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Molecular Dynamics Basics 
Basics of the molecular-dynamics (MD) method1-3 are described, along with corresponding data 
structures in program, md.c. 
Newton’s Second Law of Motion 
TRAJECTORY, COORDINATE, AND ACCELERATION 
• Physical system = a set of atomic coordinates: 
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where !  is the set of real numbers (in the program, represented by a double precision variable) and we 
use a vector notation, ���. 

(Data strcutures in md.c) 
int nAtom:  N, the number of atoms. 
NMAX:  Maximum number of atoms that can be handled by the program. 
double r[NMAX][3]:  r[i][0], r[i][1], and r[i][2] are the x, y, and z coordinates of the i-th atom, 
where i = 0, .., N-1. 
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• Trajectory: A mapping from time to a point in the 3-dimensional space, t !"!

"
r
i
(t)!"3 .  In 

fact, a trajectory of an N-atom system is regarded as a curve in 3N-dimensional space.  A point on the 
curve is then specified by a 3N-element vector, !r N = (x

0
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0
, z
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, x
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, y
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, z
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,..., x

N!1, yN!1, zN!1) . 
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• Velocity: Short-time limit of an average speed (how fast and in which direction the particle is 
moving), 
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double rv[NMAX][3]:  rv[i][0], rv[i][1], and rv[i][2] are the x, y, and z components of the 
velocity vector, !v

i
, of the i-th atom. 

• Acceleration: Rate at which a velocity changes (whether the particle is accelerating or decelerating), 
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double ra[NMAX][3]:  ra[i][0], ra[i][1], and ra[i][2] are the x, y, and z components of the 
acceleration vector, !a

i
, of the i-th atom. 
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 The acceleration of a particle can be estimated from three consecutive positions on its trajectory 
separated by small time increments: 
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NEWTON’S EQUATION 
 Newton’s equation states that the acceleration of a particle is proportional to the force acting on the 
particle, 

m
!""r
i
(t) =

!
F
i
(t) , 

where m is the mass of the particle.  For a heavier particle, the same force causes less acceleration (or 
deceleration). 

• Initial value problem:  Given initial particle positions and velocities, !r
i
(0),
!
v
i
(0)( ) i =1,...,N{ } , obtain 

those at later times, !
r
i
(t),
!
v
i
(t)( ) i =1,...,N;t ! 0{ } .  Note that both positions and velocities must be 

specified in order to predict future trajectories. 

Potential Energy 
 We consider forces which are derived from a potential energy, V (!r N ) , which is a function of all 
atomic positions.  
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Here partial derivative is defined as 

!V

!xk
= lim

h!0

V (x
0
, y

0
, z
0
,..., xk + h, yk, zk,...xN"1, yN"1, zN"1)"V (x0, y0, z0,..., xk, yk, zk,...xN"1, yN"1, zN"1)

h
, 

i.e., what is the rate of change in V when we slightly change one coordinate of an atom while keeping all 
the other coordinates fixed. 
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LENNARD-JONES POTENTIAL 
 To model certain materials such as neon and argon liquids, the Lennard-Jones potential is often used 
by scientists: 

V
!
r
N( ) = u(r

ij
)

i< j

! =
i=0

N"2

! u(|
!
r
ij
|)

j=i+1

N"1

!  

where !rij =
!
r
i
!
!
r
j  is the relative position vector between atoms i and j, and  

u(r) = 4!
"

r

!

"
#

$

%
&

12

'
"

r

!

"
#

$

%
&

6(

)
*
*

+

,
-
-

. 

• Physical meaning of the potential:  An atom consists of a nucleus and electrons 
surrounding it.  Two atoms interact with each other in the following ways. 

> Short-range repulsion (the first term): the Pauli exclusion principle states that 
electrons cannot occupy the same position, resulting in repulsion between the 
atoms.  Note that for r → 0, this term is dominant. 

 
> Long-range attraction (the second term): Electrons around nuclei polarize (change distribution), 

creating electrostatic attraction between atoms.  Note that for r → ∞, this term becomes 
dominant. 

