxf (x)
a

b

∫ = (b− a) f (x) ,

i.e., generate a uniformly distributed random number sequence, x = rn (n = 1, ..., M), in the range, [a, b],
and calculate the mean, 〈f(x)〉, of the function value. The MC estimate of the integral is

dxf (x)
a

b

∫ = (b− a) f (x) = (b− a)×
1

M
f (rn)

n=1

M

∑ ,

and this is what we have programmed in mean.c in the previous section.
Example: Statistical mechanics

A({

r
i
}) = d


r
1
 d


r
N
P({

r
i
})A({


r
i
})∫∫ ,

where

P({

r
i
}) =

exp(−
V ({

r
i
})

k
B
T
)

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)∫∫

.

ESTIMATION BY FINITE SAMPLING

The above argument is based on the probability density function, p(x), which is defined as the limit of a
large number of samples. In reality, we estimate the mean values from finite samples. The question is
what is the error associated with the estimation? We now distinguish the mean in the infinite
population,

f (x) = dxf (x)p(x)∫ ,
from that in a finite population,

f (x) =
1

M
f (rn)

n=1

M

∑ .

Here we assume that the random numbers, {rn | n = 1, ..., M}, are sampled according to the underlying
probability density function. Note that a finite sample itself is a random variable (repeated M-samplings
will produce different results), and accordingly has the mean and the standard deviation.

9

• Unbiased estimator: If an estimate of a statistical quantity using M samples converges to the

underlying population value, the estimator is unbiased.

(Theorem) The mean of M sampled random variables, f (x) , converges to its expected value, f (x) .

E f (x){ }=
1

M
E f (rn){ }=

n=1

M

∑
1

M
f (x) =

n=1

M

∑
1

M
M f (x) = f (x) .

The second equality holds since each sample is independent and follows the underlying probability
density function.

VARIANCE OF SAMPLE MEAN

Variance of an MC estimate, f (x) , of the mean is related to the standard deviation of the underlying
population.

Var{ f (x)} =Var
1

M
f (rn)

n=1

M

∑







=
1

M
2

m=1

M

∑ f (rm)− f (x)  f (rn)− f (x) 
n=1

M

∑ .

Now an important assumption is that each sample is independent of each other, i.e., there is no
correlation between any two samples. Mathematically the lack of correlation between two random
variable, A and B, is expressed as 〈AB〉 = 〈A〉〈B〉. In the above equation,

f (rm)− f (x)  f (rn)− f (x)  =
Var{ f (x)} (m = n)

f (rm)− f (x) f (rn)− f (x) = 0 (else)





.

Substituting this relation to the above,

Var{ f (x)} =
1

M
2

Var{ f (x)} =
Var{ f (x)}

M
m=1

M

∑ .

By taking the square root,

Std{ f (x)} =
Std{ f (x)}

M
.

(Bottom line) The error of an MC estimation decreases as 1/ M .

UNBIASED ESTIMATOR FOR THE STANDARD DEVIATION

The above equation expresses the standard deviation of the mean of finite samples in terms of that of
infinite samples. The problem is that we do not know the latter. Fortunately there is an estimator for the
standard deviation of the underlying infinite population from finite samples.
Let’s define the variance, sM, measured in M samples,

sM =
1
M

f 2 (rn)
n=1

M

∑ −
1
M

f (rn)
n=1

M

∑
#

$
%

&

'
(

2

.

Note again that sM itself is a random variable. The value may vary from time to time, but its expectation
value is

10

sM =
1

M
f
2
(x)

n=1

M

∑ −
1

M
2

m=1

M

∑ f (rm) f (rn)
n=1

M

∑

= f
2
(x) −

1

M
2

f
2
(x)

m=1

M

∑ −
1

M
2

m=1

M

∑ f (rm) f (rn)
n=1(n≠m)

M

∑ .

For uncorrelated random numbers,

f (rm) f (rn) = f (x) f (x) ,

and therefore

sM = 1−
1

M









 f

2
(x) −

M (M −1)

M
2

f (x) f (x)

= 1−
1

M









Var{ f (x)}.

For the large M limit,

M

M −1
sM =

M

M −1

1

M
f
2
(rn)

n=1

M

∑ −
1

M
f (rn)

n=1

M

∑










2










→ Var{ f (x)} (M →∞)

converges to Var{f(x)} and thus it is an unbiased estimator of the latter.

