Molecular Dynamics Simulation: Q \& A

Aiichiro Nakano

Collaboratory for Advanced Computing \& Simulations
Department of Computer Science
Department of Physics \& Astronomy
Department of Chemical Engineering \& Materials Science
Department of Quantitative \& Computational Biology
University of Southern California
Email: anakano@usc.edu

Liouville's Theorem

Q: Why is it important to preserve the phase-space volume along the molecular-dynamics trajectory?

A: Exact phase-space-volume conservation tends to provide long-time stability, though formal analysis of long-time accuracy very hard.
cf. Backward error analysis
S. Reich, SIAM J. Numer. Anal. 36, 1549 ('99)

Velocity Autocorrelation (VAC)

Q: VAC in nonsteady state?

A: Present it as a function of two time variables.

$$
\left\langle\vec{v}_{i}(t) \cdot \vec{v}_{i}\left(t^{\prime}\right)\right\rangle=\operatorname{vac}\left(\tau=t-t^{\prime}, T=\frac{t+t^{\prime}}{2}\right)
$$

No T dependence in a steady state

$c f$. Transient photoabsorption spectrum: Note the atomic-unit energy, 27.2116 eV $=h /(0.024 \mathrm{fs}) ; \boldsymbol{h}$ is Planck's constant M. Lucchini et al., Science 353, 916 ('16)

Velocity Autocorrelation > 1?

- Yes, in a gas phase just when starting from an FCC lattice

- Why? Hint = time variation of the potential energy

Finite-Range Lennard-Jones Potential

Why Taylor Expansion?

$$
\begin{gathered}
\frac{d}{d t} \Gamma=\hat{L} \Gamma \\
\Downarrow \exp (\hat{L} t) \equiv \sum_{n=0}^{\infty} \frac{1}{n!}(\hat{L} t)^{n} \\
\Gamma(t)=\exp (\hat{L} t) \Gamma(0)
\end{gathered}
$$

A: Exponentiation of a differential operator is "defined" through Taylor expansion, in which the power of the operator is operationally well defined as successive applications of the operator

$$
\begin{gathered}
\left(t\left(F(x) \frac{\partial}{\partial p}+\frac{p}{m} \frac{\partial}{\partial x}\right)\right)^{3} f(x, p)= \\
t\left(F(x) \frac{\partial}{\partial p}+\frac{p}{m} \frac{\partial}{\partial x}\right)\left\{t\left(F(x) \frac{\partial}{\partial p}+\frac{p}{m} \frac{\partial}{\partial x}\right)\left[t\left(F(x) \frac{\partial}{\partial p}+\frac{p}{m} \frac{\partial}{\partial x}\right) f(x, p)\right]\right\}
\end{gathered}
$$

But, it is very hard to obtain a closed form

$$
\{?, ?\}=\exp \left[t\left(F(x) \frac{\partial}{\partial p}+\frac{p}{m} \frac{\partial}{\partial x}\right)\right]\{x, p\}
$$

Velocity Verlet Time Propagator?

freeze p value; shift x value by Δp
freeze x value;
shift p value by $F(x) \Delta / 2$

It's shift operation!

Explicit Form of Mapping?

keep p value constant; shift x value by Δp
keep x value constant;
shift p value by $F(x) \Delta / 2$

$\left\{x, p+\frac{\Delta}{2} F(x)\right\} \quad \begin{gathered}\text { operands } \\ \text { (arguments, }\end{gathered}$

$$
(\wedge \wedge \quad) \quad \wedge \quad) \quad \text { return values) }
$$

$$
\left\{x+\frac{\Delta}{m}\left(p+\frac{\Delta}{2} F(x)\right), p+\frac{\Delta}{2} F(x)\right\}
$$

$$
\left\{x+\frac{\Delta}{m}\left(p+\frac{\Delta}{2} F(x)\right), p+\frac{\Delta}{2} F(x)+\frac{\Delta}{2} F\left(x+\frac{\Delta}{m}\left(p+\frac{\Delta}{2} F(x)\right)\right)\right\}=\left\{x^{\prime}, p^{\prime}\right\}
$$