 
• For Argon atoms, 
 > m = 6.6 × 10−23 gram 
 > ε = 1.66 × 10−14 erg (erg = gram•cm2/(second2) is a unit of energy) 
 > σ = 3.4 × 10−8 cm 
* Don’t program with these numbers (in the CGS unit); it will cause floating-point under- or over-
flows. 
NORMALIZATION 

• We introduce normalized coordinates, !!r
i

, potential energy, V′, and time, t′, that are dimensionless 
and are defined as follows. 
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With these substitutions, Newton’s equation becomes 
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* In the derivation above, note that 
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 In summary, the normalized Newton’s equation for atoms interacting with the Lennard-Jones 
potential is given below.  (From now on, we always use normalized variables, and omit primes.) 
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 The figure in the right shows the normalized 
Lennard-Jones potential, u(r), as a function of 
interatomic distance, r.  The distance, r0, at which 
the potential takes its minimum value, u(r0), is 
obtained as follows. 
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Figure: Lennard-Jones potential. 

ANALYTIC FORMULA FOR FORCES 
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 Let’s evaluate the two factors in the above expression: 
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In the first result,  

!
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= 1 (i = k)

0 (i ! k){  

is called Kronecker’s delta expression. 

 Substituting these two results back into the expression for !a
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Summary of Molecular-Dynamics Equation System 

Given initial atomic positions and velocities, !
r
i
(0),
!
v
i
(0)( ) i =1,...,N{ } , obtain those at later times, 
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 The sum over i and j to evaluate the acceleration is implemented in a program as follows: 

for i = 1 to N, !a
i
= 0 , 

for i = 1 to N−1 
 for j = i+1 to N 
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  !
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!
!  

Discretization 
 We need to discretize the trajectories in order to solve the problem on a computer:  Instead of 
considering 

!
r
i
(t),
!
v
i
(t)( ) for t ! 0  

for continuous time, we consider a sequence of states 
!
r
i
(0),
!
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(0)( )"

!
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(!),
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(2!)( )"#  
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ri(0)
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The question is: How to predict the next state, 

  

! 

! 
r i (t + "),

! 
v i (t + ")( ), from the current state, 

  

! 

! 
r i (t),
! 
v i (t)( ). 

double DeltaT:  Δ in md.c. 
VERLET DISCRETIZATION 
 Let’s apply the Taylor expansion 

f (x
0
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which predicts a function value at a distant point, x0+h, from derivatives at x0, to an atomic coordinate. 
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___________________________________________________________________________ 
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 To obtain velocities,  
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 The above two results constitute the Verlet discretization scheme. 

(Verlet discretization scheme) 
!
r
i
(t +!) = 2
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 The Verlet algorithm for MD integration is a straightforward application of these two equations. 

(Verlet algorithm) 

 Given !r
i
(t !")  and !r

i
(t) , 

 1. Compute !a
i
(t)  as a function of {!r

i
(t)} , 

 2. !r
i
(t +!)" 2

!
r
i
(t)#
!
r
i
(t #!)+

!
a
i
(t)!

2 , 
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 3. !v
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(t)!

!
r
i
(t +")#

!
r
i
(t #")[ ] 2"( ) , 

 A problem of this discretization scheme is that the velocity at time t cannot be calculated until the 
coordinate at time t+Δ is calculated.  In the slight variation, called the velocity-Verlet scheme, of the 
above discretization scheme, we are given !r

i
(t),
!
v
i
(t)( )  and predict !r

i
(t +!),

!
v
i
(t +!)( ) . 

VELOCITY-VERLET DISCRETIZATION 

(Theorem) The following algebraic equations give the same sequence of states, !r
i
(n!) , as that obtained 

by the Verlet discretization, Eq. (1). 
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(Proof) 

1. Using Eq. (3) of the velocity-Verlet discretization scheme for two consecutive time steps, t and t+Δ, 
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 Let us eliminate the velocities using Eq. (4), 
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 i.e., 
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!
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2  

 This is nothing but the Verlet rule, Eq. (1), applied to t+2Δ instead of t+Δ.  We have thus derived the 
first equation of the Verlet scheme from the two equations in the velocity-Verlet scheme, i.e., the 
trajectory (or the time sequence of positions) generated by the two schemes is equivalent.  
Consequently, Eq. (3) has the same error bound as Eq. (1). 