VARIANCE OF SAMPLE MEAN IN PRACTICE

We can now use the relation

Var{ f (x)} =
Var{ f (x)}

M
,

to estimate the variance of the MC mean (i.e., what is the uncertainty associated with the MC sample
mean), since we now have an estimator for Var{f(x)},

M

M −1
sM =

M

M −1

1

M
f
2
(rn)

n=1

M

∑ −
1

M
f (rn)

n=1

M

∑










2










→ Var{ f (x)} (M →∞) .

Combining these two equations, we have

Var{ f (x)} =
1

M −1
sM =

1

M −1

1

M
f
2
(rn)

n=1

M

∑ −
1

M
f (rn)

n=1

M

∑










2










→

Var{ f (x)}

M
(M →∞) .

11

Let us summarize the main results on the sample mean MC method.
 Mean:

 f (x) =
1

M
f (rn)

n=1

M

∑ → f (x) = dxf (x)p(x)∫ (M →∞) .

 Variance of the mean:

 Var{ f (x)} =
1

M −1
sM =

1

M −1

1

M
f
2
(rn)

n=1

M

∑ −
1

M
f (rn)

n=1

M

∑










2










→

Var{ f (x)}

M
(M →∞) .

CENTRAL THEOREM ON MC SAMPLING

dxf (x)p(x)∫ ≅ f ±
f
2 − f()

2

M −1
,

where finite-samplings are defined through random variables, rn, according to p(x), as

A ≡
1

M
A r

n()
n=1

M

∑ .

12

§4 Importance Sampling

In the previous section, we have learned how we can estimate the mean value of a random function and
its standard error both from random sampling. The question now is how to sample random variables
according to the underlying probability density, p(x). For example, recall the statistical mechanics in the
previous section. The statistical average of a function A(r N) (where r N = {r1,


r
2
,...,

r
N
}) is estimated by

generating random samples, {r1
N
,

r
2

N
,...,

r
M

N
} , as

A =
d!r NA(!r N)exp −V (!r N) / kBT()∫
d!r N exp −V (!r N) / kBT()∫

≈
A(!rn

N)exp −V (!rn
N) / kBT()

n=1

M

∑

exp −V (!rn
N) / kBT()

n=1

M

∑
.

However, we have learned that this approach is practically useless and we instead need to generate
random points according to the probability that is proportional to exp(−V (r N) / k

B
T) . This is called

importance sampling.

IMPORTANCE SAMPLING

The discussion of the sample mean MC method in the previous section has assumed that we can
generate a sequence of random points, r1, r2, ..., so that their population follows a given probability
density function, p(x).
• Importance sampling: Chooses random numbers from a probability density function, p(x).
One importance sampling method generates a sequence of random points so that the population of the
entire points follows the given probability density rather than generating each point with the probability
density (the latter is more difficult).

MARKOV CHAIN

For simplicity, let’s consider a finite-state system which at any moment
can be in one of the states, {Γ1, Γ2, ..., ΓN}. An example is a system of n
atoms in a cubic box in which the coordinate in each direction is
discretized so that it takes only one of m discretized grid points. A state
of the system is specified by 3n discretized points, and there are m3n
combinations for possible states. The probability density function in
this case is a 3n-dimensional function, p(Γ1, Γ2,..., ΓN).
• Markov chain: A sequence of trials that satisfies two conditions:

(a) The outcome of each trial belongs to a finite set of outcomes,
{Γ1, Γ2, ..., ΓN}, called the state space;

(b) The outcome of each trial depends only on the outcome of the
trial that immediately precedes it (the system has a very short
memory).

• Transition probability matrix: Any two states Γn and Γm are linked by a transition probability, πmn,
which is the conditional probability that the next state is Γm given that the current state Γn, i.e., the

Figure: A two-dimensional system
with 5 atoms discretized on 11 grid
points in each direction. The
number of all possible
combinations of atomic positions is
1110.

13

probability of state transition, n → m. Each transition probability πmn is an element of the transition
probability matrix,

Π =

π
11

π
12
 π

1N

π
21

π
22

 
π
N1

π
NN

















.