2. In the Verlet discretization scheme, the time sequence of positions, Eq. (1), is generated without the 
use of velocities.  Optionally, velocities are estimated using Eq. (2) with O(Δ2) error.  In the velocity 
Verlet scheme, on the contrary, the time sequence of positions, Eq. (3), and that of velocities, Eq. 
(4), are generated together.  Moreover, the velocity estimate, Eq. (4), has a smaller O(Δ3) error 
bound compared to that in Eq. (2).  This is proven as follows. 

 Let us apply the velocity-Verlet position-update rule, Eq. (3), backward in time, so that the positions 
at time t are predicted from information at time t+Δ: 

!
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 By adding the above equation and Eq. (3), 

0 =
!
v
i
(t)!
!
v
i
(t +")[ ]"+

1

2

!
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(t)+
!
a
i
(t +")[ ]"2 +O("4 )  

 By dividing the above equation by Δ and solving it for !v
i
(t +!) , we obtain 

!
v
i
(t +!) =

!
v
i
(t)+

!

2

!
a
i
(t)+
!
a
i
(t +!)[ ]+O(!3) . // 

VELOCITY-VERLET ALGORITHM 
 For notational convenience, let’s define 

 !
v
i
(t +

!

2
) "
!
v
i
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!

2

!
a
i
(t) . (5) 

Eqs. (3) and (4) are then rewritten as 
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 The velocity-Verlet algorithm is just a re-statement of Eqs. (5)-(7). 

(Velocity-Verlet algorithm) 

 Given !r
i
(t),
!
v
i
(t)( ) , 

 1. Compute !a
i
(t)  as a function of {!r

i
(t)} , 

 2. !v
i
(t +

!

2
)"
!
v
i
(t)+

!

2

!
a
i
(t) , 

 3. !r
i
(t +!)"

!
r
i
(t)+
!
v
i
(t +

!

2
)! , 

 4. Compute !a
i
(t +!)  as a function of {!r

i
(t +!)} , 

 5. !v
i
(t +!)"

!
v
i
(t +

!

2
)+

!

2

!
a
i
(t +!)  

 Computing !a
i
(t)  as a function of {!r

i
(t)}  is done in function computeAccel().  In the program, we 

perform an MD simulation for StepLimit steps, and computeAccel() is called StepLimit+1 times. 

(Velocity-Verlet algorithm for StepLimit steps) 

 Initialize !r
i
,
!
v
i( )  for all i 

 Compute !a
i
 as a function of {!r

i
}  for all i—function computeAccel() 

 for stepCount = 1 to StepLimit 
  do the following—function singleStep() 
   !

v
i
!
!
v
i
+
!
a
i
" / 2  for all i 

   !
r
i
!
!
r
i
+
!
v
i
"  for all i 

   Compute !a
i
 as a function of {!r

i
}  for all i—function computeAccel() 

   !
v
i
!
!
v
i
+
!
a
i
" / 2  for all i 

 endfor 
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 Now we have learned the skeleton of md.c program.  The next lecture will deal with some details of 
the program.  These include: 
• Periodic boundary conditions 
• Shifted potential 
• Energy conservation and temperature 
• Initialization: fcc lattice, random velocity 
* The velocity-Verlet algorithm is more elegantly derived using a split-operator technique in the Ph.D. 

thesis by M. Tuckerman at Columbia University.  See “Reversible multiple time scale molecular 
dynamics,” M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992). 



10 

Molecular Dynamics Basics II 
Periodic Boundary Conditions 
 (There are only two places you see this in the program) 
 This technique allows us to simulate bulk solid and liquid properties with a small number of atoms 
(N < 1,000) by eliminating surface effects. 

 Note that for 1,000 atoms arranged in a 10 × 10 × 10 cube,  

103 − 83 = 488 atoms 
(nearly half the atoms) are at the surface.  Since these surface atoms are in very different environment 
from the bulk atoms, the average properties computed for this system are very different from bulk 
properties. 

 Periodic boundary conditions are implemented by replicating a simulation box of size Lx × Ly × Lz to 
form an infinite lattice.  Note that we assume atoms to be contained in a rectangular simulation box. 
double Region[3]:  Three-element array containing the box lengths, Lx, Ly, and Lz 

Lx

Ly

 
Figure: Periodically repeated images of an original simulation box (shaded) in 2 dimensions. 

 As an atom moves in the original simulation box, all the images move in a concerted manner by the 
same amount. 
 Since all the images are just shifted copies of an original atom, we need to keep only the coordinates 
of the original (central) image as a representative of all images.  When an atom leaves the central box by 
crossing a boundary, attention is switched to the image just entering the central box. 

Lx

Ly

 
Figure:  Change of the representative atom due to boundary crossing of the atom.  
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 At every MD step, we enforce that an atomic coordinate satisfies 
0 ≤ xi < Lx, 0 ≤ yi < Ly, 0 ≤ zi < Lz. 

 If !r
i
(t)  is in the central box and time increment Δ is small, !r

i
(t +!)  is at most in the neighbor image 

(if this assumption becomes invalid, then exceptions may occur during program execution): −Lx ≤ xi(t+Δ) 
< 2Lx, etc.  In this case, an atom can be “pulled back” to the central box by 
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2
+
L
x

2
= x

i

x
i
" 0 x

i
+
L
x

2
+
L
x

2
= x

i
+ L

x

#

$

%
%%

&

%
%
%

 

double RegionH[3]:  An array (Lx/2, Ly/2, Lz/2) 

Minimum Image Convention 
 In principle, an atom interacts with all the images of another atom (and even with its own images 
except for itself). 
 In practice, we make the simulation box larger enough so that u(r > Lx/2), etc., can be neglected.  
Then an atom interacts with only the nearest image of another atom. 

Lx

Ly

i j
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 Or we can imagine a box of size Lx × Ly × Lz centered at atom i, and this atom interacts only with 
other atoms, j, in this imaginary box.  Therefore, 

!
L
x

2
" x

ij
<
L
x

2

!
L
y

2
" y

ij
<
L
y

2

!
L
z

2
" z

ij
<
L
z

2

#

$

%
%%

&

%
%
%

 

during the computation of forces, where !rij =
!
r
i
!
!
r
j
= (x

ij
, y

ij
, z

ij
) .  In the program, this is achieved by  

x
ij
! x

ij
"SignR

L
x

2
, x

ij
+
L
x

2

#

$
%

&

'
("SignR

L
x

2
, x

i
"
L
x

2

#

$
%

&

'
(

y
ij
! y

ij
"SignR

L
y

2
, y

ij
+
L
y

2

#

$
%

&

'
("SignR

L
x

2
, y

ij
"
L
x

2

#

$
%

&

'
(

z
ij
! z

ij
"SignR

L
z

2
, z

ij
+
L
z

2

#

$
%

&

'
("SignR

L
z

2
, z

ij
"
L
z

2

#

$
%

&

'
(

)

*

+
+
+

,

+
+
+

 

Shifted Potential 
 With the minimal image convention, interatomic interaction is cut-off at half the box length.  If the 
box is not large enough, this truncation causes a significant discontinuity in the potential function and 
our derivation of forces breaks down (we cannot differentiate the potential). 

u(r)

r

Lx/2

Potential energy jump

 
 To remedy this, we introduce a cut-off length rc < Lx/2, etc., and modify the potential such that both 
u(r) and du/dr are continuous at rc.   

!u (r) =
u(r)"u(r

c
)" (r " r

c
)
du

dr
r=rc

r < r
c

0 r # r
c

$

%
&

'&
 

 For the Lennard-Jones potential, rc = 2.5σ is conventionally used.  This causes some shift in the 
potential minimum but little shift in the minimum position. 