• Normalization: Given that the system is in the state, Γn, then the next state must be one of the N
possible states so that

π
mn

m=1

N

∑ =1 .

 Suppose we start (with 100% probability) from one of the states, say n, then the next state is
stochastic with probability,

ρ (1) =

p
1

p
2


p
N
















=Πρ (0) =Π

0

1














 n

.

 (p
m

(1)
= π

m ′nδ ′n n

′n =1

N

∑ = π
mn

, where δnn' = 1 if n = n' and 0 otherwise.)

 The probability distribution of the τ-th time step is given by successive matrix multiplications:

ρ (τ) =Πρ (τ−1) =Π2ρ (τ−2) ==Π
τ ρ (0) .

The following theorem3 gives us a clue how a Markov chain is used to achieve a population with a given
probability density.
• Perron-Frobenius theorem: A transition probability matrix has one eigenvalue that equals unity,

and the corresponding eigenvector is the limiting distribution of the chain. The absolute values of all
the other eigenvalues are less than unity.

1. The consequence of the Perron-Frobenius theorem is that Πτ for large τ converges to a matrix which,
acting on any initial probability distribution, ρ(0), converges to the eigenvector of the unit eigenvalue.
All the other eigenvectors, whose eigenvalue being less than unity, are filtered out by successive
matrix multiplications. (ρ∞

= lim
τ→∞

Π
τ ρ (0) .)

2. In order to achieve a distribution of states, which follows a given probability density, find a
transition probability matrix whose eigenvector with unit eigenvalue (the existence of which is
guaranteed by the above normalization condition) equals the desired probability density.

(Example—Two State System)4
Suppose the reliability of a (rather unreliable) computer follows a certain pattern. If it is up and running
on one day, it has a 60% of running correctly on the next. If it is down, it has a 70% chance of also
being down the next day.

3 For a proof, see W. Feller, Introduction to Probability Theory and Its Applications, Vol. I (John Wiley & Sons, New York,
1968).
4 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1987) p. 115.

14

The transition probability matrix of this computer is given by,

Π =
↑ ↓

↑
↓

a 1− b
1− a b() ,

where a = 0.6 and b = 0.7. For example, if the computer is up today,

p↑
(1)

p↓
(1)









= 0.6 0.3

0.4 0.7() 1
0() = 0.6

0.4() ,

i.e., it will be 60% up and 40 % down tomorrow. For the day after tomorrow,

p↑
(2)

p↓
(2)









= 0.6 0.3

0.4 0.7() 0.6
0.4() = 0.48

0.52() .

In order to obtain a closed form for the probability on day n, we need to solve an eigenvalue problem,

Πw = λw ,
where λ is an eigenvalue and the corresponding eigenvector is

w = u
v() .

We can rewrite the eigenvalue equation as

a 1− b
1− a b() u

v() = λ u
v() ,

or

λ − a b−1
a−1 λ − b() u

v() = 0
0() .

For the above equation to have a nontrivial solution (trivial solution is u = v = 0), there should not exist
the inverse matrix of Π, or the determinant of the matrix must be zero,

Π = (λ − a)(λ − b)− (a−1)(b−1) = (λ − a− b+1)(λ −1) = 0 .

There are two solutions, λ+ = 1 and −1 < λ− = a+b−1 < 1. (For each eigenvalue, the two equations
constituting the matrix equation become identical: (1−a)u+ + (b−1)v+ = 0 for λ+ and u− + v− = 0 for λ−.)
The corresponding eigenvectors are

w+ =
u+
v+









=

1

2− a− b
1− b
1− a() and w− =

u−
v
−









= −1

1() .

(Normalization of the vector is not important.) We can combine the two eigensolutions in a matrix
equation,

ΠU =UΛ ,
where U is called the transformation matrix,

U =
u+ u−
v+ v

−









=

(1− b)
(2− a− b)

−1

(1− a)
(2− a− b)

1
















and Λ =

λ+ 0
0 λ

−









= 1 0

0 a+ b−1() .