13 

 
Figure:  Truncated Lennard-Jones potential. 

Energy 
 In addition to the potential energy, V, introduced before, we introduce the kinetic energy, K, and the 
total energy, E, as a sum of both. 

E = K +V

=
m

2

!"r
i

2

i=0

N!1

" + u(r
ij
)

i< j

"  

where 
!"r
i

2

= "x
i

2
+ "y

i

2
+ "z

i

2 . 

ENERGY CONSERVATION 
 We can prove that the total energy, E, does not change in time, if Newton’s equation is exactly 
integrated. 
 In order to prove the energy conservation, let’s consider 

!E = !K + !V

=
m

2

d

dt
!x
i

2
+ !y

i

2
+ !z

i

2( )
i=0

N!1

" +
dx

i

dt

!V

!xi
+
dyi

dt

!V

!yi
+
dzi

dt

!V

!z
i

#

$
%

&

'
(

i=0

N!1

"

=
m

2
2 !x

i
!!x
i
+ !y

i
!!y
i
+ !z

i
!!z
i( )

i=0

N!1

" + !x
i

!V

!x
i

+ !y
i

!V

!y
i

+ !z
i

!V

!z
i

#

$
%

&

'
(

i=0

N!1

"

= m
!"r
i
•
!""r
i

i=0

N!1

" +
!"r
i
•
!V

!
!
r
ii=0

N!1

"

=
!"r
i

i=0

N!1

" • m
!""r
i
!
!
F
i( )

 

From Newton’s equation, the last expression is zero. 
 In the derivation, vector inner product is defined as 

!
a•
!
b = (ax,ay,az )•(bx,by,bz ) = axbx + ayby + azbz  

and note that 
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d

dt
fg( ) = !fg+ f !g . 

 With discretization approximation, the total energy is not rigorously conserved anymore.  How well 
the total energy is conserved is a good measure for how small Δ we should use. 
 Δ = 0.005 in the normalized unit is typically used for the Lennard-Jones potential (see the figure 
below). 

 
Temperature 
 Temperature, T, is related to the kinetic energy as follows:  

3Nk
B
T

2
=

m

2

!"r
i

2

i=0

N!1

" , 

where 

 kB = 1.38062 × 10-16 erg/Kelvin— Boltzmann constant 
By using the normalized coordinates, 

3Nk
B
T

2
=m! 2

•
"

! 2
m

m

2

!"r
i

!
2

i=0

N"1

#  

!
T

! / k
B

=
1

3N

!"r
i

"
2

i=0

N#1

$  
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where ε/kB = 120 Kelvin is the Lennard-Jones temperature unit.  Thus the average temperature 0.5 means 
60 K << 273 K = 0°C. 

Initialization 
 The program starts to initialize the coordinates and velocities of all atoms. 
FACE CENTERED CUBIC (FCC) LATTICE 
 Atoms are initially arranged to form a regular lattice.  Namely they occupy all the corners and face 
centers of a cube called a unit cell. 

cx

cz

cy

 
double gap[3]: (cx, cy, cz), the edge lengths of the unit cell 
Since our unit cell is cubic, cx = cy = cz = c. 
 Each unit cell contains 

1

8
!8(corners)+

1

2
!6(faces) = 4atoms , 

and the number density of atoms is given by ! = 4 / c3 , or 

c = 4 / !( )
1/3 . 

 The four coordinates are given (in unit of c) as:  (0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0).  
These four coordinates are stored in 
double origAtom[4][3] 

 The simulated system is constructed by repeating the unit cells.   
int InitUcell[3]:  Stores the number of unit cells in the x, y, and z directions 
 The total number of atoms is therefore given by 

N = 4 × InitUcell[0] × InitUcell[1] × InitUcell[2] 
RANDOM VELOCITY 
 We generate random velocities of magnitude 

v
0

2

3
= T

init
! v

0
= 3T

init
 

double InitTemp:  Initial temperature 
 For each atom, the velocity vector is then given by 
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!
v
i
= v

0
!
0
,!
1
,!