15


a 1− b
1− a b() u+

v+









= λ+

u+
v+









=

λ+u+
λ+v+











a 1− b
1− a b() u−

v−









= λ−

u−
v−









=

λ−u−
λ−v−











By combining these two matrix equations,

a 1− b
1− a b() u+ u−

v+ v−









=

λ+u+ λ−u−
λ+v+ λ−v−









=

u+ u−
v+ v−











λ+ 0

0 λ−









 //

Or, by multiplying the inverse of U from the right on both sides of the above matrix equation,

Π =UΛU
−1 ,

where the inverse of the transformation matrix is

U
−1
=

1 1
(a−1)

(2− a− b)
(1− b)

(2− a− b)









 .

Let’s multiply the transition probability matrix repeatedly to an arbitrary initial probability distribution,

p
1

(n)

p
2

(n)









=Π

n p
1

p
2









 .

Meaning of such a vector is as follows. Starting from the same initial condition, we monitor the time
sequence of up and down state for many samples. On day τ, count the number of up’s and down’s in the
ensemble, and these give the up and down probabilities on the day.

p
1

(n)

p
2

(n)









=Π

n p
1

p
2











=UΛn
U

−1 p
1

p
2











=
u+ −1
v+ 1











λ+
n

0

0 λ−
n











1 1
−v+ u+() p

1

p
2











=
u+ −1
v+ 1









 1 0
0 0() 1 1

−v+ u+() p
1

p
2









 (n→∞)

=
u+(p1 + p2)
v+(p1 + p2)









=

u+
v+









.

Note that in the above derivation,

UΛU
−1
UΛU

−1
UΛU

−1
=UΛ U

−1
U()ΛΛ U

−1
U()ΛU −1

=UΛ
n
U

−1 .

Therefore repeated application of the transition probability matrix to an arbitrary initial probability
density converges to the eigenvector corresponding to the unit eigenvalue, and this proves the Perron-
Frobenius theorem for an arbitrary two-state system. Note that we have used the fact,

λ−
n
→ 0 (n→∞, λ−

n
<1) .

16

Eventually, the computer has a u+ = (1 − b)/(2 − a − b) = 0.3/0.7 = 0.4286 chance of being up and
running at any day, and u− = (1 − a)/(2 − a − b) = 0.4/0.7 = 0.5714 chance of being down.

METROPOLIS ALGORITHM5

Now the question of generating a desired probability distribution has reduced to finding a transition
probability matrix whose eigenvector with unit eigenvalue equals to the probability density function. To
do this, recall the eigenvalue equation with unit eigenvalue,

Πρ = ρ or Π
mn

n=1

N

∑ ρ
n
= ρ

m
.

The problem is that given a desired ρ, how to find Π which satisfies the above relation. A trick is to
impose the stronger condition below.
• Detailed balance condition: For any pair of states,

π
mn
ρ
n
= π

nm
ρ
m

.

The left-hand side is a flux of probability that the current state is n and that the next state is m. The
right-hand side is a flux from m to n. For any pair of states this balance of fluxes must be
microscopically balanced.

In order to show that above detailed balance condition is sufficient for the unit-eigenvalue relation, sum
the both side over n.

 π
mn
ρ
n
=

n=1

N

∑ π
nm()

n=1

N

∑ ρ
m

1

∴ π
mn
ρ
n
=

n=1

N

∑ ρ
m
.

• Metropolis’ transition probability matrix: Called an asymmetric solution uses a symmetrical (αmn
= αnm) attempt matrix:

π
mn
=

α
mn

ρ
m
≥ ρ

n
m ≠ n

ρ
m
ρ
n()αmn

ρ
m
< ρ

n
m ≠ n

1− π
m 'n

m '≠n

∑ m = n













.

The Metropolis’s method is a kind of rejection method—propose and accept/reject: It first attempts a
move from n → m with probability αmn. If the destination probability is larger than the source
probability, then unconditionally accept the attempt. Otherwise if the destination probability is smaller
than the source, accept the attempt with a probability, ρm/ρn. The last relation guarantees the
normalization condition on the transition probability matrix.

Proof of detailed balance:
Assume that ρm < ρn (similar proof for the other case). π

nm
ρ
m
=α

nm
ρ
m
=α

mn
ρ
m

 due to the symmetrical
attempt. On the other hand, π

mn
ρ
n
= ρ

m
/ ρ

n()α mn
ρ
n
=α

mn
ρ
m

.//

5 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of states calculations by fast
computing machines, J. Chem. Phys. 21, 1087 (1953).