2( ) = v0
!

!  

where 
!

!  is a randomly oriented vector of unit length.   

RANDOM POINT IN A UNIT CIRCLE 
 The question is how to randomly generate a point on a unit sphere.  We first start from a simpler 
problem, random point in a unit circle. 

x

y

1-1

-1

1

 
(Algorithm) 
 Let rand() be a uniform random-number generator in the range [0, 1] 
 1. ζi = 2*rand() − 1 (i = 0, 1) so that −1 ≤ ζi < 1 
 2. s

2
=!

0

2
+!

1

2  
 3. if s2 < 1, accept 

!

! = (!
0
,!
1
)  

 4. else reject and go to 1 
(Probability distribution) 

x

y

1-1

-1

1

!0

!1

d!0

d!1

 
 Probability to find a point in the shaded area 
 = (# of points in the shaded area)/(total # of generated points) 

 = P(ζ0, ζ 1)d ζ 0d ζ 1 
 = (d ζ 0d ζ 1 ~ shaded area)/(π•12 ~ area of unit circle), if there is no bias 

!P(!
0
,!
1
) =1/"  

(Polar coordinate system) 

(!
0
,!
1
) = scos", ssin"( ) 0 ! s <1;0 !" < 2#  
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x

y

1-1

-1

1

!
s ds

d!

 
 Again the probability density is given by the ratio of the shaded area divided by the total circular 
area. 

P(s,! )dsd! =
ds•sd!

" •12
 (if uniform) 

!P(s,! ) =
s

"
             (1) 

RANDOM POINT ON A UNIT SPHERE 
 The above distribution is closely related to the uniform distribution on a unit sphere. 
(Spherical coordinate) 

y

z

x

d!

!

"

sin(!)d"

 
(!

0
,!
1
,!

2
) = (sin" cos#, sin" sin#, cos" ) 0 !" < $, 0 !# < 2$  

(Probability distribution) 

P(!," )d!d" =
d! •sin!d"

4# •12
 

!P(!," ) =
sin!

4#
             (2) 

 If we identify s ! sin!
2

, Eqs. (1) and (2) are equivalent. 

!0 !! < "" 0 !
!

2
<
"

2
" 0 ! s # sin

!

2
<1  
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sdsd!

"
=

sin
#

2

ds

d#
d#d!

"
=

sin
#

2

1

2
cos

#

2

!

"
#

$

%
&d#d!

"
=

2sin
#

2
cos

#

2
d#d!

4"
=
sin#d#d!

4"
 // 

 Note that 

!
0
= sin" cos# = 2sin

"

2
cos

"

2
cos# = 2s 1! s2

$
0

s
= 2 1! s2$

0

!
1
= sin" sin# = 2sin

"

2
cos

"

2
sin# = 2s 1! s2

$
1

s
= 2 1! s2$

1

!
2
= cos" =1! 2sin2

"

2
=1! 2s2

"

#

$
$$

%

$
$
$

 

(Algorithm—Generating random points on a unit sphere) 
 Let rand() be a uniform random-number generator in the range [0, 1] 
 1. ζi = 2*rand()− 1 (i = 0, 1) so that −1 ≤ ζi < 1 
 2. s

2
=!

0

2
+!

1

2  

 3. if s2 < 1, accept (!
0
,!
1
,!

2
) = (2 1! s

2"
0
, 2 1! s

2"
1
,1! 2s

2
)  

 4. else reject and go to 1 

LINEAR CONGRUENTIAL RANDOM NUMBER GENERATOR 

 Sequence of seemingly random integers between 1 and m−1 is obtained by starting from some 
nonzero I1 and  

I
j+1 = aI j ( mod m )  

 We choose 

 m = 231−1 = 2147483647 
 a = 16807 
 Uniform random number in the range [0, 1] is obtained as 

r
j
= I

j
/m . 
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