17

An advantage of the Metropolis’ algorithm is that the relative probability density ρm/ρn is relatively easy
to calculate compared with the absolute probability ρn. For example, let’s consider the probability
density in statistical mechanics,

P({

r
i
}) =

exp(−
V ({

r
i
})

k
B
T
)

d

r1 d


r
N
exp(−

V ({

r
i
})

k
B
T
)∫∫

,

which is known only after we integrate the exponential factor over the entire configuration space (an
intractable task). The Metropolis’ method only requires the evaluation of a relative probability,

P

r
i

next{ }()
P

r
i

current{ }()
=
exp −V


r
i

next{ }() kBT()
exp −V


r
i

current{ }() kBT()
= exp −δV


r
i

next{ },

r
i

current{ }() kBT() ,

where

δV

r
i

next{ },

r
i

current{ }() =V

r
i

next{ }()−V

r
i

current{ }() .

Note the denominator of the probability density function (or the normalization factor) cancels out. Now
the only requirement is that we are able to calculate the change in the potential energy after and before
each attempted change in configuration.
* Caution: The system remains in the same state if an attempt fails according to the third relation. If

you are calculating the statistical average of some quantity, this same next state must be taken into
account in the averaging process again in addition to the already counted current state. The
following pseudocode demonstrates this point.

• Template: Metropolis algorithm for statistical mechanics
Sum_A = 0
for n = 1 to Ntrial
 X’ ← X + dX
 Compute dV = V(X’) - V(X)
 if dV < 0 then /* Greedy */
 Accept X ← X’
 else if rand() < exp(-dV/kBT) then /* Uphill move accepted with a probability*/
 Accept X ← X’
 /* else the state remains X */
 endif
 Sum_A = Sum_A + A(X) /* Counting X more than once if a move rejected */
endfor
Avg_A = Sum_A/Ntrial

* Often an attempt used in the Metropolis’ algorithm is a random displacement. For example, in the
discretized 3D atom system, an attempt is made with equal probability, 1/6, from 6 neighbor grid
points, {north, south, east, west, up, down}.

18

§5 Random Number Generator

LINEAR CONGRUENTIAL GENERATOR6

• Uniform random number generator: A routine to generate a sequence of random numbers within

a specified range (typically 0 to 1).
 The simplest uniform random number generator uses a sequence of large positive integers Xi, each
generated from the previous one by multiplication conducted in finite modulus arithmetic:

Xi+1 = aXi mod M,
where a and M are large positive integers and mod is the modulo operator. Each integer in the sequence
lies in the range [1, M − 1]. Random numbers ri in the range [0, 1] is obtained by

ri = Xi/M.

Since Xi can never exceed M − 1 the sequence must repeat after at most M − 1 iterations. If M is chosen
to be prime and a is carefully chosen, the maximum possible period of M − 1 is achieved.

 The most famous generator is (M, a) = (231 − 1 = 2147483647, 75 = 16807), in which M is the largest
prime that can be represented by a signed 32-bit integer. This cannot be implemented using the 32-bit
integer arithmetic since the multiplication can easily overflow.
 The following algorithm (due to Schrage) solves this difficulty by using a factorization of m,

m = aq + r, i.e., q = [m/a], r = m mod a
with square brakets denoting integer part. If r < q, then we can show, for an arbitrary z in the range (0,
m − 1), that both a(z mod q) and r[z/q] lie in the range [0, m − 1] and

azmodm =
a(zmodq)− r[z / q] if ≥ 0

a(zmodq)− r[z / q]+m otherwise{ .

 Let factorize z = xq + y (y < q: remainder) so that x = [z/q] and y = z mod q. Then

az = a(xq+ y)

= x(m− r)+ ay

= xm+ (ay− xr).

 This suggests that ay - xr is equal to az mod m in finite modulus arithmetic. Now note that
 0 < ay < aq = m - r ≤ m, therefore 0 < ay < m
 0 < xr ≤ ar (z < m and x & a are their respective quotients) < aq (r is a remainder with divider q)
 = m - r ≤ m, therefore 0 < xr < m
 Therefore -m < ay - xr < m, and it is equal to either (az mod m) itself or (az mod m - m). //

 The following random number generator uses this algorithm with q = [2147483647/16807] = 127773
and r = 2147483647 - 16807×127773 = 2836.

• The cycle of this random number generator is m − 1 = 231 − 2 ~ 2.1 × 109: You can obtain up to 2
billion independent random numbers.

6 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1987) Appendix G; W. H.
Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd Ed. (Cambridge Univ. Press,
Cambridge, 1992) p. 274.

19

• Program ran0.c
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
float ran0(int *idum) {
/*
Random number generator. Returns a uniform random number between 0.0 and 1.0.
Set *idum (to be modified) to any nonzero integer value to initialize the sequence.
*/
 long k;
 float ans;

 k = (*idum)/IQ;
 idum = IA(*idum - k*IQ) - IR*k;
 if (*idum < 0) *idum += IM;
 ans = AM*(*idum);
 return ans;
}

The “perfect random-number generator” in Numerical Recipes by W. H. Press, B. P. Flannery, S. A.
Teukolsky, and W. T. Vetterling (Cambridge Univ. Press) is an extension of this routine with “shuffle”
and “mix” operations.

SHIFT-REGISTER (XOR) GENERATOR

 We are often interested in generating single random bits, with 0 and 1 equally probable. The shift-
register or Tausworthe generator uses a recurrence relation for obtaining a new random bit from the n
preceding ones.7 Let the bits be numbered from 1 (most recently generated) through n (generated n
steps ago), and denoted a1, a2, ..., an. We want to give a formula for a new bit a0. After generating a0 we
will shift all the bits by one, so that the old an is finally lost, and the new a0 becomes a1. We then apply
the formula again, and so on.
 Particularly useful recurrence relations are obtained from the theory of primitive polynomial modulo
2 of order n. One can seed the sequence with any initial bit pattern (except all zeros), and get 2n - 1
random bits before the sequence repeats. An example of order n = 18 is

a
0
= a

18
⊕ a

5
⊕ a

2
⊕ a

1
,

where the “exclusive or” (XOR) logical operator is used.

7 R. C. Tausworthe, Mathematics of Computation 19, 201 (1965).

20

 This is suited to hardware implementation using a shift register. In the C programming language, we
can use the 18 low-significant bits of unsigned integer variables and the >> (shift right) and << (shift
left) operators to implement the recursion.8
• Program: irbit1.c
#define IB1 1 /* Bit masks */
#define IB2 2
#define IB5 16
#define IB18 131072
int irbit1(unsigned long *iseed) {
 unsigned long newbit;
 newbit = (*iseed & IB18) >> 17 /* Get bit 18 at the right-most digit */
 ^ (*iseed & IB5) >> 4 /* XOR with bit 5 */
 ^ (*iseed & IB2) >> 1
 ^ (*iseed & IB1);
 *iseed = (*iseed << 1) | newbit /* Left shift the seed & fill bit 1 with newbit
*/
 return (int) newbit;
}

FIBONACCI GENERATOR9

Constructing a lagged sequence can be done modulo m > 2, e.g., taking the p-th and q-th preceding
numbers and combining them with some operation,

ν i = ν i−q◊ν i−p() mod m ,

where ◊ is the conventional bitwise XOR. Recently, however, the arithmetic subtraction has also been
used. In the latter case, we add m to ν i−q◊ν i−p if it becomes negative.

NCSA’S SPRNG10

Most modern random-number generators involve the combination of two or more of elementary
generators. The scalability and portability issues are addressed in some public-domain software systems
such as the SPRNG at the NCSA at University of Illinois, Urbana.

8 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd Ed. (Cambridge Univ.
Press, Cambridge, 1992).
9 P. K. MacKeown, Stochastic Simulation in Physics (Springer, Singapore, 1997) p. 76.
10 http://www.ncsa.uiuc.edu/Apps/SPRNG

21

APPENDIX A—GAUSSIAN INTEGRAL

Consider the Gaussian integral,

I = dxexp −x2()
−∞

∞

∫ .

A common trick is instead to evaluate

I
2
= dxexp −x2()

−∞

∞

∫ dyexp −y2()
−∞

∞

∫
= dx

−∞

∞

∫ dyexp −(x2 + y2)()
−∞

∞

∫

and to introduce a polar coordinate, (x = r cosθ, y = r sinθ). Note that

−∞

∞

∫ dxdy =
−∞

∞

∫
0

∞

∫ dr dθ

∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

0

2π

∫ =
0

∞

∫ dr dθ cosθ −rsinθ
sinθ rcosθ0

2π

∫ =
0

∞

∫ dr dθ rcos2θ + rsin2θ
0

2π

∫

=
0

∞

∫ r dr dθ
0

2π

∫

(2D integration is a summation of function values multiplied by a small area, see Appendix B). Using
this transformation,

I
2
= dr

0

∞

∫ dθ
0

2π

∫ rexp −r
2() = 2π dr

0

∞

∫ rexp −r
2() .

Now a further coordination transformation, x = r2 and dx = (dx/dr)dr = 2rdr, makes

I
2
= π dx

0

∞

∫ exp −x() = π −exp(−x)[]
0

∞
= π .

Therefore, I = dx
0

∞

∫ exp −x2() = π .

APPENDIX B—TRANSFORMATION OF AREAL ELEMENT

Q. Consider a variable transformation from (x, y) to (ξ, ζ) = (ξ(x, y), ζ(x, y)) and a tiny rectangle in the

xy-space with area dxdy, which will be transformed to a parallelogram in the ξζ-space shown below.
What is the area of the transformed parallelogram?

22

A. S =

∂ξ

∂x

∂ξ

∂y
∂ζ

∂x

∂ζ

∂y

dxdy =
∂ξ

∂x

∂ζ

∂y
−
∂ξ

∂y

∂ζ

∂x









dxdy , where a b

c d
= ad − bc is the determinant of matrix

a b
c d() .

(Proof)

Consider a parallelogram formed by two 2D vectors

k = (a,b) and


l = (c,d) with the angle θ between

them. Note that

cosθ =


k •

l

k


l

=
ac+ bd

(a
2
+ b

2
)(c

2
+ d

2
)

sinθ = 1− cos
2θ =

(a
2
+ b

2
)(c

2
+ d

2
)− ac+ bd()

2

(a
2
+ b

2
)(c

2
+ d

2
)

=
ad − bc

(a
2
+ b

2
)(c

2
+ d

2
)

The area of the parallelogram is

S =

k

l sinθ = a

2
+ b

2
c
2
+ d

2
sinθ = ad − bc

The parallelogram under question is instead formed by two vectors,


k =

∂ξ

∂x
dx,

∂ζ

∂x
dx









 ,


l =

∂ξ

∂y
dy,

∂ζ

∂y
dy









 .

23

Here, we have used the linear approximation,

(ξ (x + dx, y+ dy),ζ (x + dx, y+ dy)) ≈ (ξ (x, y)+
∂ξ

∂x
dx +

∂ξ

∂y
dy,ζ (x, y)+

∂ζ

∂x
dx +

∂ζ

∂y
dy)

With this substitution, we get

S =
∂ξ

∂x
dx
∂ζ

∂y
dy−

∂ζ

∂x
dx
∂ξ

∂y
dy =

∂ξ

∂x

∂ζ

∂y
−
∂ζ

∂x

∂ξ

∂y
dxdy =

∂ξ

∂x

∂ξ

∂y
∂ζ

∂x

∂ζ

∂y

dxdy .

PROBLEM—NORMAL DISTRIBUTION
What is the standard deviation of the random number, ζ, that follow the normal probability density,

P ζ() =
1

2πσ
exp −

ζ 2

2σ 2









 ?

(Answer)
Note that

I σ() = dζ exp −
ζ 2

2σ 2











−∞

∞

∫ = 2σ dsexp −s
2()

−∞

∞

∫ = 2πσ ,

where we have introduced a new variable, s, through ζ = 2σ s . By differentiate both sides by σ,

dI

dσ
= dζ

ζ 2

σ 3
exp −

ζ 2

2σ 2











−∞

∞

∫ = 2π .

Or

dζ
2πσ

ζ 2 exp −
ζ 2

2σ 2

"

#
$

%

&
'

−∞

∞

∫ = ζ 2 =σ 2 .

From the symmetry, the average value, 〈ζ〉 = 0, and therefore the variance of ζ is ζ 2 − ζ
2

=σ 2 and
the standard deviation is σ.

